diff --git a/README.Rmd b/README.Rmd
index dfc2f669902f7ff442510ac55e23cf7898c4d2b4..bb8f0c1a66fc221ec7d157ff1bee37c23487ae45 100644
--- a/README.Rmd
+++ b/README.Rmd
@@ -46,33 +46,40 @@ remotes::install_gitlab(repo = "dj44vuri/simulateDCE" , host = "https://git.idiv
 This is a basic example for a simulation:
 
 ```{r example}
- library(simulateDCE)
+
+
+rm(list=ls())
+library(simulateDCE)
 library(rlang)
 library(formula.tools)
 
-# Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or R objects for spdesign)
+
+library(rlang)
+
 designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE")
 
-# on your computer, it would be something like
-# designpath <- "c:/myfancyDCE/Designs"
+resps =120  # number of respondents
+nosim= 2 # number of simulations to run (about 500 is minimum)
+
 
 
-# number of respondents
-resps =120
 
-# number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.)
-nosim= 2 
 
-# If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size
+
+# bpreis = -0.036
+# blade  = -0.034
+# bwarte = -0.049
+
+
 decisiongroups=c(0,0.7,1)
 
-# set the values of the parameters you want to use in the simulation
+# wrong parameters
+
+#
 bpreis = -0.01
 blade = -0.07
 bwarte = 0.02
 
-# If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10
-
 manipulations = list(alt1.x2=     expr(alt1.x2/10),
                      alt1.x3=     expr(alt1.x3/10),
                      alt2.x2=     expr(alt2.x2/10),
@@ -80,8 +87,8 @@ manipulations = list(alt1.x2=     expr(alt1.x2/10),
 )
 
 
-#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes)
-u<-list( u1 =
+#place your utility functions here
+ul<-list( u1 =
 
            list(
              v1 =V.1~  bpreis * alt1.x1 + blade*alt1.x2 + bwarte*alt1.x3   ,
@@ -94,11 +101,11 @@ u<-list( u1 =
 
 )
 
-# specify the designtype "ngene" or "spdesign"
+
 destype="ngene"
 
+sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype,
+                   designpath = designpath, u=ul)
 
-#lets go
-sedrive <- sim_all()
 
 ```
diff --git a/README.md b/README.md
index 6a4f6b2f75db025dfe8b7a2e7116710f46cbf5cb..77d6112d23362c6ce53d493c022d351aaba0354b 100644
--- a/README.md
+++ b/README.md
@@ -45,7 +45,9 @@ remotes::install_gitlab(repo = "dj44vuri/simulateDCE" , host = "https://git.idiv
 This is a basic example for a simulation:
 
 ``` r
- library(simulateDCE)
+
+rm(list=ls())
+library(simulateDCE)
 library(rlang)
 library(formula.tools)
 #> 
@@ -54,29 +56,33 @@ library(formula.tools)
 #> 
 #>     env
 
-# Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or R objects for spdesign)
+
+library(rlang)
+
 designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE")
 
-# on your computer, it would be something like
-# designpath <- "c:/myfancyDCE/Designs"
+resps =120  # number of respondents
+nosim= 2 # number of simulations to run (about 500 is minimum)
+
+
 
 
-# number of respondents
-resps =120
 
-# number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.)
-nosim= 2 
 
-# If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size
+# bpreis = -0.036
+# blade  = -0.034
+# bwarte = -0.049
+
+
 decisiongroups=c(0,0.7,1)
 
-# set the values of the parameters you want to use in the simulation
+# wrong parameters
+
+#
 bpreis = -0.01
 blade = -0.07
 bwarte = 0.02
 
-# If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10
-
 manipulations = list(alt1.x2=     expr(alt1.x2/10),
                      alt1.x3=     expr(alt1.x3/10),
                      alt2.x2=     expr(alt2.x2/10),
@@ -84,8 +90,8 @@ manipulations = list(alt1.x2=     expr(alt1.x2/10),
 )
 
 
-#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes)
-u<-list( u1 =
+#place your utility functions here
+ul<-list( u1 =
 
            list(
              v1 =V.1~  bpreis * alt1.x1 + blade*alt1.x2 + bwarte*alt1.x3   ,
@@ -98,12 +104,11 @@ u<-list( u1 =
 
 )
 
-# specify the designtype "ngene" or "spdesign"
-destype="ngene"
 
+destype="ngene"
 
-#lets go
-sedrive <- sim_all()
+sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype,
+                   designpath = designpath, u=ul)
 #> Utility function used in simulation, ie the true utility: 
 #> 
 #> $u1
@@ -128,10 +133,6 @@ sedrive <- sim_all()
 #> New names:
 #> • `Choice situation` -> `Choice.situation`
 #> • `` -> `...10`
-#> Warning: One or more parsing issues, call `problems()` on your data frame for details,
-#> e.g.:
-#>   dat <- vroom(...)
