diff --git a/.RData b/.RData new file mode 100644 index 0000000000000000000000000000000000000000..9c336843e114fae92577008ad8b421342d4d6e61 Binary files /dev/null and b/.RData differ diff --git a/R/sim_all.R b/R/sim_all.R index 94830bf5478e884ab2eea3a0c7c876fcbfce4b44..9d6b6b7fb43311f94dca6003b6427c22fb8c9fe4 100644 --- a/R/sim_all.R +++ b/R/sim_all.R @@ -1,11 +1,11 @@ #' Is a wrapper for sim_choice executing the simulation over all designs stored in a specific folder -#' +#' update #' @param nosim Number of runs or simulations. For testing use 2 but once you go serious, use at least 200, for better results use 2000. #' @param resps Number of respondents you want to simulate #' @param destype Is it a design created with ngene or with spdesign. Ngene desings should be stored as the standard .ngd output. spdesign should be the spdesign object design$design #' @param designpath The path to the folder where the designs are stored. For example "c:/myfancydec/Designs" -#' @param u A list with utility functions. The list can incorporate as many decision rule groups as you want. However, each group must be in a list in this list. If you just use one group (the normal), this group still has to be in a list in the u list. -#' @param bcoefficients List of coefficients for the utility function. List content/length can vary based on application, but item names should be in namespace: {bsq, bredkite, bdistance, bcost, bfarm2, bfarm3, bheight2, bheight3} +#' @param u A list with utility functions. The list can incorporate as many decision rule groups as you want. However, each group must be in a list in this list. If you just use one group (the normal), this group still has to be in a list in the u list. As a convention name beta coefficients starting with a lower case "b" +#' @param bcoefficients List of initial coefficients for the utility function. List content/length can vary based on application, but should all begin with b and be the same as those entered in the utility functions #' #' @return A list, with all information on the simulation. This list an be easily processed by the user and in the rmarkdown template. #' @export @@ -27,21 +27,61 @@ #' sim_all <- function(nosim=2, resps, destype="ngene", designpath, u, bcoeff){ + ################################################# + ########## Input Validation Test ############### + ################################################# - + ########### validate the utility function ######## if (missing(u) || !(is.list(u) && any(sapply(u, is.list)))){ - stop(" 'u' must be provided and must be a list containing at least one list element.") + stop(" 'u' must be provided and must be a list containing at least one list element (list of lists).") + } + + ########## validate the bcoeff list ################ + # Check if bcoeff is provided + if (missing(bcoeff)) { + stop("Argument 'bcoeff' is required.") + } + + # Check if bcoeff is a list + if (!is.list(bcoeff)) { + stop("Argument 'bcoeff' must be a list.") } + # Check if values in bcoeff are numeric + if (!all(sapply(bcoeff, is.numeric))) { + stop("Values in 'bcoeff' must be numeric.") + } + + #### check that all the coefficients in utility function have a cooresponding value in bcoeff #### + # Extract coefficients from utility function starting with "b" + coeff_names_ul <- unique(unlist(lapply(u, function(u) { + formula_strings <- unlist(u) + coef_names <- unique(unlist(lapply(formula_strings, function(f) { + # Parse the formula to extract coefficient names + all_vars <- all.vars(as.formula(f)) + coef_vars <- all_vars[grep("^b", all_vars)] + return(coef_vars) + }))) + return(coef_names) + }))) + + # Check if all utility function coefficients starting with "b" are covered in bcoeff list + missing_coeffs <- coeff_names_ul[!(coeff_names_ul %in% names(bcoeff))] + if (length(missing_coeffs) > 0) { + stop(paste("Missing coefficients in 'bcoeff':", paste(missing_coeffs, collapse = ", "), ". Perhaps there is a typo?")) + } + ########## validate resps ##################### if (missing(resps) || !(is.integer(resps) || (is.numeric(resps) && identical(trunc(resps), resps)))) { stop(" 'resps' must be provided and must be an integer indicating the number of respondents per run.") } - + ########## validate designpath ################ if (!dir.exists(designpath)) { stop(" The folder where your designs are stored does not exist. \n Check if designpath is correctly specified") } - + ################################################# + ########## End Validation Tests ################# + ################################################# designfile<-list.files(designpath,full.names = T) designname <- stringr::str_remove_all(list.files(designpath,full.names = F), diff --git a/R/simulate_choices.R b/R/simulate_choices.R index 8b7c75b6e8607bec46001ecbb4069be295f05213..4066d356b1f850eac8166ab1bf4e240c822f2a05 100644 --- a/R/simulate_choices.R +++ b/R/simulate_choices.R @@ -9,6 +9,7 @@ #' #' @examples \dontrun{simulate_choices(datadet, ut,setspp)} simulate_choices <- function(data, utility, setspp, destype, bcoefficients) { #the part in dataset that needs to be repeated in each run +<<<<<<< HEAD ### unpack the bcoeff list bsq <- bcoefficients$bsq @@ -19,6 +20,12 @@ simulate_choices <- function(data, utility, setspp, destype, bcoefficients) { # bfarm3 <- bcoefficients$bfarm3 bheight2 <- bcoefficients$bheight2 bheight3 <- bcoefficients$bheight3 +======= + ### unpack the bcoeff list so variables are accessible + for (key in names(bcoefficients)) { + assign(key, bcoefficients[[key]]) + } +>>>>>>> 0c1de67f1d4f2236d97e706a4b99a89bdba8a0b3 diff --git a/README.Rmd b/README.Rmd index 2c8baae3fb66bd1c43f24efadef94428206ec9a8..ddecc87272348fe6ec7912617c216e15c740ca7d 100644 --- a/README.Rmd +++ b/README.Rmd @@ -19,7 +19,7 @@ knitr::opts_chunk$set( <!-- badges: end --> -The goal of simulateDCE is to make it easy to simulate choice experiment datasets using designs from NGENE or `spdesign`. You have to store the design file in a subfolder and need to specify certain parameters and the utility functions for the data generating process. The package is useful for +The goal of simulateDCE is to make it easy to simulate choice experiment datasets using designs from NGENE or `spdesign`. You have to store the design file in a subfolder and need to specify certain parameters and the utility functions for the data generating process. The package is useful for: 1. Test different designs in terms of statistical power, efficiency and unbiasedness @@ -66,16 +66,17 @@ nosim= 2 # number of simulations to run (about 500 is minimum) -# bpreis = -0.036 -# blade = -0.034 -# bwarte = -0.049 +# bcoeff <- list( +# bpreis = -0.036, +# blade = -0.034, +# bwarte = -0.049) decisiongroups=c(0,0.7,1) # wrong parameters -# +# place b coefficients into an r list: bcoeff = list( bpreis = -0.01, blade = -0.07, diff --git a/README.html b/README.html new file mode 100644 index 0000000000000000000000000000000000000000..693b6d348258fd09e62476844730cc11a3aba3b6 --- /dev/null +++ b/README.html @@ -0,0 +1,1487 @@ +<!DOCTYPE html> + +<html xmlns="http://www.w3.org/1999/xhtml"> + +<head> + +<meta charset="utf-8"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> +<meta name="generator" content="pandoc" /> +<meta name="viewport" content="width=device-width, initial-scale=1"> + +<style type="text/css"> +@font-face { +font-family: octicons-link; +src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff'); +} +body { +-webkit-text-size-adjust: 100%; +text-size-adjust: 100%; +color: #333; +font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; +font-size: 16px; +line-height: 1.6; +word-wrap: break-word; +} +a { +background-color: transparent; +} +a:active, +a:hover { +outline: 0; +} +strong { +font-weight: bold; +} +h1 { +font-size: 2em; +margin: 0.67em 0; +} +img { +border: 0; +} +hr { +box-sizing: content-box; +height: 0; +} +pre { +overflow: auto; +} +code, +kbd, +pre { +font-family: monospace, monospace; +font-size: 1em; +} +input { +color: inherit; +font: inherit; +margin: 0; +} +html input[disabled] { +cursor: default; +} +input { +line-height: normal; +} +input[type="checkbox"] { +box-sizing: border-box; +padding: 0; +} +table { +border-collapse: collapse; +border-spacing: 0; +} +td, +th { +padding: 0; +} +* { +box-sizing: border-box; +} +input { +font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; +} +a { +color: #4078c0; +text-decoration: none; +} +a:hover, +a:active { +text-decoration: underline; +} +hr { +height: 0; +margin: 15px 0; +overflow: hidden; +background: transparent; +border: 0; +border-bottom: 1px solid #ddd; +} +hr:before { +display: table; +content: ""; +} +hr:after { +display: table; +clear: both; +content: ""; +} +h1, +h2, +h3, +h4, +h5, +h6 { +margin-top: 15px; +margin-bottom: 15px; +line-height: 1.1; +} +h1 { +font-size: 30px; +} +h2 { +font-size: 21px; +} +h3 { +font-size: 16px; +} +h4 { +font-size: 14px; +} +h5 { +font-size: 12px; +} +h6 { +font-size: 11px; +} +blockquote { +margin: 0; +} +ul, +ol { +padding: 0; +margin-top: 0; +margin-bottom: 0; +} +ol ol, +ul ol { +list-style-type: lower-roman; +} +ul ul ol, +ul ol ol, +ol ul ol, +ol ol ol { +list-style-type: lower-alpha; +} +dd { +margin-left: 0; +} +code { +font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace; +font-size: 12px; +} +pre { +margin-top: 0; +margin-bottom: 0; +font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace; +} +.select::-ms-expand { +opacity: 0; +} +.octicon { +font: normal normal normal 16px/1 octicons-link; +display: inline-block; +text-decoration: none; +text-rendering: auto; +-webkit-font-smoothing: antialiased; +-moz-osx-font-smoothing: grayscale; +-webkit-user-select: none; +-moz-user-select: none; +-ms-user-select: none; +user-select: none; +} +.octicon-link:before { +content: '\f05c'; +} +.markdown-body:before { +display: table; +content: ""; +} +.markdown-body:after { +display: table; +clear: both; +content: ""; +} +.markdown-body>*:first-child { +margin-top: 0 !important; +} +.markdown-body>*:last-child { +margin-bottom: 0 !important; +} +a:not([href]) { +color: inherit; +text-decoration: none; +} +.anchor { +display: inline-block; +padding-right: 2px; +margin-left: -18px; +} +.anchor:focus { +outline: none; +} +h1, +h2, +h3, +h4, +h5, +h6 { +margin-top: 1em; +margin-bottom: 16px; +font-weight: bold; +line-height: 1.4; +} +h1 .octicon-link, +h2 .octicon-link, +h3 .octicon-link, +h4 .octicon-link, +h5 .octicon-link, +h6 .octicon-link { +color: #000; +vertical-align: middle; +visibility: hidden; +} +h1:hover .anchor, +h2:hover .anchor, +h3:hover .anchor, +h4:hover .anchor, +h5:hover .anchor, +h6:hover .anchor { +text-decoration: none; +} +h1:hover .anchor .octicon-link, +h2:hover .anchor .octicon-link, +h3:hover .anchor .octicon-link, +h4:hover .anchor .octicon-link, +h5:hover .anchor .octicon-link, +h6:hover .anchor .octicon-link { +visibility: visible; +} +h1 { +padding-bottom: 0.3em; +font-size: 2.25em; +line-height: 1.2; +border-bottom: 1px solid #eee; +} +h1 .anchor { +line-height: 1; +} +h2 { +padding-bottom: 0.3em; +font-size: 1.75em; +line-height: 1.225; +border-bottom: 1px solid #eee; +} +h2 .anchor { +line-height: 1; +} +h3 { +font-size: 1.5em; +line-height: 1.43; +} +h3 .anchor { +line-height: 1.2; +} +h4 { +font-size: 1.25em; +} +h4 .anchor { +line-height: 1.2; +} +h5 { +font-size: 1em; +} +h5 .anchor { +line-height: 1.1; +} +h6 { +font-size: 1em; +color: #777; +} +h6 .anchor { +line-height: 1.1; +} +p, +blockquote, +ul, +ol, +dl, +table, +pre { +margin-top: 0; +margin-bottom: 16px; +} +hr { +height: 4px; +padding: 0; +margin: 16px 0; +background-color: #e7e7e7; +border: 0 none; +} +ul, +ol { +padding-left: 2em; +} +ul ul, +ul ol, +ol ol, +ol ul { +margin-top: 0; +margin-bottom: 0; +} +li>p { +margin-top: 16px; +} +dl { +padding: 0; +} +dl dt { +padding: 0; +margin-top: 16px; +font-size: 1em; +font-style: italic; +font-weight: bold; +} +dl dd { +padding: 0 16px; +margin-bottom: 16px; +} +blockquote { +padding: 0 15px; +color: #777; +border-left: 4px solid #ddd; +} +blockquote>:first-child { +margin-top: 0; +} +blockquote>:last-child { +margin-bottom: 0; +} +table { +display: block; +width: 100%; +overflow: auto; +word-break: normal; +word-break: keep-all; +} +table th { +font-weight: bold; +} +table th, +table td { +padding: 6px 13px; +border: 1px solid #ddd; +} +table tr { +background-color: #fff; +border-top: 1px solid #ccc; +} +table tr:nth-child(2n) { +background-color: #f8f8f8; +} +img { +max-width: 100%; +box-sizing: content-box; +background-color: #fff; +} +code { +padding: 0; +padding-top: 0.2em; +padding-bottom: 0.2em; +margin: 0; +font-size: 85%; +background-color: rgba(0,0,0,0.04); +border-radius: 3px; +} +code:before, +code:after { +letter-spacing: -0.2em; +content: "\00a0"; +} +pre>code { +padding: 0; +margin: 0; +font-size: 100%; +word-break: normal; +white-space: pre; +background: transparent; +border: 0; +} +.highlight { +margin-bottom: 16px; +} +.highlight pre, +pre { +padding: 16px; +overflow: auto; +font-size: 85%; +line-height: 1.45; +background-color: #f7f7f7; +border-radius: 3px; +} +.highlight pre { +margin-bottom: 0; +word-break: normal; +} +pre { +word-wrap: normal; +} +pre code { +display: inline; +max-width: initial; +padding: 0; +margin: 0; +overflow: initial; +line-height: inherit; +word-wrap: normal; +background-color: transparent; +border: 0; +} +pre code:before, +pre code:after { +content: normal; +} +kbd { +display: inline-block; +padding: 3px 5px; +font-size: 11px; +line-height: 10px; +color: #555; +vertical-align: middle; +background-color: #fcfcfc; +border: solid 1px #ccc; +border-bottom-color: #bbb; +border-radius: 3px; +box-shadow: inset 0 -1px 0 #bbb; +} +.pl-c { +color: #969896; +} +.pl-c1, +.pl-s .pl-v { +color: #0086b3; +} +.pl-e, +.pl-en { +color: #795da3; +} +.pl-s .pl-s1, +.pl-smi { +color: #333; +} +.pl-ent { +color: #63a35c; +} +.pl-k { +color: #a71d5d; +} +.pl-pds, +.pl-s, +.pl-s .pl-pse .pl-s1, +.pl-sr, +.pl-sr .pl-cce, +.pl-sr .pl-sra, +.pl-sr .pl-sre { +color: #183691; +} +.pl-v { +color: #ed6a43; +} +.pl-id { +color: #b52a1d; +} +.pl-ii { +background-color: #b52a1d; +color: #f8f8f8; +} +.pl-sr .pl-cce { +color: #63a35c; +font-weight: bold; +} +.pl-ml { +color: #693a17; +} +.pl-mh, +.pl-mh .pl-en, +.pl-ms { +color: #1d3e81; +font-weight: bold; +} +.pl-mq { +color: #008080; +} +.pl-mi { +color: #333; +font-style: italic; +} +.pl-mb { +color: #333; +font-weight: bold; +} +.pl-md { +background-color: #ffecec; +color: #bd2c00; +} +.pl-mi1 { +background-color: #eaffea; +color: #55a532; +} +.pl-mdr { +color: #795da3; +font-weight: bold; +} +.pl-mo { +color: #1d3e81; +} +kbd { +display: inline-block; +padding: 3px 5px; +font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace; +line-height: 10px; +color: #555; +vertical-align: middle; +background-color: #fcfcfc; +border: solid 1px #ccc; +border-bottom-color: #bbb; +border-radius: 3px; +box-shadow: inset 0 -1px 0 #bbb; +} +.task-list-item { +list-style-type: none; +} +.task-list-item+.task-list-item { +margin-top: 3px; +} +.task-list-item input { +margin: 0 0.35em 0.25em -1.6em; +vertical-align: middle; +} +:checked+.radio-label { +z-index: 1; +position: relative; +border-color: #4078c0; +} +.sourceLine { +display: inline-block; +} +code .kw { color: #000000; } +code .dt { color: #ed6a43; } +code .dv { color: #009999; } +code .bn { color: #009999; } +code .fl { color: #009999; } +code .ch { color: #009999; } +code .st { color: #183691; } +code .co { color: #969896; } +code .ot { color: #0086b3; } +code .al { color: #a61717; } +code .fu { color: #63a35c; } +code .er { color: #a61717; background-color: #e3d2d2; } +code .wa { color: #000000; } +code .cn { color: #008080; } +code .sc { color: #008080; } +code .vs { color: #183691; } +code .ss { color: #183691; } +code .im { color: #000000; } +code .va {color: #008080; } +code .cf { color: #000000; } +code .op { color: #000000; } +code .bu { color: #000000; } +code .ex { color: #000000; } +code .pp { color: #999999; } +code .at { color: #008080; } +code .do { color: #969896; } +code .an { color: #008080; } +code .cv { color: #008080; } +code .in { color: #008080; } +</style> +<style> +body { +box-sizing: border-box; +min-width: 200px; +max-width: 980px; +margin: 0 auto; +padding: 45px; +padding-top: 0px; +} +</style> + + +</head> + +<body> + +<!