diff --git a/README.Rmd b/README.Rmd index dfc2f669902f7ff442510ac55e23cf7898c4d2b4..bb8f0c1a66fc221ec7d157ff1bee37c23487ae45 100644 --- a/README.Rmd +++ b/README.Rmd @@ -46,33 +46,40 @@ remotes::install_gitlab(repo = "dj44vuri/simulateDCE" , host = "https://git.idiv This is a basic example for a simulation: ```{r example} - library(simulateDCE) + + +rm(list=ls()) +library(simulateDCE) library(rlang) library(formula.tools) -# Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or R objects for spdesign) + +library(rlang) + designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE") -# on your computer, it would be something like -# designpath <- "c:/myfancyDCE/Designs" +resps =120 # number of respondents +nosim= 2 # number of simulations to run (about 500 is minimum) + -# number of respondents -resps =120 -# number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.) -nosim= 2 -# If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size + +# bpreis = -0.036 +# blade = -0.034 +# bwarte = -0.049 + + decisiongroups=c(0,0.7,1) -# set the values of the parameters you want to use in the simulation +# wrong parameters + +# bpreis = -0.01 blade = -0.07 bwarte = 0.02 -# If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10 - manipulations = list(alt1.x2= expr(alt1.x2/10), alt1.x3= expr(alt1.x3/10), alt2.x2= expr(alt2.x2/10), @@ -80,8 +87,8 @@ manipulations = list(alt1.x2= expr(alt1.x2/10), ) -#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes) -u<-list( u1 = +#place your utility functions here +ul<-list( u1 = list( v1 =V.1~ bpreis * alt1.x1 + blade*alt1.x2 + bwarte*alt1.x3 , @@ -94,11 +101,11 @@ u<-list( u1 = ) -# specify the designtype "ngene" or "spdesign" + destype="ngene" +sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, + designpath = designpath, u=ul) -#lets go -sedrive <- sim_all() ``` diff --git a/README.md b/README.md index 6a4f6b2f75db025dfe8b7a2e7116710f46cbf5cb..77d6112d23362c6ce53d493c022d351aaba0354b 100644 --- a/README.md +++ b/README.md @@ -45,7 +45,9 @@ remotes::install_gitlab(repo = "dj44vuri/simulateDCE" , host = "https://git.idiv This is a basic example for a simulation: ``` r - library(simulateDCE) + +rm(list=ls()) +library(simulateDCE) library(rlang) library(formula.tools) #> @@ -54,29 +56,33 @@ library(formula.tools) #> #> env -# Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or R objects for spdesign) + +library(rlang) + designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE") -# on your computer, it would be something like -# designpath <- "c:/myfancyDCE/Designs" +resps =120 # number of respondents +nosim= 2 # number of simulations to run (about 500 is minimum) + + -# number of respondents -resps =120 -# number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.) -nosim= 2 -# If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size +# bpreis = -0.036 +# blade = -0.034 +# bwarte = -0.049 + + decisiongroups=c(0,0.7,1) -# set the values of the parameters you want to use in the simulation +# wrong parameters + +# bpreis = -0.01 blade = -0.07 bwarte = 0.02 -# If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10 - manipulations = list(alt1.x2= expr(alt1.x2/10), alt1.x3= expr(alt1.x3/10), alt2.x2= expr(alt2.x2/10), @@ -84,8 +90,8 @@ manipulations = list(alt1.x2= expr(alt1.x2/10), ) -#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes) -u<-list( u1 = +#place your utility functions here +ul<-list( u1 = list( v1 =V.1~ bpreis * alt1.x1 + blade*alt1.x2 + bwarte*alt1.x3 , @@ -98,12 +104,11 @@ u<-list( u1 = ) -# specify the designtype "ngene" or "spdesign" -destype="ngene" +destype="ngene" -#lets go -sedrive <- sim_all() +sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, + designpath = designpath, u=ul) #> Utility function used in simulation, ie the true utility: #> #> $u1 @@ -128,10 +133,6 @@ sedrive <- sim_all() #> New