-#>   problems(dat)
 #>  
 #>  does sou_gis exist:  FALSE 
 #> 
@@ -151,13 +152,13 @@ sedrive <- sim_all()
 #> 4  1               32      40    20.0     2.5      80     2.5       0     1
 #> 5  1               39      40    20.0     0.0      80    10.0      10     1
 #> 6  1               48      60     5.0     2.5      20     5.0      10     1
-#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.800  2.1016946  2.7841271  1.3266946  0.9841271      1
-#> 2     1 -0.275 -0.775 -1.5595593  0.9636286 -1.8345593  0.1886286      2
-#> 3     1 -0.800 -0.950  0.9803524 -0.1170033  0.1803524 -1.0670033      1
-#> 4     1 -1.750 -0.975 -0.9363311 -0.2117177 -2.6863311 -1.1867177      2
-#> 5     1 -1.800 -1.300  0.2762203  2.7548043 -1.5237797  1.4548043      2
-#> 6     1 -0.900 -0.350  1.3557159  0.7504347  0.4557159  0.4004347      1
+#>   group    V_1    V_2         e_1         e_2       U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.800 -0.28937157  2.15097352 -1.064372  0.3509735      2
+#> 2     1 -0.275 -0.775 -0.96139278 -0.20476786 -1.236393 -0.9797679      2
+#> 3     1 -0.800 -0.950 -1.22764761 -0.06043672 -2.027648 -1.0104367      2
+#> 4     1 -1.750 -0.975 -0.01653508  0.83311025 -1.766535 -0.1418897      2
+#> 5     1 -1.800 -1.300  0.55064443 -0.20286674 -1.249356 -1.5028667      1
+#> 6     1 -0.900 -0.350 -0.31623091  0.72473769 -1.216231  0.3747377      2
 #> 
 #>  
 #>  This is Run number  1 
@@ -179,29 +180,29 @@ sedrive <- sim_all()
 #> 4  1               32      40    20.0     2.5      80     2.5       0     1
 #> 5  1               39      40    20.0     0.0      80    10.0      10     1
 #> 6  1               48      60     5.0     2.5      20     5.0      10     1
-#>   group    V_1    V_2         e_1         e_2        U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.800 -0.40273624 -0.10075471 -1.1777362 -1.9007547      1
-#> 2     1 -0.275 -0.775  0.48834933  1.92667239  0.2133493  1.1516724      2
-#> 3     1 -0.800 -0.950  2.11775049 -0.36980424  1.3177505 -1.3198042      1
-#> 4     1 -1.750 -0.975 -0.21469434 -0.05134613 -1.9646943 -1.0263461      2
-#> 5     1 -1.800 -1.300  1.66727931  1.79712166 -0.1327207  0.4971217      2
-#> 6     1 -0.900 -0.350 -0.01714569  1.40783581 -0.9171457  1.0578358      2
+#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.800  0.4008023  4.3514331 -0.3741977  2.5514331      2
+#> 2     1 -0.275 -0.775 -0.1892883 -0.7606078 -0.4642883 -1.5356078      1
+#> 3     1 -0.800 -0.950  1.2266380 -0.2061132  0.4266380 -1.1561132      1
+#> 4     1 -1.750 -0.975  1.5461599 -0.9432939 -0.2038401 -1.9182939      1
+#> 5     1 -1.800 -1.300 -0.9309889  1.7478688 -2.7309889  0.4478688      2
+#> 6     1 -0.900 -0.350  1.3557092  1.1181441  0.4557092  0.7681441      2
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #> bpreis  blade bwarte 
-#> -920.0 -992.5  605.0 
+#>    140  -1110    320 
 #> initial  value 998.131940 
-#> iter   2 value 994.367289
-#> iter   3 value 965.312071
-#> iter   4 value 964.856191
-#> iter   5 value 960.956078
-#> iter   6 value 960.938761
-#> iter   6 value 960.938748
-#> iter   6 value 960.938748
-#> final  value 960.938748 
+#> iter   2 value 987.542841
+#> iter   3 value 976.359534
+#> iter   4 value 976.315710
+#> iter   5 value 971.176423
+#> iter   6 value 971.173751
+#> iter   6 value 971.173748
+#> iter   6 value 971.173748
+#> final  value 971.173748 
 #> converged
 #> This is Run number  2 
 #>  does sou_gis exist:  FALSE 
@@ -222,30 +223,29 @@ sedrive <- sim_all()
 #> 4  1               32      40    20.0     2.5      80     2.5       0     1
 #> 5  1               39      40    20.0     0.0      80    10.0      10     1
 #> 6  1               48      60     5.0     2.5      20     5.0      10     1
-#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.800 -0.5753867  1.1246768 -1.3503867 -0.6753232      2
-#> 2     1 -0.275 -0.775  0.9246181 -0.7283475  0.6496181 -1.5033475      1
-#> 3     1 -0.800 -0.950  1.6224900 -0.8607449  0.8224900 -1.8107449      1
-#> 4     1 -1.750 -0.975 -0.6271373 -0.9882054 -2.3771373 -1.9632054      2
-#> 5     1 -1.800 -1.300  2.4317376  0.4448995  0.6317376 -0.8551005      1
-#> 6     1 -0.900 -0.350  0.7924767 -0.6407351 -0.1075233 -0.9907351      1
+#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.800 0.93025769  2.47570731  0.1552577  0.6757073      2
+#> 2     1 -0.275 -0.775 1.60707885 -0.35547058  1.3320789 -1.1304706      1
+#> 3     1 -0.800 -0.950 1.27471866 -0.07559595  0.4747187 -1.0255960      1
+#> 4     1 -1.750 -0.975 0.39775368 -0.33144802 -1.3522463 -1.3064480      2
+#> 5     1 -1.800 -1.300 1.28873901  1.16104216 -0.5112610 -0.1389578      2
+#> 6     1 -0.900 -0.350 0.05237432  0.77241297 -0.8476257  0.4224130      2
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #> bpreis  blade bwarte 
-#>  -1740   -650    400 
+#>   -520   -925    320 
 #> initial  value 998.131940 
-#> iter   2 value 992.981264
-#> iter   3 value 992.638207
-#> iter   4 value 992.633735
-#> iter   5 value 973.931212
-#> iter   6 value 972.829429
-#> iter   7 value 972.824075
-#> iter   7 value 972.824073
-#> iter   7 value 972.824073
-#> final  value 972.824073 
+#> iter   2 value 989.267873
+#> iter   3 value 979.462597
+#> iter   4 value 979.399625
+#> iter   5 value 974.067680
+#> iter   6 value 974.065735
+#> iter   6 value 974.065733
+#> iter   6 value 974.065733
+#> final  value 974.065733 
 #> converged
 #> 
 #> 
@@ -253,15 +253,15 @@ sedrive <- sim_all()
 #> \                 vars    n   mean    sd    min    max  range    se
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> est_bpreis           1    2  -0.01  0.00  -0.01  -0.01   0.00  0.00
-#> est_blade            2    2  -0.04  0.00  -0.05  -0.04   0.00  0.00
-#> est_bwarte           3    2   0.02  0.02   0.01   0.04   0.02  0.01
+#> est_blade            2    2  -0.05  0.00  -0.05  -0.04   0.00  0.00
+#> est_bwarte           3    2   0.01  0.00   0.01   0.01   0.00  0.00
 #> rob_pval0_bpreis     4    2   0.00  0.00   0.00   0.00   0.00  0.00
 #> rob_pval0_blade      5    2   0.00  0.00   0.00   0.00   0.00  0.00
-#> rob_pval0_bwarte     6    2   0.12  0.16   0.00   0.23   0.23  0.11
+#> rob_pval0_bwarte     6    2   0.34  0.02   0.33   0.36   0.03  0.01
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> 
-#> FALSE  TRUE 
-#>    50    50 
+#> FALSE 
+#>   100 
 #> Utility function used in simulation, ie the true utility: 
 #> 
 #> $u1
@@ -286,10 +286,6 @@ sedrive <- sim_all()
 #> New names:
 #> • `Choice situation` -> `Choice.situation`
 #> • `` -> `...10`
-#> Warning: One or more parsing issues, call `problems()` on your data frame for details,
-#> e.g.:
-#>   dat <- vroom(...)