-- README.md is generated from README.Rmd. Please edit that file --> + +<h1 id="simulatedce">simulateDCE</h1> +<!-- badges: start --> + +<!-- badges: end --> + +<p>The goal of simulateDCE is to make it easy to simulate choice +experiment datasets using designs from NGENE or <code>spdesign</code>. +You have to store the design file in a subfolder and need to specify +certain parameters and the utility functions for the data generating +process. The package is useful for:</p> +<ol style="list-style-type: decimal"> +<li><p>Test different designs in terms of statistical power, efficiency +and unbiasedness</p></li> +<li><p>To test the effects of deviations from RUM, e.g. heuristics, on +model performance for different designs.</p></li> +<li><p>In teaching, using simulated data is useful, if you want to know +the data generating process. It helps to demonstrate Maximum likelihood +and choice models, knowing exactly what you should expect.</p></li> +<li><p>You can use simulation in pre-registration to justify your sample +size and design choice.</p></li> +<li><p>Before data collection, you can use simulated data to estimate +the models you plan to use in the actual analysis. You can thus make +sure, you can estimate all effects for given sample sizes.</p></li> +</ol> +<h2 id="installation">Installation</h2> +<p>You can install the development version of simulateDCE from gitlab. +You need to install the <code>remotes</code> package first. The current +version is alpha and there is no version on cran:</p> +<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a></span> +<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"remotes"</span>)</span> +<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_gitlab</span>(<span class="at">repo =</span> <span class="st">"dj44vuri/simulateDCE"</span> , <span class="at">host =</span> <span class="st">"https://git.idiv.de"</span>)</span></code></pre></div> +<h2 id="example">Example</h2> +<p>This is a basic example for a simulation:</p> +<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a></span> +<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a></span> +<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="fu">rm</span>(<span class="at">list=</span><span class="fu">ls</span>())</span> +<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a><span class="fu">library</span>(simulateDCE)</span> +<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a><span class="fu">library</span>(rlang)</span> +<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="fu">library</span>(formula.tools)</span> +<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a></span> +<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a></span> +<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="fu">library</span>(rlang)</span> +<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a></span> +<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a>designpath<span class="ot"><-</span> <span class="fu">system.file</span>(<span class="st">"extdata"</span>,<span class="st">"SE_DRIVE"</span> ,<span class="at">package =</span> <span class="st">"simulateDCE"</span>)</span> +<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a></span> +<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a>resps <span class="ot">=</span><span class="dv">120</span> <span class="co"># number of respondents</span></span> +<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a>nosim<span class="ot">=</span> <span class="dv">2</span> <span class="co"># number of simulations to run (about 500 is minimum)</span></span> +<span id="cb2-15"><a href="#cb2-15" tabindex="-1"></a></span> +<span id="cb2-16"><a href="#cb2-16" tabindex="-1"></a></span> +<span id="cb2-17"><a href="#cb2-17" tabindex="-1"></a></span> +<span id="cb2-18"><a href="#cb2-18" tabindex="-1"></a></span> +<span id="cb2-19"><a href="#cb2-19" tabindex="-1"></a></span> +<span id="cb2-20"><a href="#cb2-20" tabindex="-1"></a></span> +<span id="cb2-21"><a href="#cb2-21" tabindex="-1"></a><span class="co"># bcoeff <- list(</span></span> +<span id="cb2-22"><a href="#cb2-22" tabindex="-1"></a><span class="co"># bpreis = -0.036,</span></span> +<span id="cb2-23"><a href="#cb2-23" tabindex="-1"></a><span class="co"># blade = -0.034,</span></span> +<span id="cb2-24"><a href="#cb2-24" tabindex="-1"></a><span class="co"># bwarte = -0.049)</span></span> +<span id="cb2-25"><a href="#cb2-25" tabindex="-1"></a></span> +<span id="cb2-26"><a href="#cb2-26" tabindex="-1"></a></span> +<span id="cb2-27"><a href="#cb2-27" tabindex="-1"></a>decisiongroups<span class="ot">=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.7</span>,<span class="dv">1</span>)</span> +<span id="cb2-28"><a href="#cb2-28" tabindex="-1"></a></span> +<span id="cb2-29"><a href="#cb2-29" tabindex="-1"></a><span class="co"># wrong parameters</span></span> +<span id="cb2-30"><a href="#cb2-30" tabindex="-1"></a></span> +<span id="cb2-31"><a href="#cb2-31" tabindex="-1"></a><span class="co"># place b coefficients into an r list:</span></span> +<span id="cb2-32"><a href="#cb2-32" tabindex="-1"></a>bcoeff <span class="ot">=</span> <span class="fu">list</span>(</span> +<span id="cb2-33"><a href="#cb2-33" tabindex="-1"></a> <span class="at">bpreis =</span> <span class="sc">-</span><span class="fl">0.01</span>,</span> +<span id="cb2-34"><a href="#cb2-34" tabindex="-1"></a> <span class="at">blade =</span> <span class="sc">-</span><span class="fl">0.07</span>,</span> +<span id="cb2-35"><a href="#cb2-35" tabindex="-1"></a> <span class="at">bwarte =</span> <span class="fl">0.02</span>)</span> +<span id="cb2-36"><a href="#cb2-36" tabindex="-1"></a></span> +<span id="cb2-37"><a href="#cb2-37" tabindex="-1"></a>manipulations <span class="ot">=</span> <span class="fu">list</span>(<span class="at">alt1.x2=</span> <span class="fu">expr</span>(alt1.x2<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-38"><a href="#cb2-38" tabindex="-1"></a> <span class="at">alt1.x3=</span> <span class="fu">expr</span>(alt1.x3<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-39"><a href="#cb2-39" tabindex="-1"></a> <span class="at">alt2.x2=</span> <span class="fu">expr</span>(alt2.x2<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-40"><a href="#cb2-40" tabindex="-1"></a> <span class="at">alt2.x3=</span> <span class="fu">expr</span>(alt2.x3<span class="sc">/</span><span class="dv">10</span>)</span> +<span id="cb2-41"><a href="#cb2-41" tabindex="-1"></a>)</span> +<span id="cb2-42"><a href="#cb2-42" tabindex="-1"></a></span> +<span id="cb2-43"><a href="#cb2-43" tabindex="-1"></a></span> +<span id="cb2-44"><a href="#cb2-44" tabindex="-1"></a><span class="co">#place your utility functions here</span></span> +<span id="cb2-45"><a href="#cb2-45" tabindex="-1"></a>ul<span class="ot"><-</span><span class="fu">list</span>( <span class="at">u1 =</span></span> +<span id="cb2-46"><a href="#cb2-46" tabindex="-1"></a></span> +<span id="cb2-47"><a href="#cb2-47" tabindex="-1"></a> <span class="fu">list</span>(</span> +<span id="cb2-48"><a href="#cb2-48" tabindex="-1"></a> <span class="at">v1 =</span>V<span class="fl">.1</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt1.x1 <span class="sc">+</span> blade<span class="sc">*</span>alt1.x2 <span class="sc">+</span> bwarte<span class="sc">*</span>alt1.x3 ,</span> +<span id="cb2-49"><a href="#cb2-49" tabindex="-1"></a> <span class="at">v2 =</span>V<span class="fl">.2</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt2.x1 <span class="sc">+</span> blade<span class="sc">*</span>alt2.x2 <span class="sc">+</span> bwarte<span class="sc">*</span>alt2.x3</span> +<span id="cb2-50"><a href="#cb2-50" tabindex="-1"></a> )</span> +<span id="cb2-51"><a href="#cb2-51" tabindex="-1"></a></span> +<span id="cb2-52"><a href="#cb2-52" tabindex="-1"></a> ,</span> +<span id="cb2-53"><a href="#cb2-53" tabindex="-1"></a> <span class="at">u2 =</span> <span class="fu">list</span>( <span class="at">v1 =</span>V<span class="fl">.1</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt1.x1 ,</span> +<span id="cb2-54"><a href="#cb2-54" tabindex="-1"></a> <span class="at">v2 =</span>V<span class="fl">.2</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt2.x1)</span> +<span id="cb2-55"><a href="#cb2-55" tabindex="-1"></a></span> +<span id="cb2-56"><a href="#cb2-56" tabindex="-1"></a>)</span> +<span id="cb2-57"><a href="#cb2-57" tabindex="-1"></a></span> +<span id="cb2-58"><a href="#cb2-58" tabindex="-1"></a></span> +<span id="cb2-59"><a href="#cb2-59" tabindex="-1"></a>destype<span class="ot">=</span><span class="st">"ngene"</span></span> +<span id="cb2-60"><a href="#cb2-60" tabindex="-1"></a></span> +<span id="cb2-61"><a href="#cb2-61" tabindex="-1"></a>sedrive <span class="ot"><-</span> <span class="fu">sim_all</span>(<span class="at">nosim =</span> nosim, <span class="at">resps=</span>resps, <span class="at">destype =</span> destype,</span> +<span id="cb2-62"><a href="#cb2-62" tabindex="-1"></a> <span class="at">designpath =</span> designpath, <span class="at">u=</span>ul, <span class="at">bcoeff =</span> bcoeff)</span> +<span id="cb2-63"><a href="#cb2-63" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-64"><a href="#cb2-64" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-65"><a href="#cb2-65" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-66"><a href="#cb2-66" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-67"><a href="#cb2-67" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-68"><a href="#cb2-68" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-69"><a href="#cb2-69" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-70"><a href="#cb2-70" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-71"><a href="#cb2-71" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-72"><a href="#cb2-72" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-73"><a href="#cb2-73" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-74"><a href="#cb2-74" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-75"><a href="#cb2-75" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-76"><a href="#cb2-76" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-77"><a href="#cb2-77" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-78"><a href="#cb2-78" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-79"><a href="#cb2-79" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-80"><a href="#cb2-80" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-81"><a href="#cb2-81" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-82"><a href="#cb2-82" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-83"><a href="#cb2-83" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-84"><a href="#cb2-84" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-85"><a href="#cb2-85" tabindex="-1"></a><span class="co">#> • `Choice situation` -> `Choice.situation`</span></span> +<span id="cb2-86"><a href="#cb2-86" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-87"><a href="#cb2-87" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-88"><a href="#cb2-88" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-89"><a href="#cb2-89" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-90"><a href="#cb2-90" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-91"><a href="#cb2-91" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-92"><a href="#cb2-92" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-93"><a href="#cb2-93" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-94"><a href="#cb2-94" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-95"><a href="#cb2-95" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-96"><a href="#cb2-96" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-97"><a href="#cb2-97" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-98"><a href="#cb2-98" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-99"><a href="#cb2-99" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-100"><a href="#cb2-100" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5 10.0 60 20.0 10 1 1 -0.775 -1.800 -0.15343271 3.6612318 -0.9284327 1.8612318</span></span> +<span id="cb2-101"><a href="#cb2-101" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5 5.0 60 2.5 0 1 1 -0.275 -0.775 0.47936686 -0.8086989 0.2043669 -1.5836989</span></span> +<span id="cb2-102"><a href="#cb2-102" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0 5.0 80 5.0 10 1 1 -0.800 -0.950 0.12634298 1.2300690 -0.6736570 0.2800690</span></span> +<span id="cb2-103"><a href="#cb2-103" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0 2.5 80 2.5 0 1 1 -1.750 -0.975 2.08710825 -0.1882935 0.3371082 -1.1632935</span></span> +<span id="cb2-104"><a href="#cb2-104" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0 0.0 80 10.0 10 1 1 -1.800 -1.300 1.05540385 3.1339326 -0.7445961 1.8339326</span></span> +<span id="cb2-105"><a href="#cb2-105" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0 2.5 20 5.0 10 1 1 -0.900 -0.350 0.07255885 -0.1156742 -0.8274412 -0.4656742</span></span> +<span id="cb2-106"><a href="#cb2-106" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-107"><a href="#cb2-107" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-108"><a href="#cb2-108" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-109"><a href="#cb2-109" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-110"><a href="#cb2-110" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-111"><a href="#cb2-111" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-112"><a href="#cb2-112" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-113"><a href="#cb2-113" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-114"><a href="#cb2-114" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-115"><a href="#cb2-115" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-116"><a href="#cb2-116" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-117"><a href="#cb2-117" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-118"><a href="#cb2-118" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-119"><a