names: #> • `Choice situation` -> `Choice.situation` #> • `` -> `...10` -#> Warning: One or more parsing issues, call `problems()` on your data frame for details, -#> e.g.: -#> dat <- vroom(...) -#> problems(dat) #> #> does sou_gis exist: FALSE #> @@ -151,13 +152,13 @@ sedrive <- sim_all() #> 4 1 32 40 20.0 2.5 80 2.5 0 1 #> 5 1 39 40 20.0 0.0 80 10.0 10 1 #> 6 1 48 60 5.0 2.5 20 5.0 10 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.800 2.1016946 2.7841271 1.3266946 0.9841271 1 -#> 2 1 -0.275 -0.775 -1.5595593 0.9636286 -1.8345593 0.1886286 2 -#> 3 1 -0.800 -0.950 0.9803524 -0.1170033 0.1803524 -1.0670033 1 -#> 4 1 -1.750 -0.975 -0.9363311 -0.2117177 -2.6863311 -1.1867177 2 -#> 5 1 -1.800 -1.300 0.2762203 2.7548043 -1.5237797 1.4548043 2 -#> 6 1 -0.900 -0.350 1.3557159 0.7504347 0.4557159 0.4004347 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.800 -0.28937157 2.15097352 -1.064372 0.3509735 2 +#> 2 1 -0.275 -0.775 -0.96139278 -0.20476786 -1.236393 -0.9797679 2 +#> 3 1 -0.800 -0.950 -1.22764761 -0.06043672 -2.027648 -1.0104367 2 +#> 4 1 -1.750 -0.975 -0.01653508 0.83311025 -1.766535 -0.1418897 2 +#> 5 1 -1.800 -1.300 0.55064443 -0.20286674 -1.249356 -1.5028667 1 +#> 6 1 -0.900 -0.350 -0.31623091 0.72473769 -1.216231 0.3747377 2 #> #> #> This is Run number 1 @@ -179,29 +180,29 @@ sedrive <- sim_all() #> 4 1 32 40 20.0 2.5 80 2.5 0 1 #> 5 1 39 40 20.0 0.0 80 10.0 10 1 #> 6 1 48 60 5.0 2.5 20 5.0 10 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.800 -0.40273624 -0.10075471 -1.1777362 -1.9007547 1 -#> 2 1 -0.275 -0.775 0.48834933 1.92667239 0.2133493 1.1516724 2 -#> 3 1 -0.800 -0.950 2.11775049 -0.36980424 1.3177505 -1.3198042 1 -#> 4 1 -1.750 -0.975 -0.21469434 -0.05134613 -1.9646943 -1.0263461 2 -#> 5 1 -1.800 -1.300 1.66727931 1.79712166 -0.1327207 0.4971217 2 -#> 6 1 -0.900 -0.350 -0.01714569 1.40783581 -0.9171457 1.0578358 2 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.800 0.4008023 4.3514331 -0.3741977 2.5514331 2 +#> 2 1 -0.275 -0.775 -0.1892883 -0.7606078 -0.4642883 -1.5356078 1 +#> 3 1 -0.800 -0.950 1.2266380 -0.2061132 0.4266380 -1.1561132 1 +#> 4 1 -1.750 -0.975 1.5461599 -0.9432939 -0.2038401 -1.9182939 1 +#> 5 1 -1.800 -1.300 -0.9309889 1.7478688 -2.7309889 0.4478688 2 +#> 6 1 -0.900 -0.350 1.3557092 1.1181441 0.4557092 0.7681441 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -920.0 -992.5 605.0 +#> 140 -1110 320 #> initial value 998.131940 -#> iter 2 value 994.367289 -#> iter 3 value 965.312071 -#> iter 4 value 964.856191 -#> iter 5 value 960.956078 -#> iter 6 value 960.938761 -#> iter 6 value 960.938748 -#> iter 6 value 960.938748 -#> final value 960.938748 +#> iter 2 value 987.542841 +#> iter 3 value 976.359534 +#> iter 4 value 976.315710 +#> iter 5 value 971.176423 +#> iter 6 value 971.173751 +#> iter 6 value 971.173748 +#> iter 6 value 971.173748 +#> final value 971.173748 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -222,30 +223,29 @@ sedrive <- sim_all() #> 4 1 32 40 20.0 2.5 80 2.5 0 1 #> 5 1 39 40 20.0 0.0 80 10.0 10 1 #> 6 1 48 60 5.0 2.5 20 5.0 10 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.800 -0.5753867 1.1246768 -1.3503867 -0.6753232 2 -#> 2 1 -0.275 -0.775 0.9246181 -0.7283475 0.6496181 -1.5033475 1 -#> 3 1 -0.800 -0.950 1.6224900 -0.8607449 0.8224900 -1.8107449 1 -#> 4 1 -1.750 -0.975 -0.6271373 -0.9882054 -2.3771373 -1.9632054 2 -#> 5 1 -1.800 -1.300 2.4317376 0.4448995 0.6317376 -0.8551005 1 -#> 6 1 -0.900 -0.350 0.7924767 -0.6407351 -0.1075233 -0.9907351 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.800 0.93025769 2.47570731 0.1552577 0.6757073 2 +#> 2 1 -0.275 -0.775 1.60707885 -0.35547058 1.3320789 -1.1304706 1 +#> 3 1 -0.800 -0.950 1.27471866 -0.07559595 0.4747187 -1.0255960 1 +#> 4 1 -1.750 -0.975 0.39775368 -0.33144802 -1.3522463 -1.3064480 2 +#> 5 1 -1.800 -1.300 1.28873901 1.16104216 -0.5112610 -0.1389578 2 +#> 6 1 -0.900 -0.350 0.05237432 0.77241297 -0.8476257 0.4224130 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -1740 -650 400 +#> -520 -925 320 #> initial value 998.131940 -#> iter 2 value 992.981264 -#> iter 3 value 992.638207 -#> iter 4 value 992.633735 -#> iter 5 value 973.931212 -#> iter 6 value 972.829429 -#> iter 7 value 972.824075 -#> iter 7 value 972.824073 -#> iter 7 value 972.824073 -#> final value 972.824073 +#> iter 2 value 989.267873 +#> iter 3 value 979.462597 +#> iter 4 value 979.399625 +#> iter 5 value 974.067680 +#> iter 6 value 974.065735 +#> iter 6 value 974.065733 +#> iter 6 value 974.065733 +#> final value 974.065733 #> converged #> #> @@ -253,15 +253,15 @@ sedrive <- sim_all() #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.04 0.00 -0.05 -0.04 0.00 0.00 -#> est_bwarte 3 2 0.02 0.02 0.01 0.04 0.02 0.01 +#> est_blade 2 2 -0.05 0.00 -0.05 -0.04 0.00 0.00 +#> est_bwarte 3 2 0.01 0.00 0.01 0.01 0.00 0.00 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.12 0.16 0.00 0.23 0.23 0.11 +#> rob_pval0_bwarte 6 2 0.34 0.02 0.33 0.36 0.03 0.01 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> -#> FALSE TRUE -#> 50 50 +#> FALSE +#> 100 #> Utility function used in simulation, ie the true utility: #> #> $u1 @@ -286,10 +286,6 @@ sedrive <- sim_all() #> New names: #> • `Choice situation` -> `Choice.situation` #> • `` -> `...10` -#> Warning: One or more parsing issues, call `problems()` on your data frame for details, -#> e.g.: -#> dat <- vroom(...) -#> problems(dat) #> #> does sou_gis exist: FALSE #> @@ -309,13 +305,13 @@ sedrive <- sim_all() #> 4 1 25 60 5.0 10.0 20 20.0 5 1 #> 5 1 29 20 5.0 10.0 80 5.0 0 1 #> 6 1 32 40 10.0 2.5 80 2.5 5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.400 0.4766761 0.2671861 -0.29832392 -1.1328139 1 -#> 2 1 -0.800 -0.750 1.5938385 3.8773811 0.79383850 3.1273811 2 -#> 3 1 -1.600 -1.300 1.3023142 0.4975025 -0.29768579 -0.8024975 1 -#> 4 1 -0.750 -1.500 0.6538038 1.3130123 -0.09619617 -0.1869877 1 -#> 5 1 -0.350 -1.150 1.1097526 -0.4923369 0.75975258 -1.6423369 1 -#> 6 1 -1.050 -0.875 -0.3331011 -0.3042609 -1.38310109 -1.1792609 2 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.400 0.5000790 -1.2708067 -0.2749210 -2.6708067 1 +#> 2 1 -0.800 -0.750 -1.9947176 -0.6174753 -2.7947176 -1.3674753 2 +#> 3 1 -1.600 -1.300 0.6003003 1.1010281 -0.9996997 -0.1989719 2 +#> 4 1 -0.750 -1.500 -1.2502306 2.4331480 -2.0002306 0.9331480 2 +#> 5 1 -0.350 -1.150 0.1058614 1.8360816 -0.2441386 0.6860816 2 +#> 6 1 -1.050 -0.875 1.8917336 0.7028783 0.8417336 -0.1721217 1 #> #> #> This is Run number 1 @@ -337,30 +333,29 @@ sedrive <- sim_all() #> 4 1 25 60 5.0 10.0 20 20.0 5 1 #> 5 1 29 20 5.0 10.0 80 5.0 0 1 #> 6 1 32 40 10.0 2.5 80 2.5 5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.400 -0.1853781 5.5643363 -0.9603781 4.1643363 2 -#> 2 1 -0.800 -0.750 0.4194371 -0.8106381 -0.3805629 -1.5606381 1 -#> 3 1 -1.600 -1.300 0.3558603 0.6710868 -1.2441397 -0.6289132 2 -#> 4 1 -0.750 -1.500 1.6643355 0.1201793 0.9143355 -1.3798207 1 -#> 5 1 -0.350 -1.150 -1.0250955 1.4973893 -1.3750955 0.3473893 2 -#> 6 1 -1.050 -0.875 0.5258572 1.4751937 -0.5241428 0.6001937 2 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.400 2.6464470 1.8930848 1.8714470 0.4930848 1 +#> 2 1 -0.800 -0.750 0.6943881 -0.0951414 -0.1056119 -0.8451414 1 +#> 3 1 -1.600 -1.300 3.0441699 2.6667389 1.4441699 1.3667389 1 +#> 4 1 -0.750 -1.500 1.1984493 1.9151346 0.4484493 0.4151346 1 +#> 5 1 -0.350 -1.150 3.5252196 -0.8557313 3.1752196 -2.0057313 1 +#> 6 1 -1.050 -0.875 0.5099513 -0.4707311 -0.5400487 -1.3457311 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -2160.0 -795.0 397.5 +#> -1440.0 -1057.5 510.0 #> initial value 998.131940 -#> iter 2 value 990.951216 -#> iter 3 value 973.839132 -#> iter 4 value 973.439833 -#> iter 5 value 965.450645 -#> iter 6 value 965.442009 -#> iter 7 value 965.441990 -#> iter 7 value 965.441990 -#> iter 7 value 965.441990 -#> final value 965.441990 +#> iter 2 value 992.072549 +#> iter 3 value 964.484472 +#> iter 4 value 964.438157 +#> iter 5 value 960.231915 +#> iter 6 value 960.220989 +#> iter 6 value 960.220975 +#> iter 6 value 960.220975 +#> final value 960.220975 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -381,30 +376,30 @@ sedrive <- sim_all() #> 4 1 25 60 5.0 10.0 20 20.0 5 1 #> 5 1 29 20 5.0 10.0 80 5.0 0 1 #> 6 1 32 40 10.0 2.5 80 2.5 5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.400 0.649258598 -0.6307138 -0.1257414 -2.0307138 1 -#> 2 1 -0.800 -0.750 0.223937357 3.6350297 -0.5760626 2.8850297 2 -#> 3 1 -1.600 -1.300 0.725491030 -0.9744697 -0.8745090 -2.2744697 1 -#> 4 1 -0.750 -1.500 -0.003168789 -1.2301114 -0.7531688 -2.7301114 1 -#> 5 1 -0.350 -1.150 2.699417707 -1.0402518 2.3494177 -2.1902518 1 -#> 6 1 -1.050 -0.875 -0.294873234 0.5681585 -1.3448732 -0.3068415 2 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.400 -0.8673571 0.5735753 -1.6423571 -0.8264247 2 +#> 2 1 -0.800 -0.750 0.1338568 2.1243864 -0.6661432 1.3743864 2 +#> 3 1 -1.600 -1.300 1.3074577 -0.1769248 -0.2925423 -1.4769248 1 +#> 4 1 -0.750 -1.500 1.7452195 -0.7334989 0.9952195 -2.2334989 1 +#> 5 1 -0.350 -1.150 3.2417667 0.8099365 2.8917667 -0.3400635 1 +#> 6 1 -1.050 -0.875 -0.8125169 -0.6517018 -1.8625169 -1.5267018 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: -#> bpreis blade bwarte -#> -780 -1135 595 +#> bpreis blade bwarte +#> -640.0 -1295.0 362.5 #> initial value 998.131940 -#> iter 2 value 987.994441 -#> iter 3 value 971.376969 -#> iter 4 value 971.238977 -#> iter 5 value 961.110685 -#> iter 6 value 961.070507 -#> iter 7 value 961.070355 -#> iter 7 value 961.070355 -#> iter 7 value 961.070355 -#> final value 961.070355 +#> iter 2 value 981.273463 +#> iter 3 value 964.055548 +#> iter 4 value 963.472083 +#> iter 5 value 957.462611 +#> iter 6 value 957.449595 +#> iter 7 value 957.449577 +#> iter 7 value 957.449577 +#> iter 7 value 957.449577 +#> final value 957.449577 #> converged #> #> @@ -412,15 +407,15 @@ sedrive <- sim_all() #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00 -#> est_bwarte 3 2 0.01 0.02 0.00 0.03 0.03 0.01 +#> est_blade 2 2 -0.05 0.00 -0.06 -0.05 0.01 0.00 +#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.01 0.01 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.44 0.60 0.01 0.86 0.85 0.42 +#> rob_pval0_bwarte 6 2 0.53 0.52 0.16 0.90 0.74 0.37 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> -#> FALSE TRUE -#> 50 50 +#> FALSE +#> 100 #> Utility function used in simulation, ie the true utility: #> #> $u1 @@ -445,10 +440,6 @@ sedrive <- sim_all() #> New names: #> • `Choice situation` -> `Choice.situation` #> • `` -> `...10` -#> Warning: One or more parsing issues, call `problems()` on your data frame for details, -#> e.g.: -#> dat <- vroom(...) -#> problems(dat) #> #> does sou_gis exist: FALSE #> @@ -468,13 +459,13 @@ sedrive <- sim_all() #> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 #> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 #> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -0.350 -0.6442381 0.4295041 -1.7942381 0.07950409 2 -#> 2 1 -0.675 -1.500 3.1970276 -0.2347316 2.5220276 -1.73473164 1 -#> 3 1 -0.925 -1.600 0.3004974 -0.3128014 -0.6245026 -1.91280136 1 -#> 4 1 -0.875 -0.850 0.3732139 -0.4194695 -0.5017861 -1.26946953 1 -#> 5 1 -0.550 -0.900 -0.9300505 0.3951342 -1.4800505 -0.50486581 2 -#> 6 1 -1.550 -0.725 2.0446600 1.5811755 0.4946600 0.85617546 2 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -1.150 -0.350 1.018356215 -0.622267218 -0.13164379 -0.9722672 1 +#> 2 1 -0.675 -1.500 2.065375543 0.448415040 1.39037554 -1.0515850 1 +#> 3 1 -0.925 -1.600 0.068572712 0.001884789 -0.85642729 -1.5981152 