-#>   problems(dat)
 #>  
 #>  does sou_gis exist:  FALSE 
 #> 
@@ -309,13 +305,13 @@ sedrive <- sim_all()
 #> 4  1               25      60     5.0    10.0      20    20.0       5     1
 #> 5  1               29      20     5.0    10.0      80     5.0       0     1
 #> 6  1               32      40    10.0     2.5      80     2.5       5     1
-#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.400  0.4766761  0.2671861 -0.29832392 -1.1328139      1
-#> 2     1 -0.800 -0.750  1.5938385  3.8773811  0.79383850  3.1273811      2
-#> 3     1 -1.600 -1.300  1.3023142  0.4975025 -0.29768579 -0.8024975      1
-#> 4     1 -0.750 -1.500  0.6538038  1.3130123 -0.09619617 -0.1869877      1
-#> 5     1 -0.350 -1.150  1.1097526 -0.4923369  0.75975258 -1.6423369      1
-#> 6     1 -1.050 -0.875 -0.3331011 -0.3042609 -1.38310109 -1.1792609      2
+#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.400  0.5000790 -1.2708067 -0.2749210 -2.6708067      1
+#> 2     1 -0.800 -0.750 -1.9947176 -0.6174753 -2.7947176 -1.3674753      2
+#> 3     1 -1.600 -1.300  0.6003003  1.1010281 -0.9996997 -0.1989719      2
+#> 4     1 -0.750 -1.500 -1.2502306  2.4331480 -2.0002306  0.9331480      2
+#> 5     1 -0.350 -1.150  0.1058614  1.8360816 -0.2441386  0.6860816      2
+#> 6     1 -1.050 -0.875  1.8917336  0.7028783  0.8417336 -0.1721217      1
 #> 
 #>  
 #>  This is Run number  1 
@@ -337,30 +333,29 @@ sedrive <- sim_all()
 #> 4  1               25      60     5.0    10.0      20    20.0       5     1
 #> 5  1               29      20     5.0    10.0      80     5.0       0     1
 #> 6  1               32      40    10.0     2.5      80     2.5       5     1
-#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.400 -0.1853781  5.5643363 -0.9603781  4.1643363      2
-#> 2     1 -0.800 -0.750  0.4194371 -0.8106381 -0.3805629 -1.5606381      1
-#> 3     1 -1.600 -1.300  0.3558603  0.6710868 -1.2441397 -0.6289132      2
-#> 4     1 -0.750 -1.500  1.6643355  0.1201793  0.9143355 -1.3798207      1
-#> 5     1 -0.350 -1.150 -1.0250955  1.4973893 -1.3750955  0.3473893      2
-#> 6     1 -1.050 -0.875  0.5258572  1.4751937 -0.5241428  0.6001937      2
+#>   group    V_1    V_2       e_1        e_2        U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.400 2.6464470  1.8930848  1.8714470  0.4930848      1
+#> 2     1 -0.800 -0.750 0.6943881 -0.0951414 -0.1056119 -0.8451414      1
+#> 3     1 -1.600 -1.300 3.0441699  2.6667389  1.4441699  1.3667389      1
+#> 4     1 -0.750 -1.500 1.1984493  1.9151346  0.4484493  0.4151346      1
+#> 5     1 -0.350 -1.150 3.5252196 -0.8557313  3.1752196 -2.0057313      1
+#> 6     1 -1.050 -0.875 0.5099513 -0.4707311 -0.5400487 -1.3457311      1
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #>  bpreis   blade  bwarte 
-#> -2160.0  -795.0   397.5 
+#> -1440.0 -1057.5   510.0 
 #> initial  value 998.131940 
-#> iter   2 value 990.951216
-#> iter   3 value 973.839132
-#> iter   4 value 973.439833
-#> iter   5 value 965.450645
-#> iter   6 value 965.442009
-#> iter   7 value 965.441990
-#> iter   7 value 965.441990
-#> iter   7 value 965.441990
-#> final  value 965.441990 
+#> iter   2 value 992.072549
+#> iter   3 value 964.484472
+#> iter   4 value 964.438157
+#> iter   5 value 960.231915
+#> iter   6 value 960.220989
+#> iter   6 value 960.220975
+#> iter   6 value 960.220975
+#> final  value 960.220975 
 #> converged
 #> This is Run number  2 
 #>  does sou_gis exist:  FALSE 
@@ -381,30 +376,30 @@ sedrive <- sim_all()
 #> 4  1               25      60     5.0    10.0      20    20.0       5     1
 #> 5  1               29      20     5.0    10.0      80     5.0       0     1
 #> 6  1               32      40    10.0     2.5      80     2.5       5     1
-#>   group    V_1    V_2          e_1        e_2        U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.400  0.649258598 -0.6307138 -0.1257414 -2.0307138      1
-#> 2     1 -0.800 -0.750  0.223937357  3.6350297 -0.5760626  2.8850297      2
-#> 3     1 -1.600 -1.300  0.725491030 -0.9744697 -0.8745090 -2.2744697      1
-#> 4     1 -0.750 -1.500 -0.003168789 -1.2301114 -0.7531688 -2.7301114      1
-#> 5     1 -0.350 -1.150  2.699417707 -1.0402518  2.3494177 -2.1902518      1
-#> 6     1 -1.050 -0.875 -0.294873234  0.5681585 -1.3448732 -0.3068415      2
+#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.400 -0.8673571  0.5735753 -1.6423571 -0.8264247      2
+#> 2     1 -0.800 -0.750  0.1338568  2.1243864 -0.6661432  1.3743864      2