href="#cb2-119" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-120"><a href="#cb2-120" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-121"><a href="#cb2-121" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-122"><a href="#cb2-122" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-123"><a href="#cb2-123" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-124"><a href="#cb2-124" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-125"><a href="#cb2-125" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-126"><a href="#cb2-126" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-127"><a href="#cb2-127" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-128"><a href="#cb2-128" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5 10.0 60 20.0 10 1 1 -0.775 -1.800 -1.2775839 1.5689946 -2.052584 -0.2310054</span></span> +<span id="cb2-129"><a href="#cb2-129" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5 5.0 60 2.5 0 1 1 -0.275 -0.775 0.5934850 0.5453996 0.318485 -0.2296004</span></span> +<span id="cb2-130"><a href="#cb2-130" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0 5.0 80 5.0 10 1 1 -0.800 -0.950 -0.5127855 1.7551185 -1.312785 0.8051185</span></span> +<span id="cb2-131"><a href="#cb2-131" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0 2.5 80 2.5 0 1 1 -1.750 -0.975 3.4643234 1.3685812 1.714323 0.3935812</span></span> +<span id="cb2-132"><a href="#cb2-132" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0 0.0 80 10.0 10 1 1 -1.800 -1.300 -0.5128262 0.3011019 -2.312826 -0.9988981</span></span> +<span id="cb2-133"><a href="#cb2-133" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0 2.5 20 5.0 10 1 1 -0.900 -0.350 4.3343477 1.2265189 3.434348 0.8765189</span></span> +<span id="cb2-134"><a href="#cb2-134" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-135"><a href="#cb2-135" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-136"><a href="#cb2-136" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-137"><a href="#cb2-137" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-138"><a href="#cb2-138" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-139"><a href="#cb2-139" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-140"><a href="#cb2-140" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-141"><a href="#cb2-141" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-142"><a href="#cb2-142" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-143"><a href="#cb2-143" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-144"><a href="#cb2-144" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-145"><a href="#cb2-145" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-146"><a href="#cb2-146" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-147"><a href="#cb2-147" tabindex="-1"></a><span class="co">#> -1060.0 -812.5 520.0 </span></span> +<span id="cb2-148"><a href="#cb2-148" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-149"><a href="#cb2-149" tabindex="-1"></a><span class="co">#> iter 2 value 994.260781</span></span> +<span id="cb2-150"><a href="#cb2-150" tabindex="-1"></a><span class="co">#> iter 3 value 974.092906</span></span> +<span id="cb2-151"><a href="#cb2-151" tabindex="-1"></a><span class="co">#> iter 4 value 973.856287</span></span> +<span id="cb2-152"><a href="#cb2-152" tabindex="-1"></a><span class="co">#> iter 5 value 970.270450</span></span> +<span id="cb2-153"><a href="#cb2-153" tabindex="-1"></a><span class="co">#> iter 6 value 970.262794</span></span> +<span id="cb2-154"><a href="#cb2-154" tabindex="-1"></a><span class="co">#> iter 6 value 970.262788</span></span> +<span id="cb2-155"><a href="#cb2-155" tabindex="-1"></a><span class="co">#> iter 6 value 970.262788</span></span> +<span id="cb2-156"><a href="#cb2-156" tabindex="-1"></a><span class="co">#> final value 970.262788 </span></span> +<span id="cb2-157"><a href="#cb2-157" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-158"><a href="#cb2-158" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-159"><a href="#cb2-159" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-160"><a href="#cb2-160" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-161"><a href="#cb2-161" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-162"><a href="#cb2-162" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-163"><a href="#cb2-163" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-164"><a href="#cb2-164" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-165"><a href="#cb2-165" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-166"><a href="#cb2-166" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-167"><a href="#cb2-167" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-168"><a href="#cb2-168" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-169"><a href="#cb2-169" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-170"><a href="#cb2-170" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-171"><a href="#cb2-171" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5 10.0 60 20.0 10 1 1 -0.775 -1.800 0.34553136 -0.8375727 -0.4294686 -2.6375727</span></span> +<span id="cb2-172"><a href="#cb2-172" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5 5.0 60 2.5 0 1 1 -0.275 -0.775 -1.32361481 0.3195766 -1.5986148 -0.4554234</span></span> +<span id="cb2-173"><a href="#cb2-173" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0 5.0 80 5.0 10 1 1 -0.800 -0.950 0.08515524 -0.6090259 -0.7148448 -1.5590259</span></span> +<span id="cb2-174"><a href="#cb2-174" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0 2.5 80 2.5 0 1 1 -1.750 -0.975 -0.18021132 2.3073397 -1.9302113 1.3323397</span></span> +<span id="cb2-175"><a href="#cb2-175" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0 0.0 80 10.0 10 1 1 -1.800 -1.300 -0.55591900 3.4630292 -2.3559190 2.1630292</span></span> +<span id="cb2-176"><a href="#cb2-176" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0 2.5 20 5.0 10 1 1 -0.900 -0.350 -0.29734711 3.0420404 -1.1973471 2.6920404</span></span> +<span id="cb2-177"><a href="#cb2-177" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-178"><a href="#cb2-178" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-179"><a href="#cb2-179" tabindex="-1"></a><span class="co">#> 2 2</span></span> +<span id="cb2-180"><a href="#cb2-180" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-181"><a href="#cb2-181" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-182"><a href="#cb2-182" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-183"><a href="#cb2-183" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-184"><a href="#cb2-184" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-185"><a href="#cb2-185" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-186"><a href="#cb2-186" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-187"><a href="#cb2-187" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-188"><a href="#cb2-188" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-189"><a href="#cb2-189" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-190"><a href="#cb2-190" tabindex="-1"></a><span class="co">#> 440.0 -1087.5 447.5 </span></span> +<span id="cb2-191"><a href="#cb2-191" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-192"><a href="#cb2-192" tabindex="-1"></a><span class="co">#> iter 2 value 995.094499</span></span> +<span id="cb2-193"><a href="#cb2-193" tabindex="-1"></a><span class="co">#> iter 3 value 974.488144</span></span> +<span id="cb2-194"><a href="#cb2-194" tabindex="-1"></a><span class="co">#> iter 4 value 974.227531</span></span> +<span id="cb2-195"><a href="#cb2-195" tabindex="-1"></a><span class="co">#> iter 5 value 971.482008</span></span> +<span id="cb2-196"><a href="#cb2-196" tabindex="-1"></a><span class="co">#> iter 6 value 971.477251</span></span> +<span id="cb2-197"><a href="#cb2-197" tabindex="-1"></a><span class="co">#> iter 6 value 971.477249</span></span> +<span id="cb2-198"><a href="#cb2-198" tabindex="-1"></a><span class="co">#> iter 6 value 971.477249</span></span> +<span id="cb2-199"><a href="#cb2-199" tabindex="-1"></a><span class="co">#> final value 971.477249 </span></span> +<span id="cb2-200"><a href="#cb2-200" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-201"><a href="#cb2-201" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-202"><a href="#cb2-202" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-203"><a href="#cb2-203" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-204"><a href="#cb2-204" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-205"><a href="#cb2-205" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-206"><a href="#cb2-206" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 0.00 0.00 0.00</span></span> +<span id="cb2-207"><a href="#cb2-207" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.04 0.00 -0.04 -0.04 0.00 0.00</span></span> +<span id="cb2-208"><a href="#cb2-208" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.03 0.00 0.03 0.03 0.00 0.00</span></span> +<span id="cb2-209"><a href="#cb2-209" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.01 0.01 0.00 0.02 0.02 0.01</span></span> +<span id="cb2-210"><a href="#cb2-210" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-211"><a href="#cb2-211" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.01 0.00 0.01 0.01 0.00 0.00</span></span> +<span id="cb2-212"><a href="#cb2-212" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-213"><a href="#cb2-213" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-214"><a href="#cb2-214" tabindex="-1"></a><span class="co">#> TRUE </span></span> +<span id="cb2-215"><a href="#cb2-215" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-216"><a href="#cb2-216" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-217"><a href="#cb2-217" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-218"><a href="#cb2-218" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-219"><a href="#cb2-219" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-220"><a href="#cb2-220" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-221"><a href="#cb2-221" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-222"><a href="#cb2-222" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-223"><a href="#cb2-223" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-224"><a href="#cb2-224" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-225"><a href="#cb2-225" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-226"><a href="#cb2-226" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-227"><a href="#cb2-227" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-228"><a href="#cb2-228" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-229"><a href="#cb2-229" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-230"><a href="#cb2-230" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-231"><a href="#cb2-231" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-232"><a href="#cb2-232" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-233"><a href="#cb2-233" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-234"><a href="#cb2-234" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-235"><a href="#cb2-235" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-236"><a href="#cb2-236" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-237"><a href="#cb2-237" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-238"><a href="#cb2-238" tabindex="-1"></a><span class="co">#> • `Choice situation` -> `Choice.situation`</span></span> +<span id="cb2-239"><a href="#cb2-239" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-240"><a href="#cb2-240" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-241"><a href="#cb2-241" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-242"><a href="#cb2-242" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-243"><a href="#cb2-243" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-244"><a href="#cb2-244" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-245"><a href="#cb2-245" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-246"><a href="#cb2-246" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-247"><a href="#cb2-247" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-248"><a href="#cb2-248" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-249"><a href="#cb2-249" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-250"><a href="#cb2-250" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-251"><a href="#cb2-251" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-252"><a href="#cb2-252" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-253"><a href="#cb2-253" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5 0.0 20 20.0 10 1 1 -0.775 -1.400 0.63130736 -1.4347994 -0.1436926 -2.8347994</span></span> +<span id="cb2-254"><a href="#cb2-254" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0 5.0 40 5.0 0 1 1 -0.800 -0.750 5.09739937 0.4118885 4.2973994 -0.3381115</span></span> +<span id="cb2-255"><a href="#cb2-255" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0 0.0 80 10.0 10 1 1 -1.600 -1.300 0.22397799 0.4666321 -1.3760220 -0.8333679</span></span> +<span id="cb2-256"><a href="#cb2-256" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0 10.0 20 20.0 5 1 1 -0.750 -1.500 -0.05146482 2.2007592 -0.8014648 0.7007592</span></span> +<span id="cb2-257"><a href="#cb2-257" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0 10.0 80 5.0 0 1 1 -0.350 -1.150 1.57620781 4.9154679 1.2262078 3.7654679</span></span> +<span id="cb2-258"><a href="#cb2-258" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0 2.5 80 2.5 5 1 1 -1.050 -0.875 -0.47930823 0.7058788 -1.5293082 -0.1691212</span></span> +<span id="cb2-259"><a href="#cb2-259" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-260"><a href="#cb2-260" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-261"><a href="#cb2-261" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-262"><a href="#cb2-262" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-263"><a href="#cb2-263" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-264"><a href="#cb2-264" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-265"><a href="#cb2-265" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-266"><a href="#cb2-266" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-267"><a href="#cb2-267" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-268"><a href="#cb2-268" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-269"><a href="#cb2-269" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-270"><a href="#cb2-270" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-271"><a href="#cb2-271" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-272"><a href="#cb2-272" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-273"><a href="#cb2-273" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-274"><a href="#cb2-274" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-275"><a href="#cb2-275" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-276"><a href="#cb2-276" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-277"><a href="#cb2-277" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-278"><a