1 +#> 4 1 -0.875 -0.850 4.451064209 -0.131594375 3.57606421 -0.9815944 1 +#> 5 1 -0.550 -0.900 0.001325549 1.769899979 -0.54867445 0.8699000 2 +#> 6 1 -1.550 -0.725 1.585052229 -0.559602808 0.03505223 -1.2846028 1 #> #> #> This is Run number 1 @@ -496,29 +487,29 @@ sedrive <- sim_all() #> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 #> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 #> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -0.350 0.6290714 1.29877259 -0.5209286 0.9487726 2 -#> 2 1 -0.675 -1.500 1.8066986 -0.97425446 1.1316986 -2.4742545 1 -#> 3 1 -0.925 -1.600 2.6601535 1.12301507 1.7351535 -0.4769849 1 -#> 4 1 -0.875 -0.850 -1.0099599 1.88168762 -1.8849599 1.0316876 2 -#> 5 1 -0.550 -0.900 2.6583790 0.09147805 2.1083790 -0.8085220 1 -#> 6 1 -1.550 -0.725 -1.1958958 1.93592122 -2.7458958 1.2109212 2 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -1.150 -0.350 -0.08786308 -0.5863325 -1.23786308 -0.9363325 2 +#> 2 1 -0.675 -1.500 0.06248520 1.0111311 -0.61251480 -0.4888689 2 +#> 3 1 -0.925 -1.600 0.95443352 -0.3946771 0.02943352 -1.9946771 1 +#> 4 1 -0.875 -0.850 -0.76545318 1.6682085 -1.64045318 0.8182085 2 +#> 5 1 -0.550 -0.900 1.13173817 -0.3986287 0.58173817 -1.2986287 1 +#> 6 1 -1.550 -0.725 3.42387572 1.2824413 1.87387572 0.5574413 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -1620.0 -1040.0 382.5 +#> -960.0 -1017.5 245.0 #> initial value 998.131940 -#> iter 2 value 992.061567 -#> iter 3 value 967.996960 -#> iter 4 value 967.486565 -#> iter 5 value 962.185161 -#> iter 6 value 962.173351 -#> iter 6 value 962.173337 -#> iter 6 value 962.173337 -#> final value 962.173337 +#> iter 2 value 994.181427 +#> iter 3 value 972.722564 +#> iter 4 value 971.807620 +#> iter 5 value 969.894601 +#> iter 6 value 969.892112 +#> iter 6 value 969.892111 +#> iter 6 value 969.892111 +#> final value 969.892111 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -539,30 +530,30 @@ sedrive <- sim_all() #> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 #> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 #> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -0.350 -0.7309834 1.1284057 -1.88098344 0.7784057 2 -#> 2 1 -0.675 -1.500 0.8179671 1.0964035 0.14296711 -0.4035965 1 -#> 3 1 -0.925 -1.600 1.3940762 1.1170727 0.46907619 -0.4829273 1 -#> 4 1 -0.875 -0.850 0.5730054 3.1034379 -0.30199458 2.2534379 2 -#> 5 1 -0.550 -0.900 1.9047401 4.1223683 1.35474011 3.2223683 2 -#> 6 1 -1.550 -0.725 1.6121097 -0.7004755 0.06210972 -1.4254755 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -1.150 -0.350 0.6747222 0.25151850 -0.4752778 -0.0984815 2 +#> 2 1 -0.675 -1.500 1.8163839 -0.09688587 1.1413839 -1.5968859 1 +#> 3 1 -0.925 -1.600 -0.8974158 3.69592175 -1.8224158 2.0959217 2 +#> 4 1 -0.875 -0.850 -0.5523539 3.18018561 -1.4273539 2.3301856 2 +#> 5 1 -0.550 -0.900 -1.0057814 0.20974090 -1.5557814 -0.6902591 2 +#> 6 1 -1.550 -0.725 0.9409876 0.52310305 -0.6090124 -0.2018970 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -1540.0 -942.5 492.5 +#> -2920.0 -597.5 467.5 #> initial value 998.131940 -#> iter 2 value 992.664599 -#> iter 3 value 971.477616 -#> iter 4 value 971.475065 -#> iter 5 value 967.041341 -#> iter 6 value 966.930735 -#> iter 7 value 966.930651 -#> iter 7 value 966.930651 -#> iter 7 value 966.930651 -#> final value 966.930651 +#> iter 2 value 988.559582 +#> iter 3 value 984.350429 +#> iter 4 value 984.238420 +#> iter 5 value 967.198497 +#> iter 6 value 967.168244 +#> iter 7 value 967.168103 +#> iter 7 value 967.168103 +#> iter 7 value 967.168103 +#> final value 967.168103 #> converged #> #> @@ -570,11 +561,11 @@ sedrive <- sim_all() #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.00 -#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.02 0.01 +#> est_blade 2 2 -0.04 0.01 -0.05 -0.04 0.01 0.00 +#> est_bwarte 3 2 0.00 0.01 -0.01 