+#> 3     1 -1.600 -1.300  1.3074577 -0.1769248 -0.2925423 -1.4769248      1
+#> 4     1 -0.750 -1.500  1.7452195 -0.7334989  0.9952195 -2.2334989      1
+#> 5     1 -0.350 -1.150  3.2417667  0.8099365  2.8917667 -0.3400635      1
+#> 6     1 -1.050 -0.875 -0.8125169 -0.6517018 -1.8625169 -1.5267018      2
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
-#> bpreis  blade bwarte 
-#>   -780  -1135    595 
+#>  bpreis   blade  bwarte 
+#>  -640.0 -1295.0   362.5 
 #> initial  value 998.131940 
-#> iter   2 value 987.994441
-#> iter   3 value 971.376969
-#> iter   4 value 971.238977
-#> iter   5 value 961.110685
-#> iter   6 value 961.070507
-#> iter   7 value 961.070355
-#> iter   7 value 961.070355
-#> iter   7 value 961.070355
-#> final  value 961.070355 
+#> iter   2 value 981.273463
+#> iter   3 value 964.055548
+#> iter   4 value 963.472083
+#> iter   5 value 957.462611
+#> iter   6 value 957.449595
+#> iter   7 value 957.449577
+#> iter   7 value 957.449577
+#> iter   7 value 957.449577
+#> final  value 957.449577 
 #> converged
 #> 
 #> 
@@ -412,15 +407,15 @@ sedrive <- sim_all()
 #> \                 vars    n   mean    sd    min    max  range    se
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> est_bpreis           1    2  -0.01  0.00  -0.01  -0.01   0.00  0.00
-#> est_blade            2    2  -0.05  0.00  -0.05  -0.05   0.00  0.00
-#> est_bwarte           3    2   0.01  0.02   0.00   0.03   0.03  0.01
+#> est_blade            2    2  -0.05  0.00  -0.06  -0.05   0.01  0.00
+#> est_bwarte           3    2   0.01  0.01   0.00   0.01   0.01  0.01
 #> rob_pval0_bpreis     4    2   0.00  0.00   0.00   0.00   0.00  0.00
 #> rob_pval0_blade      5    2   0.00  0.00   0.00   0.00   0.00  0.00
-#> rob_pval0_bwarte     6    2   0.44  0.60   0.01   0.86   0.85  0.42
+#> rob_pval0_bwarte     6    2   0.53  0.52   0.16   0.90   0.74  0.37
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> 
-#> FALSE  TRUE 
-#>    50    50 
+#> FALSE 
+#>   100 
 #> Utility function used in simulation, ie the true utility: 
 #> 
 #> $u1
@@ -445,10 +440,6 @@ sedrive <- sim_all()
 #> New names:
 #> • `Choice situation` -> `Choice.situation`
 #> • `` -> `...10`
-#> Warning: One or more parsing issues, call `problems()` on your data frame for details,
-#> e.g.:
-#>   dat <- vroom(...)
-#>   problems(dat)
 #>  
 #>  does sou_gis exist:  FALSE 
 #> 
@@ -468,13 +459,13 @@ sedrive <- sim_all()
 #> 4  1               34      80     2.5     5.0      60     5.0     5.0     1
 #> 5  1               37      40     5.0    10.0      60     5.0     2.5     1
 #> 6  1               39      20    20.0     2.5      60     2.5     2.5     1
-#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
-#> 1     1 -1.150 -0.350 -0.6442381  0.4295041 -1.7942381  0.07950409      2
-#> 2     1 -0.675 -1.500  3.1970276 -0.2347316  2.5220276 -1.73473164      1
-#> 3     1 -0.925 -1.600  0.3004974 -0.3128014 -0.6245026 -1.91280136      1
-#> 4     1 -0.875 -0.850  0.3732139 -0.4194695 -0.5017861 -1.26946953      1
-#> 5     1 -0.550 -0.900 -0.9300505  0.3951342 -1.4800505 -0.50486581      2
-#> 6     1 -1.550 -0.725  2.0446600  1.5811755  0.4946600  0.85617546      2
+#>   group    V_1    V_2         e_1          e_2         U_1        U_2 CHOICE
+#> 1     1 -1.150 -0.350 1.018356215 -0.622267218 -0.13164379 -0.9722672      1
+#> 2     1 -0.675 -1.500 2.065375543  0.448415040  1.39037554 -1.0515850      1
+#> 3     1 -0.925 -1.600 0.068572712  0.001884789 -0.85642729 -1.5981152      1
+#> 4     1 -0.875 -0.850 4.451064209 -0.131594375  3.57606421 -0.9815944      1
+#> 5     1 -0.550 -0.900 0.001325549  1.769899979 -0.54867445  0.8699000      2
+#> 6     1 -1.550 -0.725 1.585052229 -0.559602808  0.03505223 -1.2846028      1
 #> 
 #>  
 #>  This is Run number  1 
@@ -496,29 +487,29 @@ sedrive <- sim_all()
 #> 4  1               34      80     2.5     5.0      60     5.0     5.0     1
 #> 5  1               37      40     5.0    10.0      60     5.0     2.5     1
 #> 6  1               39      20    20.0     2.5      60     2.5     2.5     1
-#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
-#> 1     1 -1.150 -0.350  0.6290714  1.29877259 -0.5209286  0.9487726      2
-#> 2     1 -0.675 -1.500  1.8066986 -0.97425446  1.1316986 -2.4742545      1
-#> 3     1 -0.925 -1.600  2.6601535  1.12301507  1.7351535 -0.4769849      1
-#> 4     1 -0.875 -0.850 -1.0099599  1.88168762 -1.8849599  1.0316876      2
-#> 5     1 -0.550 -0.900  2.6583790  0.09147805  2.1083790 -0.8085220      1