href="#cb2-278" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-279"><a href="#cb2-279" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-280"><a href="#cb2-280" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-281"><a href="#cb2-281" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5 0.0 20 20.0 10 1 1 -0.775 -1.400 0.3494617 0.1551114 -0.42553827 -1.24488857</span></span> +<span id="cb2-282"><a href="#cb2-282" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0 5.0 40 5.0 0 1 1 -0.800 -0.750 1.5845207 0.5556039 0.78452066 -0.19439613</span></span> +<span id="cb2-283"><a href="#cb2-283" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0 0.0 80 10.0 10 1 1 -1.600 -1.300 4.1993459 -0.1612424 2.59934589 -1.46124241</span></span> +<span id="cb2-284"><a href="#cb2-284" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0 10.0 20 20.0 5 1 1 -0.750 -1.500 0.6527215 1.3949219 -0.09727852 -0.10507806</span></span> +<span id="cb2-285"><a href="#cb2-285" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0 10.0 80 5.0 0 1 1 -0.350 -1.150 2.6927356 -1.3232777 2.34273564 -2.47327770</span></span> +<span id="cb2-286"><a href="#cb2-286" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0 2.5 80 2.5 5 1 1 -1.050 -0.875 0.3758168 0.8556930 -0.67418318 -0.01930696</span></span> +<span id="cb2-287"><a href="#cb2-287" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-288"><a href="#cb2-288" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-289"><a href="#cb2-289" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-290"><a href="#cb2-290" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-291"><a href="#cb2-291" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-292"><a href="#cb2-292" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-293"><a href="#cb2-293" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-294"><a href="#cb2-294" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-295"><a href="#cb2-295" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-296"><a href="#cb2-296" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-297"><a href="#cb2-297" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-298"><a href="#cb2-298" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-299"><a href="#cb2-299" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-300"><a href="#cb2-300" tabindex="-1"></a><span class="co">#> -2340.0 -857.5 510.0 </span></span> +<span id="cb2-301"><a href="#cb2-301" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-302"><a href="#cb2-302" tabindex="-1"></a><span class="co">#> iter 2 value 989.566757</span></span> +<span id="cb2-303"><a href="#cb2-303" tabindex="-1"></a><span class="co">#> iter 3 value 968.906950</span></span> +<span id="cb2-304"><a href="#cb2-304" tabindex="-1"></a><span class="co">#> iter 4 value 968.775516</span></span> +<span id="cb2-305"><a href="#cb2-305" tabindex="-1"></a><span class="co">#> iter 5 value 959.377427</span></span> +<span id="cb2-306"><a href="#cb2-306" tabindex="-1"></a><span class="co">#> iter 6 value 959.364632</span></span> +<span id="cb2-307"><a href="#cb2-307" tabindex="-1"></a><span class="co">#> iter 7 value 959.364588</span></span> +<span id="cb2-308"><a href="#cb2-308" tabindex="-1"></a><span class="co">#> iter 7 value 959.364588</span></span> +<span id="cb2-309"><a href="#cb2-309" tabindex="-1"></a><span class="co">#> iter 7 value 959.364588</span></span> +<span id="cb2-310"><a href="#cb2-310" tabindex="-1"></a><span class="co">#> final value 959.364588 </span></span> +<span id="cb2-311"><a href="#cb2-311" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-312"><a href="#cb2-312" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-313"><a href="#cb2-313" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-314"><a href="#cb2-314" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-315"><a href="#cb2-315" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-316"><a href="#cb2-316" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-317"><a href="#cb2-317" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-318"><a href="#cb2-318" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-319"><a href="#cb2-319" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-320"><a href="#cb2-320" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-321"><a href="#cb2-321" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-322"><a href="#cb2-322" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-323"><a href="#cb2-323" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-324"><a href="#cb2-324" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1</span></span> +<span id="cb2-325"><a href="#cb2-325" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5 0.0 20 20.0 10 1 1 -0.775 -1.400 -0.5067469 -4.908678e-05 -1.2817469</span></span> +<span id="cb2-326"><a href="#cb2-326" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0 5.0 40 5.0 0 1 1 -0.800 -0.750 2.1209149 5.835693e-01 1.3209149</span></span> +<span id="cb2-327"><a href="#cb2-327" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0 0.0 80 10.0 10 1 1 -1.600 -1.300 -0.3310010 7.106139e-01 -1.9310010</span></span> +<span id="cb2-328"><a href="#cb2-328" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0 10.0 20 20.0 5 1 1 -0.750 -1.500 1.0469501 3.053872e-01 0.2969501</span></span> +<span id="cb2-329"><a href="#cb2-329" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0 10.0 80 5.0 0 1 1 -0.350 -1.150 1.2182730 -6.215119e-01 0.8682730</span></span> +<span id="cb2-330"><a href="#cb2-330" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0 2.5 80 2.5 5 1 1 -1.050 -0.875 -0.3318808 5.251218e+00 -1.3818808</span></span> +<span id="cb2-331"><a href="#cb2-331" tabindex="-1"></a><span class="co">#> U_2 CHOICE</span></span> +<span id="cb2-332"><a href="#cb2-332" tabindex="-1"></a><span class="co">#> 1 -1.4000491 1</span></span> +<span id="cb2-333"><a href="#cb2-333" tabindex="-1"></a><span class="co">#> 2 -0.1664307 1</span></span> +<span id="cb2-334"><a href="#cb2-334" tabindex="-1"></a><span class="co">#> 3 -0.5893861 2</span></span> +<span id="cb2-335"><a href="#cb2-335" tabindex="-1"></a><span class="co">#> 4 -1.1946128 1</span></span> +<span id="cb2-336"><a href="#cb2-336" tabindex="-1"></a><span class="co">#> 5 -1.7715119 1</span></span> +<span id="cb2-337"><a href="#cb2-337" tabindex="-1"></a><span class="co">#> 6 4.3762180 2</span></span> +<span id="cb2-338"><a href="#cb2-338" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-339"><a href="#cb2-339" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-340"><a href="#cb2-340" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-341"><a href="#cb2-341" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-342"><a href="#cb2-342" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-343"><a href="#cb2-343" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-344"><a href="#cb2-344" tabindex="-1"></a><span class="co">#> -2120.0 -842.5 582.5 </span></span> +<span id="cb2-345"><a href="#cb2-345" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-346"><a href="#cb2-346" tabindex="-1"></a><span class="co">#> iter 2 value 990.498814</span></span> +<span id="cb2-347"><a href="#cb2-347" tabindex="-1"></a><span class="co">#> iter 3 value 970.036278</span></span> +<span id="cb2-348"><a href="#cb2-348" tabindex="-1"></a><span class="co">#> iter 4 value 970.031934</span></span> +<span id="cb2-349"><a href="#cb2-349" tabindex="-1"></a><span class="co">#> iter 5 value 961.943463</span></span> +<span id="cb2-350"><a href="#cb2-350" tabindex="-1"></a><span class="co">#> iter 6 value 961.698866</span></span> +<span id="cb2-351"><a href="#cb2-351" tabindex="-1"></a><span class="co">#> iter 7 value 961.698562</span></span> +<span id="cb2-352"><a href="#cb2-352" tabindex="-1"></a><span class="co">#> iter 7 value 961.698561</span></span> +<span id="cb2-353"><a href="#cb2-353" tabindex="-1"></a><span class="co">#> iter 7 value 961.698561</span></span> +<span id="cb2-354"><a href="#cb2-354" tabindex="-1"></a><span class="co">#> final value 961.698561 </span></span> +<span id="cb2-355"><a href="#cb2-355" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-356"><a href="#cb2-356" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-357"><a href="#cb2-357" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-358"><a href="#cb2-358" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-359"><a href="#cb2-359" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-360"><a href="#cb2-360" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-361"><a href="#cb2-361" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-362"><a href="#cb2-362" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00</span></span> +<span id="cb2-363"><a href="#cb2-363" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.01 0.01 0.02 0.01 0.00</span></span> +<span id="cb2-364"><a href="#cb2-364" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-365"><a href="#cb2-365" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-366"><a href="#cb2-366" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.16 0.19 0.03 0.30 0.27 0.13</span></span> +<span id="cb2-367"><a href="#cb2-367" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-368"><a href="#cb2-368" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-369"><a href="#cb2-369" tabindex="-1"></a><span class="co">#> FALSE TRUE </span></span> +<span id="cb2-370"><a href="#cb2-370" tabindex="-1"></a><span class="co">#> 50 50 </span></span> +<span id="cb2-371"><a href="#cb2-371" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-372"><a href="#cb2-372" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-373"><a href="#cb2-373" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-374"><a href="#cb2-374" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-375"><a href="#cb2-375" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-376"><a href="#cb2-376" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-377"><a href="#cb2-377" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-378"><a href="#cb2-378" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-379"><a href="#cb2-379" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-380"><a href="#cb2-380" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-381"><a href="#cb2-381" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-382"><a href="#cb2-382" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-383"><a href="#cb2-383" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-384"><a href="#cb2-384" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-385"><a href="#cb2-385" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-386"><a href="#cb2-386" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-387"><a href="#cb2-387" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-388"><a href="#cb2-388" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-389"><a href="#cb2-389" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-390"><a href="#cb2-390" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-391"><a href="#cb2-391" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-392"><a href="#cb2-392" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-393"><a href="#cb2-393" tabindex="-1"></a><span class="co">#> • `Choice situation` -> `Choice.situation`</span></span> +<span id="cb2-394"><a href="#cb2-394" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-395"><a href="#cb2-395" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-396"><a href="#cb2-396" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-397"><a href="#cb2-397" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-398"><a href="#cb2-398" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-399"><a href="#cb2-399" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-400"><a href="#cb2-400" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-401"><a href="#cb2-401" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-402"><a href="#cb2-402" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-403"><a href="#cb2-403" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-404"><a href="#cb2-404" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-405"><a href="#cb2-405" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-406"><a href="#cb2-406" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-407"><a href="#cb2-407" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1</span></span> +<span id="cb2-408"><a href="#cb2-408" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 1 -1.150 -0.350 1.88045081 0.33059180 0.7304508</span></span> +<span id="cb2-409"><a href="#cb2-409" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 1 -0.675 -1.500 -0.08733163 -0.07195918 -0.7623316</span></span> +<span id="cb2-410"><a href="#cb2-410" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 1 -0.925 -1.600 -0.31269859 3.95512677 -1.2376986</span></span> +<span id="cb2-411"><a href="#cb2-411" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 1 -0.875 -0.850 0.20206751 -0.87018279 -0.6729325</span></span> +<span id="cb2-412"><a href="#cb2-412" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 1 -0.550 -0.900 -0.25607132 -1.21928402 -0.8060713</span></span> +<span id="cb2-413"><a href="#cb2-413" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 1 -1.550 -0.725 1.39833272 -0.08165078 -0.1516673</span></span> +<span id="cb2-414"><a href="#cb2-414" tabindex="-1"></a><span class="co">#> U_2 CHOICE</span></span> +<span id="cb2-415"><a href="#cb2-415" tabindex="-1"></a><span class="co">#> 1 -0.0194082 1</span></span> +<span id="cb2-416"><a href="#cb2-416" tabindex="-1"></a><span class="co">#> 2 -1.5719592 1</span></span> +<span id="cb2-417"><a href="#cb2-417" tabindex="-1"></a><span class="co">#> 3 2.3551268 2</span></span> +<span id="cb2-418"><a href="#cb2-418" tabindex="-1"></a><span class="co">#> 4 -1.7201828 1</span></span> +<span id="cb2-419"><a href="#cb2-419" tabindex="-1"></a><span class="co">#> 5 -2.1192840 1</span></span> +<span id="cb2-420"><a href="#cb2-420" tabindex="-1"></a><span class="co">#> 6 -0.8066508 1</span></span> +<span id="cb2-421"><a href="#cb2-421" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-422"><a href="#cb2-422" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-423"><a href="#cb2-423" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-424"><a href="#cb2-424" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-425"><a href="#cb2-425" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-426"><a href="#cb2-426" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-427"><a href="#cb2-427" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-428"><a href="#cb2-428" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-429"><a href="#cb2-429" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-430"><a href="#cb2-430" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-431"><a href="#cb2-431" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-432"><a href="#cb2-432" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-433"><a href="#cb2-433" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-434"><a