0.01 0.01 0.01 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.54 0.57 0.14 0.94 0.80 0.40 +#> rob_pval0_bwarte 6 2 0.52 0.11 0.44 0.59 0.15 0.07 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> #> FALSE @@ -603,10 +594,6 @@ sedrive <- sim_all() #> New names: #> • `Choice situation` -> `Choice.situation` #> • `` -> `...10` -#> Warning: One or more parsing issues, call `problems()` on your data frame for details, -#> e.g.: -#> dat <- vroom(...) -#> problems(dat) #> #> does sou_gis exist: FALSE #> @@ -626,13 +613,13 @@ sedrive <- sim_all() #> 4 1 70 80 5.0 10 20 20.0 2.5 1 #> 5 1 71 60 20.0 10 80 10.0 0.0 1 #> 6 1 73 60 10.0 0 40 20.0 10.0 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -1.800 0.2796585 0.34664924 -0.8703415 -1.4533508 1 -#> 2 1 -0.575 -1.800 0.8234627 -0.32814816 0.2484627 -2.1281482 1 -#> 3 1 -1.400 -0.975 -0.9750900 0.16466845 -2.3750900 -0.8103316 2 -#> 4 1 -0.950 -1.550 1.4931059 0.50414150 0.5431059 -1.0458585 1 -#> 5 1 -1.800 -1.500 -0.6878677 -0.07763469 -2.4878677 -1.5776347 2 -#> 6 1 -1.300 -1.600 5.5219839 0.72366180 4.2219839 -0.8763382 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -1.150 -1.800 0.458928485 2.0701754 -0.6910715 0.27017541 2 +#> 2 1 -0.575 -1.800 0.253655240 -0.6611997 -0.3213448 -2.46119970 1 +#> 3 1 -1.400 -0.975 -0.102031250 0.2036489 -1.5020312 -0.77135113 2 +#> 4 1 -0.950 -1.550 -0.559421410 0.8864091 -1.5094214 -0.66359093 2 +#> 5 1 -1.800 -1.500 5.674505169 1.5661040 3.8745052 0.06610405 1 +#> 6 1 -1.300 -1.600 -0.002309409 1.5711319 -1.3023094 -0.02886812 2 #> #> #> This is Run number 1 @@ -654,30 +641,30 @@ sedrive <- sim_all() #> 4 1 70 80 5.0 10 20 20.0 2.5 1 #> 5 1 71 60 20.0 10 80 10.0 0.0 1 #> 6 1 73 60 10.0 0 40 20.0 10.0 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -1.800 -0.7572712 3.5425547 -1.9072712 1.7425547 2 -#> 2 1 -0.575 -1.800 -0.4468573 1.9263080 -1.0218573 0.1263080 2 -#> 3 1 -1.400 -0.975 -0.6624036 -0.4899357 -2.0624036 -1.4649357 2 -#> 4 1 -0.950 -1.550 -0.3297019 0.8584054 -1.2797019 -0.6915946 2 -#> 5 1 -1.800 -1.500 3.2012567 0.2906511 1.4012567 -1.2093489 1 -#> 6 1 -1.300 -1.600 1.6578812 1.1758015 0.3578812 -0.4241985 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -1.150 -1.800 -0.01463130 -0.22509832 -1.164631 -2.0250983 1 +#> 2 1 -0.575 -1.800 2.36022782 -0.36376052 1.785228 -2.1637605 1 +#> 3 1 -1.400 -0.975 1.59659499 -0.13121663 0.196595 -1.1062166 1 +#> 4 1 -0.950 -1.550 -1.33824416 1.40724463 -2.288244 -0.1427554 2 +#> 5 1 -1.800 -1.500 0.49308644 1.66211472 -1.306914 0.1621147 2 +#> 6 1 -1.300 -1.600 0.04407743 0.04227857 -1.255923 -1.5577214 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -3380.0 -2975.0 927.5 +#> -2640.0 -3282.5 1152.5 #> initial value 998.131940 -#> iter 2 value 965.332966 -#> iter 3 value 954.229410 -#> iter 4 value 953.971301 -#> iter 5 value 914.603698 -#> iter 6 value 914.486744 -#> iter 7 value 914.486127 -#> iter 7 value 914.486126 -#> iter 7 value 914.486126 -#> final value 914.486126 +#> iter 2 value 963.302525 +#> iter 3 value 925.984100 +#> iter 4 value 925.959587 +#> iter 5 value 905.721674 +#> iter 6 value 905.488066 +#> iter 7 value 905.484178 +#> iter 7 value 905.484176 +#> iter 7 value 905.484176 +#> final value 905.484176 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -698,30 +685,30 @@ sedrive <- sim_all() #> 4 1 70 80 5.0 10 20 20.0 2.5 1 #> 5 1 71 60 20.0 10 80 10.0 0.0 1 #> 6 1 73 60 10.0 0 40 20.0 10.0 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -1.800 1.1341457 -0.26483742 -0.01585434 -2.064837 1 -#> 2 1 -0.575 -1.800 -0.7963652 0.04667859 -1.37136517 -1.753321 1 -#> 3 1 -1.400 -0.975 0.2048657 -0.21097918 -1.19513427 -1.185979 2 -#> 4 1 -0.950 -1.550 0.3900273 -0.41202049 -0.55997270 -1.962020 1 -#> 5 1 -1.800 -1.500 1.2810776 -1.50479969 -0.51892242 -3.004800 1 -#> 6 1 -1.300 -1.600 0.1633678 