-#> 6     1 -1.550 -0.725 -1.1958958  1.93592122 -2.7458958  1.2109212      2
+#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
+#> 1     1 -1.150 -0.350 -0.08786308 -0.5863325 -1.23786308 -0.9363325      2
+#> 2     1 -0.675 -1.500  0.06248520  1.0111311 -0.61251480 -0.4888689      2
+#> 3     1 -0.925 -1.600  0.95443352 -0.3946771  0.02943352 -1.9946771      1
+#> 4     1 -0.875 -0.850 -0.76545318  1.6682085 -1.64045318  0.8182085      2
+#> 5     1 -0.550 -0.900  1.13173817 -0.3986287  0.58173817 -1.2986287      1
+#> 6     1 -1.550 -0.725  3.42387572  1.2824413  1.87387572  0.5574413      1
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #>  bpreis   blade  bwarte 
-#> -1620.0 -1040.0   382.5 
+#>  -960.0 -1017.5   245.0 
 #> initial  value 998.131940 
-#> iter   2 value 992.061567
-#> iter   3 value 967.996960
-#> iter   4 value 967.486565
-#> iter   5 value 962.185161
-#> iter   6 value 962.173351
-#> iter   6 value 962.173337
-#> iter   6 value 962.173337
-#> final  value 962.173337 
+#> iter   2 value 994.181427
+#> iter   3 value 972.722564
+#> iter   4 value 971.807620
+#> iter   5 value 969.894601
+#> iter   6 value 969.892112
+#> iter   6 value 969.892111
+#> iter   6 value 969.892111
+#> final  value 969.892111 
 #> converged
 #> This is Run number  2 
 #>  does sou_gis exist:  FALSE 
@@ -539,30 +530,30 @@ sedrive <- sim_all()
 #> 4  1               34      80     2.5     5.0      60     5.0     5.0     1
 #> 5  1               37      40     5.0    10.0      60     5.0     2.5     1
 #> 6  1               39      20    20.0     2.5      60     2.5     2.5     1
-#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
-#> 1     1 -1.150 -0.350 -0.7309834  1.1284057 -1.88098344  0.7784057      2
-#> 2     1 -0.675 -1.500  0.8179671  1.0964035  0.14296711 -0.4035965      1
-#> 3     1 -0.925 -1.600  1.3940762  1.1170727  0.46907619 -0.4829273      1
-#> 4     1 -0.875 -0.850  0.5730054  3.1034379 -0.30199458  2.2534379      2
-#> 5     1 -0.550 -0.900  1.9047401  4.1223683  1.35474011  3.2223683      2
-#> 6     1 -1.550 -0.725  1.6121097 -0.7004755  0.06210972 -1.4254755      1
+#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
+#> 1     1 -1.150 -0.350  0.6747222  0.25151850 -0.4752778 -0.0984815      2
+#> 2     1 -0.675 -1.500  1.8163839 -0.09688587  1.1413839 -1.5968859      1
+#> 3     1 -0.925 -1.600 -0.8974158  3.69592175 -1.8224158  2.0959217      2
+#> 4     1 -0.875 -0.850 -0.5523539  3.18018561 -1.4273539  2.3301856      2
+#> 5     1 -0.550 -0.900 -1.0057814  0.20974090 -1.5557814 -0.6902591      2
+#> 6     1 -1.550 -0.725  0.9409876  0.52310305 -0.6090124 -0.2018970      2
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #>  bpreis   blade  bwarte 
-#> -1540.0  -942.5   492.5 
+#> -2920.0  -597.5   467.5 
 #> initial  value 998.131940 
-#> iter   2 value 992.664599
-#> iter   3 value 971.477616
-#> iter   4 value 971.475065
-#> iter   5 value 967.041341
-#> iter   6 value 966.930735
-#> iter   7 value 966.930651
-#> iter   7 value 966.930651
-#> iter   7 value 966.930651
-#> final  value 966.930651 
+#> iter   2 value 988.559582
+#> iter   3 value 984.350429
+#> iter   4 value 984.238420
+#> iter   5 value 967.198497
+#> iter   6 value 967.168244
+#> iter   7 value 967.168103
+#> iter   7 value 967.168103
+#> iter   7 value 967.168103
+#> final  value 967.168103 
 #> converged
 #> 
 #> 
@@ -570,11 +561,11 @@ sedrive <- sim_all()
 #> \                 vars    n   mean    sd    min    max  range    se
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> est_bpreis           1    2  -0.01  0.00  -0.01  -0.01   0.00  0.00
-#> est_blade            2    2  -0.05  0.01  -0.05  -0.04   0.01  0.00
-#> est_bwarte           3    2   0.01  0.01   0.00   0.01   0.02  0.01
+#> est_blade            2    2  -0.04  0.01  -0.05  -0.04   0.01  0.00
+#> est_bwarte           3    2   0.00  0.01  -0.01   0.01   0.01  0.01
 #> rob_pval0_bpreis     4    2   0.00  0.00   0.00   0.00   0.00  0.00
 #> rob_pval0_blade      5    2   0.00  0.00   0.00   0.00   0.00  0.00
-#> rob_pval0_bwarte     6    2   0.54  0.57   0.14   0.94   0.80  0.40
+#> rob_pval0_bwarte     6    2   0.52  0.11   0.44   0.59   0.15  0.07
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> 
 #> FALSE 
@@ -603,10 +594,6 @@ sedrive <- sim_all()
 #> New names:
 #> • `Choice situation` -> `Choice.situation`
 #> • `` -> `...10`
-#> Warning: One or more parsing issues, call `problems()` on your data frame for details,
-#> e.g.:
-#>   dat <- vroom(...)