href="#cb2-434" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-435"><a href="#cb2-435" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1</span></span> +<span id="cb2-436"><a href="#cb2-436" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 1 -1.150 -0.350 -0.0940785 -0.8728874 -1.24407850</span></span> +<span id="cb2-437"><a href="#cb2-437" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 1 -0.675 -1.500 -0.6796651 -1.1297414 -1.35466507</span></span> +<span id="cb2-438"><a href="#cb2-438" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 1 -0.925 -1.600 1.7899847 0.6372528 0.86498471</span></span> +<span id="cb2-439"><a href="#cb2-439" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 1 -0.875 -0.850 0.9429192 0.7744473 0.06791921</span></span> +<span id="cb2-440"><a href="#cb2-440" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 1 -0.550 -0.900 0.1003092 2.5583115 -0.44969083</span></span> +<span id="cb2-441"><a href="#cb2-441" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 1 -1.550 -0.725 -0.3851894 0.9776369 -1.93518939</span></span> +<span id="cb2-442"><a href="#cb2-442" tabindex="-1"></a><span class="co">#> U_2 CHOICE</span></span> +<span id="cb2-443"><a href="#cb2-443" tabindex="-1"></a><span class="co">#> 1 -1.22288745 2</span></span> +<span id="cb2-444"><a href="#cb2-444" tabindex="-1"></a><span class="co">#> 2 -2.62974141 1</span></span> +<span id="cb2-445"><a href="#cb2-445" tabindex="-1"></a><span class="co">#> 3 -0.96274717 1</span></span> +<span id="cb2-446"><a href="#cb2-446" tabindex="-1"></a><span class="co">#> 4 -0.07555271 1</span></span> +<span id="cb2-447"><a href="#cb2-447" tabindex="-1"></a><span class="co">#> 5 1.65831145 2</span></span> +<span id="cb2-448"><a href="#cb2-448" tabindex="-1"></a><span class="co">#> 6 0.25263691 2</span></span> +<span id="cb2-449"><a href="#cb2-449" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-450"><a href="#cb2-450" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-451"><a href="#cb2-451" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-452"><a href="#cb2-452" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-453"><a href="#cb2-453" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-454"><a href="#cb2-454" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-455"><a href="#cb2-455" tabindex="-1"></a><span class="co">#> -2300.0 -967.5 417.5 </span></span> +<span id="cb2-456"><a href="#cb2-456" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-457"><a href="#cb2-457" tabindex="-1"></a><span class="co">#> iter 2 value 989.783897</span></span> +<span id="cb2-458"><a href="#cb2-458" tabindex="-1"></a><span class="co">#> iter 3 value 967.441065</span></span> +<span id="cb2-459"><a href="#cb2-459" tabindex="-1"></a><span class="co">#> iter 4 value 966.807343</span></span> +<span id="cb2-460"><a href="#cb2-460" tabindex="-1"></a><span class="co">#> iter 5 value 957.535574</span></span> +<span id="cb2-461"><a href="#cb2-461" tabindex="-1"></a><span class="co">#> iter 6 value 957.518843</span></span> +<span id="cb2-462"><a href="#cb2-462" tabindex="-1"></a><span class="co">#> iter 7 value 957.518805</span></span> +<span id="cb2-463"><a href="#cb2-463" tabindex="-1"></a><span class="co">#> iter 7 value 957.518805</span></span> +<span id="cb2-464"><a href="#cb2-464" tabindex="-1"></a><span class="co">#> iter 7 value 957.518805</span></span> +<span id="cb2-465"><a href="#cb2-465" tabindex="-1"></a><span class="co">#> final value 957.518805 </span></span> +<span id="cb2-466"><a href="#cb2-466" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-467"><a href="#cb2-467" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-468"><a href="#cb2-468" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-469"><a href="#cb2-469" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-470"><a href="#cb2-470" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-471"><a href="#cb2-471" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-472"><a href="#cb2-472" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-473"><a href="#cb2-473" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-474"><a href="#cb2-474" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-475"><a href="#cb2-475" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-476"><a href="#cb2-476" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-477"><a href="#cb2-477" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-478"><a href="#cb2-478" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-479"><a href="#cb2-479" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1</span></span> +<span id="cb2-480"><a href="#cb2-480" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 1 -1.150 -0.350 0.39615659 0.74248610 -0.7538434</span></span> +<span id="cb2-481"><a href="#cb2-481" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 1 -0.675 -1.500 -0.17578286 0.04260786 -0.8507829</span></span> +<span id="cb2-482"><a href="#cb2-482" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 1 -0.925 -1.600 0.44905385 0.79514566 -0.4759461</span></span> +<span id="cb2-483"><a href="#cb2-483" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 1 -0.875 -0.850 0.27140789 4.63953174 -0.6035921</span></span> +<span id="cb2-484"><a href="#cb2-484" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 1 -0.550 -0.900 -0.03370054 0.84622952 -0.5837005</span></span> +<span id="cb2-485"><a href="#cb2-485" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 1 -1.550 -0.725 -0.47233862 1.05805421 -2.0223386</span></span> +<span id="cb2-486"><a href="#cb2-486" tabindex="-1"></a><span class="co">#> U_2 CHOICE</span></span> +<span id="cb2-487"><a href="#cb2-487" tabindex="-1"></a><span class="co">#> 1 0.39248610 2</span></span> +<span id="cb2-488"><a href="#cb2-488" tabindex="-1"></a><span class="co">#> 2 -1.45739214 1</span></span> +<span id="cb2-489"><a href="#cb2-489" tabindex="-1"></a><span class="co">#> 3 -0.80485434 1</span></span> +<span id="cb2-490"><a href="#cb2-490" tabindex="-1"></a><span class="co">#> 4 3.78953174 2</span></span> +<span id="cb2-491"><a href="#cb2-491" tabindex="-1"></a><span class="co">#> 5 -0.05377048 2</span></span> +<span id="cb2-492"><a href="#cb2-492" tabindex="-1"></a><span class="co">#> 6 0.33305421 2</span></span> +<span id="cb2-493"><a href="#cb2-493" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-494"><a href="#cb2-494" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-495"><a href="#cb2-495" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-496"><a href="#cb2-496" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-497"><a href="#cb2-497" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-498"><a href="#cb2-498" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-499"><a href="#cb2-499" tabindex="-1"></a><span class="co">#> -1600.0 -857.5 402.5 </span></span> +<span id="cb2-500"><a href="#cb2-500" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-501"><a href="#cb2-501" tabindex="-1"></a><span class="co">#> iter 2 value 993.094191</span></span> +<span id="cb2-502"><a href="#cb2-502" tabindex="-1"></a><span class="co">#> iter 3 value 975.977284</span></span> +<span id="cb2-503"><a href="#cb2-503" tabindex="-1"></a><span class="co">#> iter 4 value 975.860148</span></span> +<span id="cb2-504"><a href="#cb2-504" tabindex="-1"></a><span class="co">#> iter 5 value 971.032264</span></span> +<span id="cb2-505"><a href="#cb2-505" tabindex="-1"></a><span class="co">#> iter 6 value 971.027871</span></span> +<span id="cb2-506"><a href="#cb2-506" tabindex="-1"></a><span class="co">#> iter 6 value 971.027867</span></span> +<span id="cb2-507"><a href="#cb2-507" tabindex="-1"></a><span class="co">#> iter 6 value 971.027867</span></span> +<span id="cb2-508"><a href="#cb2-508" tabindex="-1"></a><span class="co">#> final value 971.027867 </span></span> +<span id="cb2-509"><a href="#cb2-509" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-510"><a href="#cb2-510" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-511"><a href="#cb2-511" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-512"><a href="#cb2-512" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-513"><a href="#cb2-513" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-514"><a href="#cb2-514" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-515"><a href="#cb2-515" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-516"><a href="#cb2-516" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.01</span></span> +<span id="cb2-517"><a href="#cb2-517" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.00 0.01 0.00 0.01 0.01 0.00</span></span> +<span id="cb2-518"><a href="#cb2-518" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-519"><a href="#cb2-519" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-520"><a href="#cb2-520" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.68 0.20 0.54 0.82 0.28 0.14</span></span> +<span id="cb2-521"><a href="#cb2-521" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-522"><a href="#cb2-522" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-523"><a href="#cb2-523" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-524"><a href="#cb2-524" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-525"><a href="#cb2-525" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-526"><a href="#cb2-526" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-527"><a href="#cb2-527" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-528"><a href="#cb2-528" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-529"><a href="#cb2-529" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-530"><a href="#cb2-530" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-531"><a href="#cb2-531" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-532"><a href="#cb2-532" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-533"><a href="#cb2-533" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-534"><a href="#cb2-534" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-535"><a href="#cb2-535" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-536"><a href="#cb2-536" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-537"><a href="#cb2-537" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-538"><a href="#cb2-538" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-539"><a href="#cb2-539" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-540"><a href="#cb2-540" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-541"><a href="#cb2-541" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-542"><a href="#cb2-542" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-543"><a href="#cb2-543" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-544"><a href="#cb2-544" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-545"><a href="#cb2-545" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-546"><a href="#cb2-546" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-547"><a href="#cb2-547" tabindex="-1"></a><span class="co">#> • `Choice situation` -> `Choice.situation`</span></span> +<span id="cb2-548"><a href="#cb2-548" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-549"><a href="#cb2-549" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-550"><a href="#cb2-550" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-551"><a href="#cb2-551" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-552"><a href="#cb2-552" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-553"><a href="#cb2-553" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-554"><a href="#cb2-554" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-555"><a href="#cb2-555" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-556"><a href="#cb2-556" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-557"><a href="#cb2-557" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-558"><a href="#cb2-558" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-559"><a href="#cb2-559" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-560"><a href="#cb2-560" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-561"><a href="#cb2-561" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-562"><a href="#cb2-562" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0 0 60 20.0 10.0 1 1 -1.150 -1.800 0.8053210 -0.7760447 -0.34467900 -2.5760447</span></span> +<span id="cb2-563"><a href="#cb2-563" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5 10 40 20.0 0.0 1 1 -0.575 -1.800 2.4581484 -0.5422855 1.88314842 -2.3422855</span></span> +<span id="cb2-564"><a href="#cb2-564" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0 10 80 2.5 0.0 1 1 -1.400 -0.975 0.4806134 -1.7030310 -0.91938664 -2.6780310</span></span> +<span id="cb2-565"><a href="#cb2-565" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0 10 20 20.0 2.5 1 1 -0.950 -1.550 -0.8558539 1.9784273 -1.80585392 0.4284273</span></span> +<span id="cb2-566"><a href="#cb2-566" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0 10 80 10.0 0.0 1 1 -1.800 -1.500 1.4200481 0.8856199 -0.37995187 -0.6143801</span></span> +<span id="cb2-567"><a href="#cb2-567" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0 0 40 20.0 10.0 1 1 -1.300 -1.600 1.3592506 -0.1823192 0.05925063 -1.7823192</span></span> +<span id="cb2-568"><a href="#cb2-568" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-569"><a href="#cb2-569" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-570"><a href="#cb2-570" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-571"><a href="#cb2-571" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-572"><a href="#cb2-572" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-573"><a href="#cb2-573" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-574"><a href="#cb2-574" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-575"><a href="#cb2-575" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-576"><a href="#cb2-576" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-577"><a href="#cb2-577" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-578"><a href="#cb2-578" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-579"><a href="#cb2-579" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-580"><a href="#cb2-580" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-581"><a href="#cb2-581" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-582"><a href="#cb2-582" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-583"><a href="#cb2-583" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-584"><a href="#cb2-584" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-585"><a href="#cb2-585" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-586"><a href="#cb2-586" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-587"><a href="#cb2-587" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-588"><a href="#cb2-588" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-589"><a href="#cb2-589" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-590"><a href="#cb2-590" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0 0 60 20.0 10.0 1 1 -1.150 -1.800 1.1057596 0.8176933 -0.04424039 -0.9823067</span></span> +<span id="cb2-591"><a