$b_beitrag
b_beitrag
1.15
$b_entfernung
b_entfernung
-0.23
$b_gemeinschaft
b_gemeinschaft
0.13
$b_gestaltung
b_gestaltung
0.39
$b_groesse
b_groesse
0.07
$b_kultur
b_kultur
0.16
$b_umweltbildung
b_umweltbildung
0.14
$b_zugang
b_zugang
0.07
Simulation experimental design
The simulation has 360 respondents and 2 runs.
the parameters used for the simulation are:
The average frequencies of choices for each alternative are
<-map_dfr(seq_along(1:nosim), ~ table(all_designs[["bayeff"]][[.]][["data"]][["CHOICE"]])/length(all_designs[["bayeff"]][[1]][["data"]][["CHOICE"]])) %>% mutate(across(everything(),as.numeric))
gr
print(summary(gr)[4,])
Statistics and power
Here you see the statistics of your parameters for the 2 runs.
kable(summaryall ,digits = 3) %>% kable_styling()
bayefficient.n | efficient.n | bayefficient.mean | efficient.mean | bayefficient.sd | efficient.sd | bayefficient.min | efficient.min | bayefficient.max | efficient.max | bayefficient.range | efficient.range | bayefficient.se | efficient.se | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
est_asc_gemeinschaft | 2 | 2 | 0.433 | 0.644 | 0.056 | 0.082 | 0.394 | 0.586 | 0.473 | 0.702 | 0.079 | 0.115 | 0.040 | 0.058 |
est_b_groesse | 2 | 2 | 0.062 | 0.039 | 0.035 | 0.011 | 0.037 | 0.031 | 0.087 | 0.046 | 0.050 | 0.015 | 0.025 | 0.007 |
est_b_entfernung | 2 | 2 | -0.196 | -0.202 | 0.004 | 0.037 | -0.198 | -0.228 | -0.193 | -0.175 | 0.006 | 0.053 | 0.003 | 0.026 |
est_b_gemeinschaft | 2 | 2 | 0.158 | 0.149 | 0.007 | 0.040 | 0.153 | 0.121 | 0.163 | 0.178 | 0.010 | 0.057 | 0.005 | 0.028 |
est_b_kultur | 2 | 2 | 0.136 | 0.128 | 0.049 | 0.011 | 0.101 | 0.120 | 0.170 | 0.135 | 0.069 | 0.015 | 0.034 | 0.008 |
est_b_umweltbildung | 2 | 2 | 0.205 | 0.083 | 0.013 | 0.002 | 0.195 | 0.082 | 0.214 | 0.084 | 0.019 | 0.002 | 0.009 | 0.001 |
est_b_zugang | 2 | 2 | 0.071 | 0.057 | 0.003 | 0.001 | 0.068 | 0.056 | 0.073 | 0.058 | 0.005 | 0.001 | 0.002 | 0.001 |
est_b_gestaltung | 2 | 2 | 0.398 | 0.362 | 0.034 | 0.027 | 0.374 | 0.343 | 0.422 | 0.380 | 0.047 | 0.038 | 0.024 | 0.019 |
est_b_beitrag | 2 | 2 | 1.122 | 1.065 | 0.029 | 0.077 | 1.101 | 1.011 | 1.143 | 1.120 | 0.041 | 0.109 | 0.021 | 0.055 |
est_asc_klein | 2 | 2 | 0.244 | 0.402 | 0.011 | 0.033 | 0.237 | 0.378 | 0.252 | 0.425 | 0.015 | 0.046 | 0.008 | 0.023 |
rob_pval0_asc_gemeinschaft | 2 | 2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
rob_pval0_b_groesse | 2 | 2 | 0.110 | 0.235 | 0.156 | 0.106 | 0.000 | 0.160 | 0.220 | 0.310 | 0.220 | 0.150 | 0.110 | 0.075 |
rob_pval0_b_entfernung | 2 | 2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
rob_pval0_b_gemeinschaft | 2 | 2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
rob_pval0_b_kultur | 2 | 2 | 0.005 | 0.000 | 0.007 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | 0.010 | 0.000 | 0.005 | 0.000 |
rob_pval0_b_umweltbildung | 2 | 2 | 0.000 | 0.035 | 0.000 | 0.007 | 0.000 | 0.030 | 0.000 | 0.040 | 0.000 | 0.010 | 0.000 | 0.005 |
rob_pval0_b_zugang | 2 | 2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
rob_pval0_b_gestaltung | 2 | 2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
rob_pval0_b_beitrag | 2 | 2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
rob_pval0_asc_klein | 2 | 2 | 0.005 | 0.000 | 0.007 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | 0.010 | 0.000 | 0.005 | 0.000 |
powa
$bayefficient
FALSE TRUE
50 50
$efficient
FALSE
100
Illustration of simulated parameter values
To facilitate interpretation and judgement of the different designs, you can plot the densities of simulated parameter values from the different experimental designs.
$ascgemeinschaft
$groesse
$entfernung
$gemeinschaft
$kultur
$umweltbildung
$zugang
$gestaltung
$beitrag
$ascklein