-#>   problems(dat)
 #>  
 #>  does sou_gis exist:  FALSE 
 #> 
@@ -626,13 +613,13 @@ sedrive <- sim_all()
 #> 4  1               70      80     5.0      10      20    20.0     2.5     1
 #> 5  1               71      60    20.0      10      80    10.0     0.0     1
 #> 6  1               73      60    10.0       0      40    20.0    10.0     1
-#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
-#> 1     1 -1.150 -1.800  0.2796585  0.34664924 -0.8703415 -1.4533508      1
-#> 2     1 -0.575 -1.800  0.8234627 -0.32814816  0.2484627 -2.1281482      1
-#> 3     1 -1.400 -0.975 -0.9750900  0.16466845 -2.3750900 -0.8103316      2
-#> 4     1 -0.950 -1.550  1.4931059  0.50414150  0.5431059 -1.0458585      1
-#> 5     1 -1.800 -1.500 -0.6878677 -0.07763469 -2.4878677 -1.5776347      2
-#> 6     1 -1.300 -1.600  5.5219839  0.72366180  4.2219839 -0.8763382      1
+#>   group    V_1    V_2          e_1        e_2        U_1         U_2 CHOICE
+#> 1     1 -1.150 -1.800  0.458928485  2.0701754 -0.6910715  0.27017541      2
+#> 2     1 -0.575 -1.800  0.253655240 -0.6611997 -0.3213448 -2.46119970      1
+#> 3     1 -1.400 -0.975 -0.102031250  0.2036489 -1.5020312 -0.77135113      2
+#> 4     1 -0.950 -1.550 -0.559421410  0.8864091 -1.5094214 -0.66359093      2
+#> 5     1 -1.800 -1.500  5.674505169  1.5661040  3.8745052  0.06610405      1
+#> 6     1 -1.300 -1.600 -0.002309409  1.5711319 -1.3023094 -0.02886812      2
 #> 
 #>  
 #>  This is Run number  1 
@@ -654,30 +641,30 @@ sedrive <- sim_all()
 #> 4  1               70      80     5.0      10      20    20.0     2.5     1
 #> 5  1               71      60    20.0      10      80    10.0     0.0     1
 #> 6  1               73      60    10.0       0      40    20.0    10.0     1
-#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
-#> 1     1 -1.150 -1.800 -0.7572712  3.5425547 -1.9072712  1.7425547      2
-#> 2     1 -0.575 -1.800 -0.4468573  1.9263080 -1.0218573  0.1263080      2
-#> 3     1 -1.400 -0.975 -0.6624036 -0.4899357 -2.0624036 -1.4649357      2
-#> 4     1 -0.950 -1.550 -0.3297019  0.8584054 -1.2797019 -0.6915946      2
-#> 5     1 -1.800 -1.500  3.2012567  0.2906511  1.4012567 -1.2093489      1
-#> 6     1 -1.300 -1.600  1.6578812  1.1758015  0.3578812 -0.4241985      1
+#>   group    V_1    V_2         e_1         e_2       U_1        U_2 CHOICE
+#> 1     1 -1.150 -1.800 -0.01463130 -0.22509832 -1.164631 -2.0250983      1
+#> 2     1 -0.575 -1.800  2.36022782 -0.36376052  1.785228 -2.1637605      1
+#> 3     1 -1.400 -0.975  1.59659499 -0.13121663  0.196595 -1.1062166      1
+#> 4     1 -0.950 -1.550 -1.33824416  1.40724463 -2.288244 -0.1427554      2
+#> 5     1 -1.800 -1.500  0.49308644  1.66211472 -1.306914  0.1621147      2
+#> 6     1 -1.300 -1.600  0.04407743  0.04227857 -1.255923 -1.5577214      1
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #>  bpreis   blade  bwarte 
-#> -3380.0 -2975.0   927.5 
+#> -2640.0 -3282.5  1152.5 
 #> initial  value 998.131940 
-#> iter   2 value 965.332966
-#> iter   3 value 954.229410
-#> iter   4 value 953.971301
-#> iter   5 value 914.603698
-#> iter   6 value 914.486744
-#> iter   7 value 914.486127
-#> iter   7 value 914.486126
-#> iter   7 value 914.486126
-#> final  value 914.486126 
+#> iter   2 value 963.302525
+#> iter   3 value 925.984100
+#> iter   4 value 925.959587
+#> iter   5 value 905.721674
+#> iter   6 value 905.488066
+#> iter   7 value 905.484178
+#> iter   7 value 905.484176
+#> iter   7 value 905.484176
+#> final  value 905.484176 
 #> converged
 #> This is Run number  2 
 #>  does sou_gis exist:  FALSE 
@@ -698,30 +685,30 @@ sedrive <- sim_all()
 #> 4  1               70      80     5.0      10      20    20.0     2.5     1
 #> 5  1               71      60    20.0      10      80    10.0     0.0     1
 #> 6  1               73      60    10.0       0      40    20.0    10.0     1
-#>   group    V_1    V_2        e_1         e_2         U_1       U_2 CHOICE
-#> 1     1 -1.150 -1.800  1.1341457 -0.26483742 -0.01585434 -2.064837      1
-#> 2     1 -0.575 -1.800 -0.7963652  0.04667859 -1.37136517 -1.753321      1
-#> 3     1 -1.400 -0.975  0.2048657 -0.21097918 -1.19513427 -1.185979      2
-#> 4     1 -0.950 -1.550  0.3900273 -0.41202049 -0.55997270 -1.962020      1
-#> 5     1 -1.800 -1.500  1.2810776 -1.50479969 -0.51892242 -3.004800      1
-#> 6     1 -1.300 -1.600  0.1633678  2.89194036 -1.13663222  1.291940      2
+#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
+#> 1     1 -1.150 -1.800  3.0041977  0.38322958  1.8541977 -1.4167704      1
+#> 2     1 -0.575 -1.800  3.0101002  0.72197923  2.4351002 -1.0780208      1
+#> 3     1 -1.400 -0.975  1.1260977  0.06998784 -0.2739023 -0.9050122      1