href="#cb2-591" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5 10 40 20.0 0.0 1 1 -0.575 -1.800 1.4664332 0.2855647 0.89143319 -1.5144353</span></span> +<span id="cb2-592"><a href="#cb2-592" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0 10 80 2.5 0.0 1 1 -1.400 -0.975 -0.2567456 2.0307365 -1.65674558 1.0557365</span></span> +<span id="cb2-593"><a href="#cb2-593" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0 10 20 20.0 2.5 1 1 -0.950 -1.550 1.7936733 0.2273817 0.84367334 -1.3226183</span></span> +<span id="cb2-594"><a href="#cb2-594" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0 10 80 10.0 0.0 1 1 -1.800 -1.500 -0.5080847 1.8371868 -2.30808468 0.3371868</span></span> +<span id="cb2-595"><a href="#cb2-595" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0 0 40 20.0 10.0 1 1 -1.300 -1.600 0.2315646 0.5250324 -1.06843538 -1.0749676</span></span> +<span id="cb2-596"><a href="#cb2-596" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-597"><a href="#cb2-597" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-598"><a href="#cb2-598" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-599"><a href="#cb2-599" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-600"><a href="#cb2-600" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-601"><a href="#cb2-601" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-602"><a href="#cb2-602" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-603"><a href="#cb2-603" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-604"><a href="#cb2-604" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-605"><a href="#cb2-605" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-606"><a href="#cb2-606" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-607"><a href="#cb2-607" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-608"><a href="#cb2-608" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-609"><a href="#cb2-609" tabindex="-1"></a><span class="co">#> -2720.0 -3230.0 1477.5 </span></span> +<span id="cb2-610"><a href="#cb2-610" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-611"><a href="#cb2-611" tabindex="-1"></a><span class="co">#> iter 2 value 961.903346</span></span> +<span id="cb2-612"><a href="#cb2-612" tabindex="-1"></a><span class="co">#> iter 3 value 923.013503</span></span> +<span id="cb2-613"><a href="#cb2-613" tabindex="-1"></a><span class="co">#> iter 4 value 921.553693</span></span> +<span id="cb2-614"><a href="#cb2-614" tabindex="-1"></a><span class="co">#> iter 5 value 899.826852</span></span> +<span id="cb2-615"><a href="#cb2-615" tabindex="-1"></a><span class="co">#> iter 6 value 899.416093</span></span> +<span id="cb2-616"><a href="#cb2-616" tabindex="-1"></a><span class="co">#> iter 7 value 899.408733</span></span> +<span id="cb2-617"><a href="#cb2-617" tabindex="-1"></a><span class="co">#> iter 7 value 899.408728</span></span> +<span id="cb2-618"><a href="#cb2-618" tabindex="-1"></a><span class="co">#> iter 7 value 899.408728</span></span> +<span id="cb2-619"><a href="#cb2-619" tabindex="-1"></a><span class="co">#> final value 899.408728 </span></span> +<span id="cb2-620"><a href="#cb2-620" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-621"><a href="#cb2-621" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-622"><a href="#cb2-622" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-623"><a href="#cb2-623" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-624"><a href="#cb2-624" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-625"><a href="#cb2-625" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-626"><a href="#cb2-626" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-627"><a href="#cb2-627" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-628"><a href="#cb2-628" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-629"><a href="#cb2-629" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-630"><a href="#cb2-630" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-631"><a href="#cb2-631" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-632"><a href="#cb2-632" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-633"><a href="#cb2-633" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-634"><a href="#cb2-634" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0 0 60 20.0 10.0 1 1 -1.150 -1.800 -0.55606335 0.4418297 -1.7060633 -1.3581703</span></span> +<span id="cb2-635"><a href="#cb2-635" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5 10 40 20.0 0.0 1 1 -0.575 -1.800 -0.70525965 0.3030154 -1.2802596 -1.4969846</span></span> +<span id="cb2-636"><a href="#cb2-636" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0 10 80 2.5 0.0 1 1 -1.400 -0.975 0.76358526 1.1547805 -0.6364147 0.1797805</span></span> +<span id="cb2-637"><a href="#cb2-637" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0 10 20 20.0 2.5 1 1 -0.950 -1.550 -0.50057341 1.6569802 -1.4505734 0.1069802</span></span> +<span id="cb2-638"><a href="#cb2-638" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0 10 80 10.0 0.0 1 1 -1.800 -1.500 0.95196390 4.6640005 -0.8480361 3.1640005</span></span> +<span id="cb2-639"><a href="#cb2-639" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0 0 40 20.0 10.0 1 1 -1.300 -1.600 -0.07807331 0.9519585 -1.3780733 -0.6480415</span></span> +<span id="cb2-640"><a href="#cb2-640" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-641"><a href="#cb2-641" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-642"><a href="#cb2-642" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-643"><a href="#cb2-643" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-644"><a href="#cb2-644" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-645"><a href="#cb2-645" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-646"><a href="#cb2-646" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-647"><a href="#cb2-647" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-648"><a href="#cb2-648" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-649"><a href="#cb2-649" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-650"><a href="#cb2-650" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-651"><a href="#cb2-651" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-652"><a href="#cb2-652" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-653"><a href="#cb2-653" tabindex="-1"></a><span class="co">#> -1480.0 -3742.5 752.5 </span></span> +<span id="cb2-654"><a href="#cb2-654" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-655"><a href="#cb2-655" tabindex="-1"></a><span class="co">#> iter 2 value 931.326512</span></span> +<span id="cb2-656"><a href="#cb2-656" tabindex="-1"></a><span class="co">#> iter 3 value 904.389362</span></span> +<span id="cb2-657"><a href="#cb2-657" tabindex="-1"></a><span class="co">#> iter 4 value 902.747564</span></span> +<span id="cb2-658"><a href="#cb2-658" tabindex="-1"></a><span class="co">#> iter 5 value 895.585146</span></span> +<span id="cb2-659"><a href="#cb2-659" tabindex="-1"></a><span class="co">#> iter 6 value 895.212841</span></span> +<span id="cb2-660"><a href="#cb2-660" tabindex="-1"></a><span class="co">#> iter 7 value 895.208094</span></span> +<span id="cb2-661"><a href="#cb2-661" tabindex="-1"></a><span class="co">#> iter 7 value 895.208091</span></span> +<span id="cb2-662"><a href="#cb2-662" tabindex="-1"></a><span class="co">#> iter 7 value 895.208091</span></span> +<span id="cb2-663"><a href="#cb2-663" tabindex="-1"></a><span class="co">#> final value 895.208091 </span></span> +<span id="cb2-664"><a href="#cb2-664" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-665"><a href="#cb2-665" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-666"><a href="#cb2-666" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-667"><a href="#cb2-667" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-668"><a href="#cb2-668" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-669"><a href="#cb2-669" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-670"><a href="#cb2-670" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-671"><a href="#cb2-671" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.01</span></span> +<span id="cb2-672"><a href="#cb2-672" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.01 0.03 0.00 0.03 0.04 0.02</span></span> +<span id="cb2-673"><a href="#cb2-673" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-674"><a href="#cb2-674" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-675"><a href="#cb2-675" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.28 0.40 0.00 0.57 0.57 0.28</span></span> +<span id="cb2-676"><a href="#cb2-676" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-677"><a href="#cb2-677" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-678"><a href="#cb2-678" tabindex="-1"></a><span class="co">#> FALSE TRUE </span></span> +<span id="cb2-679"><a href="#cb2-679" tabindex="-1"></a><span class="co">#> 50 50 </span></span> +<span id="cb2-680"><a href="#cb2-680" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-681"><a href="#cb2-681" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-682"><a href="#cb2-682" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-683"><a href="#cb2-683" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-684"><a href="#cb2-684" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-685"><a href="#cb2-685" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-686"><a href="#cb2-686" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-687"><a href="#cb2-687" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-688"><a href="#cb2-688" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-689"><a href="#cb2-689" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-690"><a href="#cb2-690" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-691"><a href="#cb2-691" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-692"><a href="#cb2-692" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-693"><a href="#cb2-693" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-694"><a href="#cb2-694" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-695"><a href="#cb2-695" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-696"><a href="#cb2-696" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-697"><a href="#cb2-697" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-698"><a href="#cb2-698" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-699"><a href="#cb2-699" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-700"><a href="#cb2-700" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-701"><a href="#cb2-701" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-702"><a href="#cb2-702" tabindex="-1"></a><span class="co">#> • `Choice situation` -> `Choice.situation`</span></span> +<span id="cb2-703"><a href="#cb2-703" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-704"><a href="#cb2-704" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-705"><a href="#cb2-705" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-706"><a href="#cb2-706" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-707"><a href="#cb2-707" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-708"><a href="#cb2-708" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-709"><a href="#cb2-709" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-710"><a href="#cb2-710" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-711"><a href="#cb2-711" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-712"><a href="#cb2-712" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-713"><a href="#cb2-713" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-714"><a href="#cb2-714" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-715"><a href="#cb2-715" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-716"><a href="#cb2-716" tabindex="-1"></a><span class="co">#> 1 1 1 1 80 20 2.5 20.0 10 5 1 -0.775 -1.500 0.12234341 0.6503776 -0.6526566 -0.84962241</span></span> +<span id="cb2-717"><a href="#cb2-717" tabindex="-1"></a><span class="co">#> 2 1 2 1 60 40 5.0 10.0 5 10 1 -0.850 -0.900 -0.43360819 0.6615210 -1.2836082 -0.23847900</span></span> +<span id="cb2-718"><a href="#cb2-718" tabindex="-1"></a><span class="co">#> 3 1 3 1 60 20 20.0 20.0 0 10 1 -2.000 -1.400 -0.31286639 5.7827787 -2.3128664 4.38277870</span></span> +<span id="cb2-719"><a href="#cb2-719" tabindex="-1"></a><span class="co">#> 4 1 4 1 20 80 20.0 2.5 0 10 1 -1.600 -0.775 -0.15949911 0.6857678 -1.7594991 -0.08923219</span></span> +<span id="cb2-720"><a href="#cb2-720" tabindex="-1"></a><span class="co">#> 5 1 5 1 40 80 10.0 5.0 10 5 1 -0.900 -1.050 -0.05237788 1.5859039 -0.9523779 0.53590389</span></span> +<span id="cb2-721"><a href="#cb2-721" tabindex="-1"></a><span class="co">#> 6 1 6 1 60 80 5.0 2.5 0 0 1 -0.950 -0.975 2.34036634 0.2393918 1.3903663 -0.73560816</span></span> +<span id="cb2-722"><a href="#cb2-722" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-723"><a href="#cb2-723" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-724"><a href="#cb2-724" tabindex="-1"></a><span class="co">#> 2 2</span></span> +<span id="cb2-725"><a href="#cb2-725" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-726"><a href="#cb2-726" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-727"><a href="#cb2-727" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-728"><a href="#cb2-728" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-729"><a href="#cb2-729" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-730"><a href="#cb2-730" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-731"><a href="#cb2-731" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-732"><a href="#cb2-732" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-733"><a href="#cb2-733" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-734"><a href="#cb2-734" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-735"><a href="#cb2-735" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-736"><a href="#cb2-736" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-737"><a href="#cb2-737" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-738"><a href="#cb2-738" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-739"><a href="#cb2-739" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-740"><a href="#cb2-740" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-741"><a href="#cb2-741" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-742"><a href="#cb2-742" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-743"><a href="#cb2-743" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 group V_1 V_2 e_1 e_2 U_1</span></span> +<span id="cb2-744"><a href="#cb2-744" tabindex="-1"></a><span class="co">#> 1 1 1 1 80 20 2.5 20.0 10 5 1 -0.775 -1.500 1.74395858 1.6507121 0.968958575</span></span> +<span id="cb2-745"><a href="#cb2-745" tabindex="-1"></a><span class="co">#> 2 1 2 1 60 40 5.0 10.0 5 10 1 -0.850 -0.900 1.10763894 0.9337414 0.257638936</span></span> +<span id="cb2-746"><a href="#cb2-746" tabindex="-1"></a><span class="co">#> 3 1 3 1 60 20 20.0 20.0 0 10 1 -2.000 -1.400 -1.23519031 -0.7089281 -3.235190315</span></span> +<span id="cb2-747"><a href="#cb2-747" tabindex="-1"></a><span