2.89194036 -1.13663222 1.291940 2 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -1.150 -1.800 3.0041977 0.38322958 1.8541977 -1.4167704 1 +#> 2 1 -0.575 -1.800 3.0101002 0.72197923 2.4351002 -1.0780208 1 +#> 3 1 -1.400 -0.975 1.1260977 0.06998784 -0.2739023 -0.9050122 1 +#> 4 1 -0.950 -1.550 1.9511131 0.39768983 1.0011131 -1.1523102 1 +#> 5 1 -1.800 -1.500 -0.4686622 -0.83175553 -2.2686622 -2.3317555 1 +#> 6 1 -1.300 -1.600 1.5102954 0.98561984 0.2102954 -0.6143802 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -3440.0 -2690.0 1097.5 +#> -2840.0 -2792.5 980.0 #> initial value 998.131940 -#> iter 2 value 968.342074 -#> iter 3 value 949.110332 -#> iter 4 value 948.984724 -#> iter 5 value 924.015573 -#> iter 6 value 923.964006 -#> iter 7 value 923.963865 -#> iter 7 value 923.963864 -#> iter 7 value 923.963864 -#> final value 923.963864 +#> iter 2 value 970.451816 +#> iter 3 value 943.596118 +#> iter 4 value 943.593445 +#> iter 5 value 937.085850 +#> iter 6 value 927.191585 +#> iter 7 value 927.129298 +#> iter 8 value 927.128981 +#> iter 8 value 927.128980 +#> final value 927.128980 #> converged #> #> @@ -729,11 +716,11 @@ sedrive <- sim_all() #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.04 0.00 -0.04 -0.04 0.01 0.00 -#> est_bwarte 3 2 0.01 0.01 0.01 0.02 0.01 0.01 +#> est_blade 2 2 -0.04 0.00 -0.05 -0.04 0.01 0.00 +#> est_bwarte 3 2 0.01 0.00 0.01 0.02 0.00 0.00 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.22 0.29 0.01 0.42 0.41 0.20 +#> rob_pval0_bwarte 6 2 0.05 0.06 0.01 0.09 0.08 0.04 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> #> FALSE TRUE @@ -780,13 +767,13 @@ sedrive <- sim_all() #> 4 1 4 1 20 80 20.0 2.5 0 10 #> 5 1 5 1 40 80 10.0 5.0 10 5 #> 6 1 6 1 60 80 5.0 2.5 0 0 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.500 2.0013484 1.2686068 1.2263484 -0.2313932 1 -#> 2 1 -0.850 -0.900 -0.2160302 -0.1560303 -1.0660302 -1.0560303 2 -#> 3 1 -2.000 -1.400 0.3647555 1.7510865 -1.6352445 0.3510865 2 -#> 4 1 -1.600 -0.775 -0.7047881 -0.1607646 -2.3047881 -0.9357646 2 -#> 5 1 -0.900 -1.050 -0.2254104 -1.0337366 -1.1254104 -2.0837366 1 -#> 6 1 -0.950 -0.975 0.2606067 -0.2131090 -0.6893933 -1.1881090 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.500 0.1987193 -1.0900058 -0.5762807 -2.590005753 1 +#> 2 1 -0.850 -0.900 0.2937177 1.3988380 -0.5562823 0.498837973 2 +#> 3 1 -2.000 -1.400 1.2142542 0.5244772 -0.7857458 -0.875522760 1 +#> 4 1 -1.600 -0.775 2.2587676 0.2695545 0.6587676 -0.505445461 1 +#> 5 1 -0.900 -1.050 0.7958478 1.0485339 -0.1041522 -0.001466141 2 +#> 6 1 -0.950 -0.975 0.3019734 -0.4699530 -0.6480266 -1.444953045 1 #> #> #> This is Run number 1 @@ -808,29 +795,29 @@ sedrive <- sim_all() #> 4 1 4 1 20 80 20.0 2.5 0 10 #> 5 1 5 1 40 80 10.0 5.0 10 5 #> 6 1 6 1 60 80 5.0 2.5 0 0 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.500 -0.1653281 1.5240819 -0.9403281 0.02408193 2 -#> 2 1 -0.850 -0.900 1.7604798 -1.0703138 0.9104798 -1.97031379 1 -#> 3 1 -2.000 -1.400 -0.2342433 -0.2639953 -2.2342433 -1.66399530 2 -#> 4 1 -1.600 -0.775 2.8543824 -0.4878686 1.2543824 -1.26286864 1 -#> 5 1 -0.900 -1.050 0.1456366 1.8645970 -0.7543634 0.81459700 2 -#> 6 1 -0.950 -0.975 2.0912305 -1.0990719 1.1412305 -2.07407190 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.500 -0.3472514 2.3168155 -1.1222514 0.8168155 2 +#> 2 1 -0.850 -0.900 0.2943507 -1.7082525 -0.5556493 -2.6082525 1 +#> 3 1 -2.000 -1.400 0.4742717 1.1619537 -1.5257283 -0.2380463 2 +#> 4 1 -1.600 -0.775 0.5628095 2.7090502 -1.0371905 1.9340502 2 +#> 5 1 -0.900 -1.050 -0.2128470 -1.3149155 -1.1128470 -2.3649155 1 +#> 6 1 -0.950 -0.975 1.6192730 0.3695527 0.6692730 -0.6054473 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> 720.0 -947.5 160.0 +#> -620.0 -877.5 407.5 #> initial value 998.131940 -#> iter 2 value 995.788784 -#> iter 3 value 986.036982 -#> iter 4 