+#> 4     1 -0.950 -1.550  1.9511131  0.39768983  1.0011131 -1.1523102      1
+#> 5     1 -1.800 -1.500 -0.4686622 -0.83175553 -2.2686622 -2.3317555      1
+#> 6     1 -1.300 -1.600  1.5102954  0.98561984  0.2102954 -0.6143802      1
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #>  bpreis   blade  bwarte 
-#> -3440.0 -2690.0  1097.5 
+#> -2840.0 -2792.5   980.0 
 #> initial  value 998.131940 
-#> iter   2 value 968.342074
-#> iter   3 value 949.110332
-#> iter   4 value 948.984724
-#> iter   5 value 924.015573
-#> iter   6 value 923.964006
-#> iter   7 value 923.963865
-#> iter   7 value 923.963864
-#> iter   7 value 923.963864
-#> final  value 923.963864 
+#> iter   2 value 970.451816
+#> iter   3 value 943.596118
+#> iter   4 value 943.593445
+#> iter   5 value 937.085850
+#> iter   6 value 927.191585
+#> iter   7 value 927.129298
+#> iter   8 value 927.128981
+#> iter   8 value 927.128980
+#> final  value 927.128980 
 #> converged
 #> 
 #> 
@@ -729,11 +716,11 @@ sedrive <- sim_all()
 #> \                 vars    n   mean    sd    min    max  range    se
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> est_bpreis           1    2  -0.01  0.00  -0.01  -0.01   0.00  0.00
-#> est_blade            2    2  -0.04  0.00  -0.04  -0.04   0.01  0.00
-#> est_bwarte           3    2   0.01  0.01   0.01   0.02   0.01  0.01
+#> est_blade            2    2  -0.04  0.00  -0.05  -0.04   0.01  0.00
+#> est_bwarte           3    2   0.01  0.00   0.01   0.02   0.00  0.00
 #> rob_pval0_bpreis     4    2   0.00  0.00   0.00   0.00   0.00  0.00
 #> rob_pval0_blade      5    2   0.00  0.00   0.00   0.00   0.00  0.00
-#> rob_pval0_bwarte     6    2   0.22  0.29   0.01   0.42   0.41  0.20
+#> rob_pval0_bwarte     6    2   0.05  0.06   0.01   0.09   0.08  0.04
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> 
 #> FALSE  TRUE 
@@ -780,13 +767,13 @@ sedrive <- sim_all()
 #> 4  1                4     1      20      80    20.0     2.5       0      10
 #> 5  1                5     1      40      80    10.0     5.0      10       5
 #> 6  1                6     1      60      80     5.0     2.5       0       0
-#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.500  2.0013484  1.2686068  1.2263484 -0.2313932      1
-#> 2     1 -0.850 -0.900 -0.2160302 -0.1560303 -1.0660302 -1.0560303      2
-#> 3     1 -2.000 -1.400  0.3647555  1.7510865 -1.6352445  0.3510865      2
-#> 4     1 -1.600 -0.775 -0.7047881 -0.1607646 -2.3047881 -0.9357646      2
-#> 5     1 -0.900 -1.050 -0.2254104 -1.0337366 -1.1254104 -2.0837366      1
-#> 6     1 -0.950 -0.975  0.2606067 -0.2131090 -0.6893933 -1.1881090      1
+#>   group    V_1    V_2       e_1        e_2        U_1          U_2 CHOICE
+#> 1     1 -0.775 -1.500 0.1987193 -1.0900058 -0.5762807 -2.590005753      1
+#> 2     1 -0.850 -0.900 0.2937177  1.3988380 -0.5562823  0.498837973      2
+#> 3     1 -2.000 -1.400 1.2142542  0.5244772 -0.7857458 -0.875522760      1
+#> 4     1 -1.600 -0.775 2.2587676  0.2695545  0.6587676 -0.505445461      1
+#> 5     1 -0.900 -1.050 0.7958478  1.0485339 -0.1041522 -0.001466141      2
+#> 6     1 -0.950 -0.975 0.3019734 -0.4699530 -0.6480266 -1.444953045      1
 #> 
 #>  
 #>  This is Run number  1 
@@ -808,29 +795,29 @@ sedrive <- sim_all()
 #> 4  1                4     1      20      80    20.0     2.5       0      10
 #> 5  1                5     1      40      80    10.0     5.0      10       5
 #> 6  1                6     1      60      80     5.0     2.5       0       0
-#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
-#> 1     1 -0.775 -1.500 -0.1653281  1.5240819 -0.9403281  0.02408193      2
-#> 2     1 -0.850 -0.900  1.7604798 -1.0703138  0.9104798 -1.97031379      1
-#> 3     1 -2.000 -1.400 -0.2342433 -0.2639953 -2.2342433 -1.66399530      2
-#> 4     1 -1.600 -0.775  2.8543824 -0.4878686  1.2543824 -1.26286864      1
-#> 5     1 -0.900 -1.050  0.1456366  1.8645970 -0.7543634  0.81459700      2
-#> 6     1 -0.950 -0.975  2.0912305 -1.0990719  1.1412305 -2.07407190      1
+#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.500 -0.3472514  2.3168155 -1.1222514  0.8168155      2
+#> 2     1 -0.850 -0.900  0.2943507 -1.7082525 -0.5556493 -2.6082525      1
+#> 3     1 -2.000 -1.400  0.4742717  1.1619537 -1.5257283 -0.2380463      2
+#> 4     1 -1.600 -0.775  0.5628095  2.7090502 -1.0371905  1.9340502      2
+#> 5     1 -0.900 -1.050 -0.2128470 -1.3149155 -1.1128470 -2.3649155      1
+#> 6     1 -0.950 -0.975  1.6192730  0.3695527  0.6692730 -0.6054473      1
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
 #> bpreis  blade bwarte 
-#>  720.0 -947.5  160.0 
+#> -620.0 -877.5  407.5 
 #> initial  value 998.131940 
-#> iter   2 value 995.788784
-#> iter   3 value 986.036982
-#> iter   4 value 985.747072
-#> iter   5 value 981.687192