class="co">#> 4 1 4 1 20 80 20.0 2.5 0 10 1 -1.600 -0.775 -0.06854059 2.1896932 -1.668540589</span></span> +<span id="cb2-748"><a href="#cb2-748" tabindex="-1"></a><span class="co">#> 5 1 5 1 40 80 10.0 5.0 10 5 1 -0.900 -1.050 0.90927543 0.3884170 0.009275432</span></span> +<span id="cb2-749"><a href="#cb2-749" tabindex="-1"></a><span class="co">#> 6 1 6 1 60 80 5.0 2.5 0 0 1 -0.950 -0.975 0.57272851 0.4992305 -0.377271490</span></span> +<span id="cb2-750"><a href="#cb2-750" tabindex="-1"></a><span class="co">#> U_2 CHOICE</span></span> +<span id="cb2-751"><a href="#cb2-751" tabindex="-1"></a><span class="co">#> 1 0.15071215 1</span></span> +<span id="cb2-752"><a href="#cb2-752" tabindex="-1"></a><span class="co">#> 2 0.03374141 1</span></span> +<span id="cb2-753"><a href="#cb2-753" tabindex="-1"></a><span class="co">#> 3 -2.10892809 2</span></span> +<span id="cb2-754"><a href="#cb2-754" tabindex="-1"></a><span class="co">#> 4 1.41469320 2</span></span> +<span id="cb2-755"><a href="#cb2-755" tabindex="-1"></a><span class="co">#> 5 -0.66158301 1</span></span> +<span id="cb2-756"><a href="#cb2-756" tabindex="-1"></a><span class="co">#> 6 -0.47576952 1</span></span> +<span id="cb2-757"><a href="#cb2-757" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-758"><a href="#cb2-758" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-759"><a href="#cb2-759" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-760"><a href="#cb2-760" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-761"><a href="#cb2-761" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-762"><a href="#cb2-762" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-763"><a href="#cb2-763" tabindex="-1"></a><span class="co">#> -880 -830 405 </span></span> +<span id="cb2-764"><a href="#cb2-764" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-765"><a href="#cb2-765" tabindex="-1"></a><span class="co">#> iter 2 value 994.862696</span></span> +<span id="cb2-766"><a href="#cb2-766" tabindex="-1"></a><span class="co">#> iter 3 value 973.696602</span></span> +<span id="cb2-767"><a href="#cb2-767" tabindex="-1"></a><span class="co">#> iter 4 value 973.644209</span></span> +<span id="cb2-768"><a href="#cb2-768" tabindex="-1"></a><span class="co">#> iter 5 value 971.118222</span></span> +<span id="cb2-769"><a href="#cb2-769" tabindex="-1"></a><span class="co">#> iter 6 value 971.113908</span></span> +<span id="cb2-770"><a href="#cb2-770" tabindex="-1"></a><span class="co">#> iter 6 value 971.113906</span></span> +<span id="cb2-771"><a href="#cb2-771" tabindex="-1"></a><span class="co">#> iter 6 value 971.113906</span></span> +<span id="cb2-772"><a href="#cb2-772" tabindex="-1"></a><span class="co">#> final value 971.113906 </span></span> +<span id="cb2-773"><a href="#cb2-773" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-774"><a href="#cb2-774" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-775"><a href="#cb2-775" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-776"><a href="#cb2-776" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-777"><a href="#cb2-777" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-778"><a href="#cb2-778" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-779"><a href="#cb2-779" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-780"><a href="#cb2-780" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-781"><a href="#cb2-781" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-782"><a href="#cb2-782" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-783"><a href="#cb2-783" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-784"><a href="#cb2-784" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-785"><a href="#cb2-785" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-786"><a href="#cb2-786" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 group V_1 V_2 e_1 e_2 U_1 U_2</span></span> +<span id="cb2-787"><a href="#cb2-787" tabindex="-1"></a><span class="co">#> 1 1 1 1 80 20 2.5 20.0 10 5 1 -0.775 -1.500 -1.1552146 1.6918663 -1.930215 0.1918663</span></span> +<span id="cb2-788"><a href="#cb2-788" tabindex="-1"></a><span class="co">#> 2 1 2 1 60 40 5.0 10.0 5 10 1 -0.850 -0.900 3.5255143 2.5874719 2.675514 1.6874719</span></span> +<span id="cb2-789"><a href="#cb2-789" tabindex="-1"></a><span class="co">#> 3 1 3 1 60 20 20.0 20.0 0 10 1 -2.000 -1.400 -0.1288440 3.2280170 -2.128844 1.8280170</span></span> +<span id="cb2-790"><a href="#cb2-790" tabindex="-1"></a><span class="co">#> 4 1 4 1 20 80 20.0 2.5 0 10 1 -1.600 -0.775 -0.3072974 -0.3710956 -1.907297 -1.1460956</span></span> +<span id="cb2-791"><a href="#cb2-791" tabindex="-1"></a><span class="co">#> 5 1 5 1 40 80 10.0 5.0 10 5 1 -0.900 -1.050 -0.6042191 -0.1952303 -1.504219 -1.2452303</span></span> +<span id="cb2-792"><a href="#cb2-792" tabindex="-1"></a><span class="co">#> 6 1 6 1 60 80 5.0 2.5 0 0 1 -0.950 -0.975 -0.6233011 -0.2803958 -1.573301 -1.2553958</span></span> +<span id="cb2-793"><a href="#cb2-793" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-794"><a href="#cb2-794" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-795"><a href="#cb2-795" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-796"><a href="#cb2-796" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-797"><a href="#cb2-797" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-798"><a href="#cb2-798" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-799"><a href="#cb2-799" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-800"><a href="#cb2-800" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-801"><a href="#cb2-801" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-802"><a href="#cb2-802" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-803"><a href="#cb2-803" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-804"><a href="#cb2-804" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-805"><a href="#cb2-805" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-806"><a href="#cb2-806" tabindex="-1"></a><span class="co">#> -1060.0 -832.5 460.0 </span></span> +<span id="cb2-807"><a href="#cb2-807" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-808"><a href="#cb2-808" tabindex="-1"></a><span class="co">#> iter 2 value 994.307556</span></span> +<span id="cb2-809"><a href="#cb2-809" tabindex="-1"></a><span class="co">#> iter 3 value 972.255010</span></span> +<span id="cb2-810"><a href="#cb2-810" tabindex="-1"></a><span class="co">#> iter 4 value 972.242499</span></span> +<span id="cb2-811"><a href="#cb2-811" tabindex="-1"></a><span class="co">#> iter 5 value 968.104609</span></span> +<span id="cb2-812"><a href="#cb2-812" tabindex="-1"></a><span class="co">#> iter 6 value 968.103010</span></span> +<span id="cb2-813"><a href="#cb2-813" tabindex="-1"></a><span class="co">#> iter 6 value 968.103008</span></span> +<span id="cb2-814"><a href="#cb2-814" tabindex="-1"></a><span class="co">#> iter 6 value 968.103008</span></span> +<span id="cb2-815"><a href="#cb2-815" tabindex="-1"></a><span class="co">#> final value 968.103008 </span></span> +<span id="cb2-816"><a href="#cb2-816" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-817"><a href="#cb2-817" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-818"><a href="#cb2-818" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-819"><a href="#cb2-819" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-820"><a href="#cb2-820" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-821"><a href="#cb2-821" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-822"><a href="#cb2-822" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-823"><a href="#cb2-823" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00</span></span> +<span id="cb2-824"><a href="#cb2-824" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.00 0.01 0.02 0.00 0.00</span></span> +<span id="cb2-825"><a href="#cb2-825" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-826"><a href="#cb2-826" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-827"><a href="#cb2-827" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.12 0.08 0.06 0.18 0.12 0.06</span></span> +<span id="cb2-828"><a href="#cb2-828" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-829"><a href="#cb2-829" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-830"><a href="#cb2-830" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-831"><a href="#cb2-831" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-832"><a href="#cb2-832" tabindex="-1"></a><span class="co">#> 9.804 sec elapsed</span></span> +<span id="cb2-833"><a href="#cb2-833" tabindex="-1"></a><span class="co">#> $tic</span></span> +<span id="cb2-834"><a href="#cb2-834" tabindex="-1"></a><span class="co">#> elapsed </span></span> +<span id="cb2-835"><a href="#cb2-835" tabindex="-1"></a><span class="co">#> 10314.36 </span></span> +<span id="cb2-836"><a href="#cb2-836" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-837"><a href="#cb2-837" tabindex="-1"></a><span class="co">#> $toc</span></span> +<span id="cb2-838"><a href="#cb2-838" tabindex="-1"></a><span class="co">#> elapsed </span></span> +<span id="cb2-839"><a href="#cb2-839" tabindex="-1"></a><span class="co">#> 10324.16 </span></span> +<span id="cb2-840"><a href="#cb2-840" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-841"><a href="#cb2-841" tabindex="-1"></a><span class="co">#> $msg</span></span> +<span id="cb2-842"><a href="#cb2-842" tabindex="-1"></a><span class="co">#> logical(0)</span></span> +<span id="cb2-843"><a href="#cb2-843" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-844"><a href="#cb2-844" tabindex="-1"></a><span class="co">#> $callback_msg</span></span> +<span id="cb2-845"><a href="#cb2-845" tabindex="-1"></a><span class="co">#> [1] "9.804 sec elapsed"</span></span></code></pre></div> +<p><img src="" width="100%" /><img src="" width="100%" /><img src="" width="100%" /></p> + +</body> +</html> diff --git a/README.md b/README.md index 77d6112d23362c6ce53d493c022d351aaba0354b..cb74f733011f11cf3f7931213d4af0e83b587173 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,7 @@ The goal of simulateDCE is to make it easy to simulate choice experiment datasets using designs from NGENE or `spdesign`. You have to store the design file in a subfolder and need to specify certain parameters and the utility functions for the data generating process. The package is -useful for +useful for: 1. Test different designs in terms of statistical power, efficiency and unbiasedness @@ -36,6 +36,7 @@ need to install the `remotes` package first. The current version is alpha and there is no version on cran: ``` r + install.packages("remotes") remotes::install_gitlab(repo = "dj44vuri/simulateDCE" , host = "https://git.idiv.de") ``` @@ -46,15 +47,11 @@ This is a basic example for a simulation: ``` r + rm(list=ls()) library(simulateDCE) library(rlang) library(formula.tools) -#> -#> Attaching package: 'formula.tools' -#> The following object is masked from 'package:rlang': -#> -#> env library(rlang) @@ -69,19 +66,21 @@ nosim= 2 # number of simulations to run (about 500 is minimum) -# bpreis = -0.036 -# blade = -0.034 -# bwarte = -0.049 +# bcoeff <- list( +# bpreis = -0.036, +# blade = -0.034, +# bwarte = -0.049) decisiongroups=c(0,0.7,1) # wrong parameters -# -bpreis = -0.01 -blade = -0.07 -bwarte = 0.02 +# place b coefficients into an r list: +bcoeff = list( + bpreis = -0.01, + blade = -0.07, + bwarte = 0.02) manipulations = list(alt1.x2= expr(alt1.x2/10), alt1.x3= expr(alt1.x3/10), @@ -108,7 +107,7 @@ ul<-list( u1 = destype="ngene" sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, - designpath = designpath, u=ul) + designpath = designpath, u=ul, bcoeff = bcoeff) #> Utility function used in simulation, ie the true utility: #> #> $u1 @@ -145,20 +144,20 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 7 80 2.5 10.0 60 20.0 10 1 -#> 2 1 19 20 2.5 5.0 60 2.5 0 1 -#> 3 1 30 20 10.0 5.0 80 5.0 10 1 -#> 4 1 32 40 20.0 2.5 80 2.5 0 1 -#> 5 1 39 40 20.0 0.0 80 10.0 10 1 -#> 6 1 48 60 5.0 2.5 20 5.0 10 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.800 -0.28937157 2.15097352 -1.064372 0.3509735 2 -#> 2 1 -0.275 -0.775 -0.96139278 -0.20476786 -1.236393 -0.9797679 2 -#> 3 1 -0.800 -0.950 -1.22764761 -0.06043672 -2.027648 -1.0104367 2 -#> 4 1 -1.750 -0.975 -0.01653508 0.83311025 -1.766535 -0.1418897 2 -#> 5 1 -1.800 -1.300 0.55064443 -0.20286674 -1.249356 -1.5028667 1 -#> 6 1 -0.900 -0.350 -0.31623091 0.72473769 -1.216231 0.3747377 2 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 7 80 2.5 10.0 60 20.0 10 1 1 -0.775 -1.800 -0.15343271 3.6612318 -0.9284327 1.8612318 +#> 2 1 19 20 2.5 5.0 60 2.5 0 1 1 -0.275 -0.775 0.47936686 -0.8086989 0.2043669 -1.5836989 +#> 3 1 30 20 10.0 5.0 80 5.0 10 1 1 -0.800 -0.950 0.12634298 1.2300690 -0.6736570 0.2800690 +#> 4 1 32 40 20.0 2.5 80 2.5 0 1 1 -1.750 -0.975 2.08710825 -0.1882935 0.3371082 -1.1632935 +#> 5 1 39 40 20.0 0.0 80 10.0 10 1 1 -1.800 -1.300 1.05540385 3.1339326 -0.7445961 1.8339326 +#> 6 1 48 60 5.0 2.5 20 5.0 10 1 1 -0.900 -0.350 0.07255885 -0.1156742 -0.8274412 -0.4656742 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 2 +#> 4 1 +#> 5 2 +#> 6 2 #> #> #> This is Run number 1 @@ -173,36 +172,36 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 7 80 2.5 10.0 60 20.0 10 1 -#> 2 1 19 20 2.5 5.0 60 2.5 0 1 -#> 3 1 30 20 10.0 5.0 80 5.0 10 1 -#> 4 1 32 40 20.0 2.5 80 2.5 0 1 -#> 5 1 39 40 20.0 0.0 80 10.0 10 1 -#> 6 1 48 60 5.0 2.5 20 5.0 10 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.800 0.4008023 4.3514331 -0.3741977 2.5514331 2 -#> 2 1 -0.275 -0.775 -0.1892883 -0.7606078 -0.4642883 -1.5356078 1 -#> 3 1 -0.800 -0.950 1.2266380 -0.2061132 0.4266380 -1.1561132 1 -#> 4 1 -1.750 -0.975 1.5461599 -0.9432939 -0.2038401 -1.9182939 1 -#> 5 1 -1.800 -1.300 -0.9309889 1.7478688 -2.7309889 0.4478688 2 -#> 6 1 -0.900 -0.350 1.3557092 1.1181441 0.4557092 0.7681441 2 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 7 80 2.5 10.0 60 20.0 10 1 1 -0.775 -1.800 -1.2775839 1.5689946 -2.052584 -0.2310054 +#> 2 1 19 20 2.5 5.0 60 2.5 0 1 1 -0.275 -0.775 0.5934850 0.5453996 0.318485 -0.2296004 +#> 3 1 30 20 10.0 5.0 80 5.0 10 1 1 -0.800 -0.950 -0.5127855 1.7551185 -1.312785 0.8051185 +#> 4 1 32 40 20.0 2.5 80 2.5 0 1 1 -1.750 -0.975 3.4643234 1.3685812 1.714323 0.3935812 +#> 5 1 39 40 20.0 0.0 80 10.0 10 1 1 -1.800 -1.300 -0.5128262 0.3011019 -2.312826 -0.9988981 +#> 6 1 48 60 5.0 2.5 20 5.0 10 1 1 -0.900 -0.350 4.3343477 1.2265189 3.434348 0.8765189 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 2 +#> 4 1 +#> 5 2 +#> 6 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: -#> bpreis blade bwarte -#> 140 -1110 320 +#> bpreis blade bwarte +#> -1060.0 -812.5 520.0 #> initial value 998.131940 -#> iter 2 value 987.542841 -#> iter 3 value 976.359534 -#> iter 4 value 976.315710 -#> iter 5 value 971.176423 -#> iter 6 value 971.173751 -#> iter 6 value 971.173748 -#> iter 6 value 971.173748 -#> final value 971.173748 +#> iter 2 value 994.260781 +#> iter 3 value 974.092906 +#> iter 4 value 973.856287 +#> iter 5 value 970.270450 +#> iter 6 value 970.262794 +#> iter 6 value 970.262788 +#> iter 6 value 970.262788 +#> final value 970.262788 