value 985.747072 -#> iter 5 value 981.687192 -#> iter 6 value 981.685153 -#> iter 6 value 981.685152 -#> iter 6 value 981.685152 -#> final value 981.685152 +#> iter 2 value 991.196029 +#> iter 3 value 975.595269 +#> iter 4 value 975.571052 +#> iter 5 value 971.582698 +#> iter 6 value 971.577726 +#> iter 6 value 971.577720 +#> iter 6 value 971.577720 +#> final value 971.577720 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -851,30 +838,29 @@ sedrive <- sim_all() #> 4 1 4 1 20 80 20.0 2.5 0 10 #> 5 1 5 1 40 80 10.0 5.0 10 5 #> 6 1 6 1 60 80 5.0 2.5 0 0 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.500 3.8883463 0.05263711 3.1133463 -1.4473629 1 -#> 2 1 -0.850 -0.900 5.5864242 0.57285677 4.7364242 -0.3271432 1 -#> 3 1 -2.000 -1.400 -0.3144368 0.03415373 -2.3144368 -1.3658463 2 -#> 4 1 -1.600 -0.775 0.3462736 2.49581876 -1.2537264 1.7208188 2 -#> 5 1 -0.900 -1.050 0.1750145 0.10667154 -0.7249855 -0.9433285 1 -#> 6 1 -0.950 -0.975 0.4323006 -0.48374785 -0.5176994 -1.4587478 1 +#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE +#> 1 1 -0.775 -1.500 0.5287428 1.2994989 -0.2462572 -0.2005011 2 +#> 2 1 -0.850 -0.900 3.2064378 0.4735037 2.3564378 -0.4264963 1 +#> 3 1 -2.000 -1.400 1.2595242 0.1146570 -0.7404758 -1.2853430 1 +#> 4 1 -1.600 -0.775 4.2748306 -0.7146858 2.6748306 -1.4896858 1 +#> 5 1 -0.900 -1.050 0.1088246 2.2911218 -0.7911754 1.2411218 2 +#> 6 1 -0.950 -0.975 1.1654639 1.3627596 0.2154639 0.3877596 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: -#> bpreis blade bwarte -#> -520 -870 380 +#> bpreis blade bwarte +#> -580.0 -1077.5 495.0 #> initial value 998.131940 -#> iter 2 value 989.856026 -#> iter 3 value 986.668308 -#> iter 4 value 986.626161 -#> iter 5 value 973.334324 -#> iter 6 value 973.329236 -#> iter 7 value 973.329219 -#> iter 7 value 973.329219 -#> iter 7 value 973.329219 -#> final value 973.329219 +#> iter 2 value 984.134259 +#> iter 3 value 967.898748 +#> iter 4 value 967.884812 +#> iter 5 value 960.128712 +#> iter 6 value 960.126933 +#> iter 6 value 960.126928 +#> iter 6 value 960.126928 +#> final value 960.126928 #> converged #> #> @@ -882,29 +868,29 @@ sedrive <- sim_all() #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.04 0.00 -0.05 -0.04 0.01 0.00 -#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.01 0.01 +#> est_blade 2 2 -0.05 0.01 -0.06 -0.05 0.01 0.00 +#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.01 0.00 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.60 0.56 0.20 0.99 0.79 0.39 +#> rob_pval0_bwarte 6 2 0.11 0.04 0.08 0.13 0.05 0.03 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> #> FALSE #> 100 -#> 33.325 sec elapsed +#> 32.978 sec elapsed #> $tic #> elapsed -#> 0.813 +#> 0.8 #> #> $toc #> elapsed -#> 34.138 +#> 33.778 #> #> $msg #> logical(0) #> #> $callback_msg -#> [1] "33.325 sec elapsed" +#> [1] "32.978 sec elapsed" ``` <img src="man/figures/README-example-1.png" width="100%" /><img src="man/figures/README-example-2.png" width="100%" /><img src="man/figures/README-example-3.png" width="100%" /> diff --git a/man/figures/README-example-1.png b/man/figures/README-example-1.png index 37e393d53c161ab351e0bdeca1d9591722623f55..9d2a3edfa30b18c1fc3ebad59646993121ad0037 100644 Binary files a/man/figures/README-example-1.png and b/man/figures/README-example-1.png differ diff --git a/man/figures/README-example-2.png b/man/figures/README-example-2.png index 0053522a2e2c9cb367bc4d160c09656f5f8bc0a4..02013fae37873a26c3aebfdbde76c0eb8e268387 100644 Binary files a/man/figures/README-example-2.png and b/man/figures/README-example-2.png differ diff --git a/man/figures/README-example-3.png b/man/figures/README-example-3.png index 40b60ef9b55ba00a7032f9b1304aa50d2d06efc8..86086b5a7abb632bc944569de38aee08f99ad634 100644 Binary files a/man/figures/README-example-3.png and b/man/figures/README-example-3.png differ