-#> iter   6 value 981.685153
-#> iter   6 value 981.685152
-#> iter   6 value 981.685152
-#> final  value 981.685152 
+#> iter   2 value 991.196029
+#> iter   3 value 975.595269
+#> iter   4 value 975.571052
+#> iter   5 value 971.582698
+#> iter   6 value 971.577726
+#> iter   6 value 971.577720
+#> iter   6 value 971.577720
+#> final  value 971.577720 
 #> converged
 #> This is Run number  2 
 #>  does sou_gis exist:  FALSE 
@@ -851,30 +838,29 @@ sedrive <- sim_all()
 #> 4  1                4     1      20      80    20.0     2.5       0      10
 #> 5  1                5     1      40      80    10.0     5.0      10       5
 #> 6  1                6     1      60      80     5.0     2.5       0       0
-#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
-#> 1     1 -0.775 -1.500  3.8883463  0.05263711  3.1133463 -1.4473629      1
-#> 2     1 -0.850 -0.900  5.5864242  0.57285677  4.7364242 -0.3271432      1
-#> 3     1 -2.000 -1.400 -0.3144368  0.03415373 -2.3144368 -1.3658463      2
-#> 4     1 -1.600 -0.775  0.3462736  2.49581876 -1.2537264  1.7208188      2
-#> 5     1 -0.900 -1.050  0.1750145  0.10667154 -0.7249855 -0.9433285      1
-#> 6     1 -0.950 -0.975  0.4323006 -0.48374785 -0.5176994 -1.4587478      1
+#>   group    V_1    V_2       e_1        e_2        U_1        U_2 CHOICE
+#> 1     1 -0.775 -1.500 0.5287428  1.2994989 -0.2462572 -0.2005011      2
+#> 2     1 -0.850 -0.900 3.2064378  0.4735037  2.3564378 -0.4264963      1
+#> 3     1 -2.000 -1.400 1.2595242  0.1146570 -0.7404758 -1.2853430      1
+#> 4     1 -1.600 -0.775 4.2748306 -0.7146858  2.6748306 -1.4896858      1
+#> 5     1 -0.900 -1.050 0.1088246  2.2911218 -0.7911754  1.2411218      2
+#> 6     1 -0.950 -0.975 1.1654639  1.3627596  0.2154639  0.3877596      2
 #> 
 #>  
 #>  This is the utility functions 
 #>  U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 
 #> Initial gradient value:
-#> bpreis  blade bwarte 
-#>   -520   -870    380 
+#>  bpreis   blade  bwarte 
+#>  -580.0 -1077.5   495.0 
 #> initial  value 998.131940 
-#> iter   2 value 989.856026
-#> iter   3 value 986.668308
-#> iter   4 value 986.626161
-#> iter   5 value 973.334324
-#> iter   6 value 973.329236
-#> iter   7 value 973.329219
-#> iter   7 value 973.329219
-#> iter   7 value 973.329219
-#> final  value 973.329219 
+#> iter   2 value 984.134259
+#> iter   3 value 967.898748
+#> iter   4 value 967.884812
+#> iter   5 value 960.128712
+#> iter   6 value 960.126933
+#> iter   6 value 960.126928
+#> iter   6 value 960.126928
+#> final  value 960.126928 
 #> converged
 #> 
 #> 
@@ -882,29 +868,29 @@ sedrive <- sim_all()
 #> \                 vars    n   mean    sd    min    max  range    se
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> est_bpreis           1    2  -0.01  0.00  -0.01  -0.01   0.00  0.00
-#> est_blade            2    2  -0.04  0.00  -0.05  -0.04   0.01  0.00
-#> est_bwarte           3    2   0.01  0.01   0.00   0.01   0.01  0.01
+#> est_blade            2    2  -0.05  0.01  -0.06  -0.05   0.01  0.00
+#> est_bwarte           3    2   0.02  0.00   0.02   0.02   0.01  0.00
 #> rob_pval0_bpreis     4    2   0.00  0.00   0.00   0.00   0.00  0.00
 #> rob_pval0_blade      5    2   0.00  0.00   0.00   0.00   0.00  0.00
-#> rob_pval0_bwarte     6    2   0.60  0.56   0.20   0.99   0.79  0.39
+#> rob_pval0_bwarte     6    2   0.11  0.04   0.08   0.13   0.05  0.03
 #> ================  ====  ===  =====  ====  =====  =====  =====  ====
 #> 
 #> FALSE 
 #>   100 
-#> 33.325 sec elapsed
+#> 32.978 sec elapsed
 #> $tic
 #> elapsed 
-#>   0.813 
+#>     0.8 
 #> 
 #> $toc
 #> elapsed 
-#>  34.138 
+#>  33.778 
 #> 
 #> $msg
 #> logical(0)
 #> 
 #> $callback_msg
-#> [1] "33.325 sec elapsed"
+#> [1] "32.978 sec elapsed"
 ```
 
 <img src="man/figures/README-example-1.png" width="100%" /><img src="man/figures/README-example-2.png" width="100%" /><img src="man/figures/README-example-3.png" width="100%" />
diff --git a/man/figures/README-example-1.png b/man/figures/README-example-1.png
index 37e393d53c161ab351e0bdeca1d9591722623f55..9d2a3edfa30b18c1fc3ebad59646993121ad0037 100644
Binary files a/man/figures/README-example-1.png and b/man/figures/README-example-1.png differ
diff --git a/man/figures/README-example-2.png b/man/figures/README-example-2.png
index 0053522a2e2c9cb367bc4d160c09656f5f8bc0a4..02013fae37873a26c3aebfdbde76c0eb8e268387 100644
Binary files a/man/figures/README-example-2.png and b/man/figures/README-example-2.png differ
diff --git a/man/figures/README-example-3.png b/man/figures/README-example-3.png
index 40b60ef9b55ba00a7032f9b1304aa50d2d06efc8..86086b5a7abb632bc944569de38aee08f99ad634 100644
Binary files a/man/figures/README-example-3.png and b/man/figures/README-example-3.png differ