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -216,52 +215,52 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 7 80 2.5 10.0 60 20.0 10 1 -#> 2 1 19 20 2.5 5.0 60 2.5 0 1 -#> 3 1 30 20 10.0 5.0 80 5.0 10 1 -#> 4 1 32 40 20.0 2.5 80 2.5 0 1 -#> 5 1 39 40 20.0 0.0 80 10.0 10 1 -#> 6 1 48 60 5.0 2.5 20 5.0 10 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.800 0.93025769 2.47570731 0.1552577 0.6757073 2 -#> 2 1 -0.275 -0.775 1.60707885 -0.35547058 1.3320789 -1.1304706 1 -#> 3 1 -0.800 -0.950 1.27471866 -0.07559595 0.4747187 -1.0255960 1 -#> 4 1 -1.750 -0.975 0.39775368 -0.33144802 -1.3522463 -1.3064480 2 -#> 5 1 -1.800 -1.300 1.28873901 1.16104216 -0.5112610 -0.1389578 2 -#> 6 1 -0.900 -0.350 0.05237432 0.77241297 -0.8476257 0.4224130 2 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 7 80 2.5 10.0 60 20.0 10 1 1 -0.775 -1.800 0.34553136 -0.8375727 -0.4294686 -2.6375727 +#> 2 1 19 20 2.5 5.0 60 2.5 0 1 1 -0.275 -0.775 -1.32361481 0.3195766 -1.5986148 -0.4554234 +#> 3 1 30 20 10.0 5.0 80 5.0 10 1 1 -0.800 -0.950 0.08515524 -0.6090259 -0.7148448 -1.5590259 +#> 4 1 32 40 20.0 2.5 80 2.5 0 1 1 -1.750 -0.975 -0.18021132 2.3073397 -1.9302113 1.3323397 +#> 5 1 39 40 20.0 0.0 80 10.0 10 1 1 -1.800 -1.300 -0.55591900 3.4630292 -2.3559190 2.1630292 +#> 6 1 48 60 5.0 2.5 20 5.0 10 1 1 -0.900 -0.350 -0.29734711 3.0420404 -1.1973471 2.6920404 +#> CHOICE +#> 1 1 +#> 2 2 +#> 3 1 +#> 4 2 +#> 5 2 +#> 6 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: -#> bpreis blade bwarte -#> -520 -925 320 +#> bpreis blade bwarte +#> 440.0 -1087.5 447.5 #> initial value 998.131940 -#> iter 2 value 989.267873 -#> iter 3 value 979.462597 -#> iter 4 value 979.399625 -#> iter 5 value 974.067680 -#> iter 6 value 974.065735 -#> iter 6 value 974.065733 -#> iter 6 value 974.065733 -#> final value 974.065733 +#> iter 2 value 995.094499 +#> iter 3 value 974.488144 +#> iter 4 value 974.227531 +#> iter 5 value 971.482008 +#> iter 6 value 971.477251 +#> iter 6 value 971.477249 +#> iter 6 value 971.477249 +#> final value 971.477249 #> converged #> #> #> ================ ==== === ===== ==== ===== ===== ===== ==== #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== -#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.05 0.00 -0.05 -0.04 0.00 0.00 -#> est_bwarte 3 2 0.01 0.00 0.01 0.01 0.00 0.00 -#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> est_bpreis 1 2 -0.01 0.00 -0.01 0.00 0.00 0.00 +#> est_blade 2 2 -0.04 0.00 -0.04 -0.04 0.00 0.00 +#> est_bwarte 3 2 0.03 0.00 0.03 0.03 0.00 0.00 +#> rob_pval0_bpreis 4 2 0.01 0.01 0.00 0.02 0.02 0.01 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.34 0.02 0.33 0.36 0.03 0.01 +#> rob_pval0_bwarte 6 2 0.01 0.00 0.01 0.01 0.00 0.00 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> -#> FALSE -#> 100 +#> TRUE +#> 100 #> Utility function used in simulation, ie the true utility: #> #> $u1 @@ -298,20 +297,20 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 12 60 2.5 0.0 20 20.0 10 1 -#> 2 1 16 20 10.0 5.0 40 5.0 0 1 -#> 3 1 17 20 20.0 0.0 80 10.0 10 1 -#> 4 1 25 60 5.0 10.0 20 20.0 5 1 -#> 5 1 29 20 5.0 10.0 80 5.0 0 1 -#> 6 1 32 40 10.0 2.5 80 2.5 5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.400 0.5000790 -1.2708067 -0.2749210 -2.6708067 1 -#> 2 1 -0.800 -0.750 -1.9947176 -0.6174753 -2.7947176 -1.3674753 2 -#> 3 1 -1.600 -1.300 0.6003003 1.1010281 -0.9996997 -0.1989719 2 -#> 4 1 -0.750 -1.500 -1.2502306 2.4331480 -2.0002306 0.9331480 2 -#> 5 1 -0.350 -1.150 0.1058614 1.8360816 -0.2441386 0.6860816 2 -#> 6 1 -1.050 -0.875 1.8917336 0.7028783 0.8417336 -0.1721217 1 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 12 60 2.5 0.0 20 20.0 10 1 1 -0.775 -1.400 0.63130736 -1.4347994 -0.1436926 -2.8347994 +#> 2 1 16 20 10.0 5.0 40 5.0 0 1 1 -0.800 -0.750 5.09739937 0.4118885 4.2973994 -0.3381115 +#> 3 1 17 20 20.0 0.0 80 10.0 10 1 1 -1.600 -1.300 0.22397799 0.4666321 -1.3760220 -0.8333679 +#> 4 1 25 60 5.0 10.0 20 20.0 5 1 1 -0.750 -1.500 -0.05146482 2.2007592 -0.8014648 0.7007592 +#> 5 1 29 20 5.0 10.0 80 5.0 0 1 1 -0.350 -1.150 1.57620781 4.9154679 1.2262078 3.7654679 +#> 6 1 32 40 10.0 2.5 80 2.5 5 1 1 -1.050 -0.875 -0.47930823 0.7058788 -1.5293082 -0.1691212 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 2 +#> 4 2 +#> 5 2 +#> 6 2 #> #> #> This is Run number 1 @@ -326,36 +325,37 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 12 60 2.5 0.0 20 20.0 10 1 -#> 2 1 16 20 10.0 5.0 40 5.0 0 1 -#> 3 1 17 20 20.0 0.0 80 10.0 10 1 -#> 4 1 25 60 5.0 10.0 20 20.0 5 1 -#> 5 1 29 20 5.0 10.0 80 5.0 0 1 -#> 6 1 32 40 10.0 2.5 80 2.5 5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.400 2.6464470 1.8930848 1.8714470 0.4930848 1 -#> 2 1 -0.800 -0.750 0.6943881 -0.0951414 -0.1056119 -0.8451414 1 -#> 3 1 -1.600 -1.300 3.0441699 2.6667389 1.4441699 1.3667389 1 -#> 4 1 -0.750 -1.500 1.1984493 1.9151346 0.4484493 0.4151346 1 -#> 5 1 -0.350 -1.150 3.5252196 -0.8557313 3.1752196 -2.0057313 1 -#> 6 1 -1.050 -0.875 0.5099513 -0.4707311 -0.5400487 -1.3457311 1 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 12 60 2.5 0.0 20 20.0 10 1 1 -0.775 -1.400 0.3494617 0.1551114 -0.42553827 -1.24488857 +#> 2 1 16 20 10.0 5.0 40 5.0 0 1 1 -0.800 -0.750 1.5845207 0.5556039 0.78452066 -0.19439613 +#> 3 1 17 20 20.0 0.0 80 10.0 10 1 1 -1.600 -1.300 4.1993459 -0.1612424 2.59934589 -1.46124241 +#> 4 1 25 60 5.0 10.0 20 20.0 5 1 1 -0.750 -1.500 0.6527215 1.3949219 -0.09727852 -0.10507806 +#> 5 1 29 20 5.0 10.0 80 5.0 0 1 1 -0.350 -1.150 2.6927356 -1.3232777 2.34273564 -2.47327770 +#> 6 1 32 40 10.0 2.5 80 2.5 5 1 1 -1.050 -0.875 0.3758168 0.8556930 -0.67418318 -0.01930696 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 1 +#> 5 1 +#> 6 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -1440.0 -1057.5 510.0 +#> -2340.0 -857.5 510.0 #> initial value 998.131940 -#> iter 2 value 992.072549 -#> iter 3 value 964.484472 -#> iter 4 value 964.438157 -#> iter 5 value 960.231915 -#> iter 6 value 960.220989 -#> iter 6 value 960.220975 -#> iter 6 value 960.220975 -#> final value 960.220975 +#> iter 2 value 989.566757 +#> iter 3 value 968.906950 +#> iter 4 value 968.775516 +#> iter 5 value 959.377427 +#> iter 6 value 959.364632 +#> iter 7 value 959.364588 +#> iter 7 value 959.364588 +#> iter 7 value 959.364588 +#> final value 959.364588 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -369,37 +369,37 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 12 60 2.5 0.0 20 20.0 10 1 -#> 2 1 16 20 10.0 5.0 40 5.0 0 1 -#> 3 1 17 20 20.0 0.0 80 10.0 10 1 -#> 4 1 25 60 5.0 10.0 20 20.0 5 1 -#> 5 1 29 20 5.0 10.0 80 5.0 0 1 -#> 6 1 32 40 10.0 2.5 80 2.5 5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.400 -0.8673571 0.5735753 -1.6423571 -0.8264247 2 -#> 2 1 -0.800 -0.750 0.1338568 2.1243864 -0.6661432 1.3743864 2 -#> 3 1 -1.600 -1.300 1.3074577 -0.1769248 -0.2925423 -1.4769248 1 -#> 4 1 -0.750 -1.500 1.7452195 -0.7334989 0.9952195 -2.2334989 1 -#> 5 1 -0.350 -1.150 3.2417667 0.8099365 2.8917667 -0.3400635 1 -#> 6 1 -1.050 -0.875 -0.8125169 -0.6517018 -1.8625169 -1.5267018 2 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 +#> 1 1 12 60 2.5 0.0 20 20.0 10 1 1 -0.775 -1.400 -0.5067469 -4.908678e-05 -1.2817469 +#> 2 1 16 20 10.0 5.0 40 5.0 0 1 1 -0.800 -0.750 2.1209149 5.835693e-01 1.3209149 +#> 3 1 17 20 20.0 0.0 80 10.0 10 1 1 -1.600 -1.300 -0.3310010 7.106139e-01 -1.9310010 +#> 4 1 25 60 5.0 10.0 20 20.0 5 1 1 -0.750 -1.500 1.0469501 3.053872e-01 0.2969501 +#> 5 1 29 20 5.0 10.0 80 5.0 0 1 1 -0.350 -1.150 1.2182730 -6.215119e-01 0.8682730 +#> 6 1 32 40 10.0 2.5 80 2.5 5 1 1 -1.050 -0.875 -0.3318808 5.251218e+00 -1.3818808 +#> U_2 CHOICE +#> 1 -1.4000491 1 +#> 2 -0.1664307 1 +#> 3 -0.5893861 2 +#> 4 -1.1946128 1 +#> 5 -1.7715119 1 +#> 6 4.3762180 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -640.0 -1295.0 362.5 +#> -2120.0 -842.5 582.5 #> initial value 998.131940 -#> iter 2 value 981.273463 -#> iter 3 value 964.055548 -#> iter 4 value 963.472083 -#> iter 5 value 957.462611 -#> iter 6 value 957.449595 -#> iter 7 value 957.449577 -#> iter 7 value 957.449577 -#> iter 7 value 957.449577 -#> final value 957.449577 +#> iter 2 value 990.498814 +#> iter 3 value 970.036278 +#> iter 4 value 970.031934 +#> iter 5 value 961.943463 +#> iter 6 value 961.698866 +#> iter 7 value 961.698562 +#> iter 7 value 961.698561 +#> iter 7 value 961.698561 +#> final value 961.698561 #> converged #> #> @@ -407,15 +407,15 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.05 0.00 -0.06 -0.05 0.01 0.00 -#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.01 0.01 +#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00 +#> est_bwarte 3 2 0.02 0.01 0.01 0.02 0.01 0.00 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.53 0.52 0.16 0.90 0.74 0.37 +#> rob_pval0_bwarte 6 2 0.16 0.19 0.03 0.30 0.27 0.13 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> -#> FALSE -#> 100 +#> FALSE TRUE +#> 50 50 #> Utility function used in simulation, ie the true utility: #> #> $u1 @@ -452,20 +452,20 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 -#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 -#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 -#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 -#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 -#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -0.350 1.018356215 -0.622267218 -0.13164379 -0.9722672 1 -#> 2 1 -0.675 -1.500 2.065375543 0.448415040 1.39037554 -1.0515850 1 -#> 3 1 -0.925 -1.600 0.068572712 0.001884789 -0.85642729 -1.5981152 1 -#> 4 1 -0.875 -0.850 4.451064209 -0.131594375 3.57606421 -0.9815944 1 -#> 5 1 -0.550 -0.900 0.001325549 1.769899979 -0.54867445 0.8699000 2 -#> 6 1 -1.550 -0.725 1.585052229 -0.559602808 0.03505223 -1.2846028 1 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 +#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 1 -1.150 -0.350 1.88045081 0.33059180 0.7304508 +#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 1 -0.675 -1.500 -0.08733163 -0.07195918 -0.7623316 +#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 1 -0.925 -1.600 -0.31269859 3.95512677 -1.2376986 +#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 1 -0.875 -0.850 0.20206751 -0.87018279 -0.6729325 +#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 1 -0.550 -0.900 -0.25607132 -1.21928402 -0.8060713 +#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 1 -1.550 -0.725 1.39833272 -0.08165078 -0.1516673 +#> U_2 CHOICE +#> 1 -0.0194082 1 +#> 2 -1.5719592 1 +#> 3 2.3551268 2 +#> 4 -1.7201828 1 +#> 5 -2.1192840 1 +#> 6 -0.8066508 1 #> #> #> This is Run number 1 @@ -480,36 +480,37 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 -#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 -#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 -#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 -#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 -#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -0.350 -0.08786308 -0.5863325 -1.23786308 -0.9363325 2 -#> 2 1 -0.675 -1.500 0.06248520 1.0111311 -0.61251480 -0.4888689 2 -#> 3 1 -0.925 -1.600 0.95443352 -0.3946771 0.02943352 -1.9946771 1 -#> 4 1 -0.875 -0.850 -0.76545318 1.6682085 -1.64045318 0.8182085 2 -#> 5 1 -0.550 -0.900 1.13173817 -0.3986287 0.58173817 -1.2986287 1 -#> 6 1 -1.550 -0.725 3.42387572 1.2824413 1.87387572 0.5574413 1 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 +#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 1 -1.150 -0.350 -0.0940785 -0.8728874 -1.24407850 +#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 1 -0.675 -1.500 -0.6796651 -1.1297414 -1.35466507 +#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 1 -0.925 -1.600 1.7899847 0.6372528 0.86498471 +#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 1 -0.875 -0.850 0.9429192 0.7744473 0.06791921 +#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 1 -0.550 -0.900 0.1003092 2.5583115 -0.44969083 +#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 1 -1.550 -0.725 -0.3851894 0.9776369 -1.93518939 +#> U_2 CHOICE +#> 1 -1.22288745 2 +#> 2 -2.62974141 1 +#> 3 -0.96274717 1 +#> 4 -0.07555271 1 +#> 5 1.65831145 2 +#> 6 0.25263691 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -960.0 -1017.5 245.0 +#> -2300.0 -967.5 417.5 #> initial value 998.131940 -#> iter 2 value 994.181427 -#> iter 3 value 972.722564 -#> iter 4 value 971.807620 -#> iter 5 value 969.894601 -#> iter 6 value 969.892112 -#> iter 6 value 969.892111 -#> iter 6 value 969.892111 -#> final value 969.892111 +#> iter 2 value 989.783897 +#> iter 3 value 967.441065 +#> iter 4 value 966.807343 +#> iter 5 value 957.535574 +#> iter 6 value 957.518843 +#> iter 7 value 957.518805 +#> iter 7 value 957.518805 +#> iter 7 value 957.518805 +#> final value 957.518805 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -523,37 +524,36 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 -#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 -#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 -#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 -#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 -#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -0.350 0.6747222 0.25151850 -0.4752778 -0.0984815 2 -#> 2 1 -0.675 -1.500 1.8163839 -0.09688587 1.1413839 -1.5968859 1 -#> 3 1 -0.925 -1.600 -0.8974158 3.69592175 -1.8224158 2.0959217 2 -#> 4 1 -0.875 -0.850 -0.5523539 3.18018561 -1.4273539 2.3301856 2 -#> 5 1 -0.550 -0.900 -1.0057814 0.20974090 -1.5557814 -0.6902591 2 -#> 6 1 -1.550 -0.725 0.9409876 0.52310305 -0.6090124 -0.2018970 2 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 +#> 1 1 3 80 5.0 0.0 20 5.0 10.0 1 1 -1.150 -0.350 0.39615659 0.74248610 -0.7538434 +#> 2 1 5 60 2.5 5.0 20 20.0 5.0 1 1 -0.675 -1.500 -0.17578286 0.04260786 -0.8507829 +#> 3 1 10 80 2.5 2.5 20 20.0 0.0 1 1 -0.925 -1.600 0.44905385 0.79514566 -0.4759461 +#> 4 1 34 80 2.5 5.0 60 5.0 5.0 1 1 -0.875 -0.850 0.27140789 4.63953174 -0.6035921 +#> 5 1 37 40 5.0 10.0 60 5.0 2.5 1 1 -0.550 -0.900 -0.03370054 0.84622952 -0.5837005 +#> 6 1 39 20 20.0 2.5 60 2.5 2.5 1 1 -1.550 -0.725 -0.47233862 1.05805421 -2.0223386 +#> U_2 CHOICE +#> 1 0.39248610 2 +#> 2 -1.45739214 1 +#> 3 -0.80485434 1 +#> 4 3.78953174 2 +#> 5 -0.05377048 2 +#> 6 0.33305421 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -2920.0 -597.5 467.5 +#> -1600.0 -857.5 402.5 #> initial value 998.131940 -#> iter 2 value 988.559582 -#> iter 3 value 984.350429 -#> iter 4 value 984.238420 -#> iter 5 value 967.198497 -#> iter 6 value 967.168244 -#> iter 7 value 967.168103 -#> iter 7 value 967.168103 -#> iter 7 value 967.168103 -#> final value 967.168103 +#> iter 2 value 993.094191 +#> iter 3 value 975.977284 +#> iter 4 value 975.860148 +#> iter 5 value 971.032264 +#> iter 6 value 971.027871 +#> iter 6 value 971.027867 +#> iter 6 value 971.027867 +#> final value 971.027867 #> converged #> #> @@ -561,11 +561,11 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.04 0.01 -0.05 -0.04 0.01 0.00 -#> est_bwarte 3 2 0.00 0.01 -0.01 0.01 0.01 0.01 +#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.01 +#> est_bwarte 3 2 0.00 0.01 0.00 0.01 0.01 0.00 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.52 0.11 0.44 0.59 0.15 0.07 +#> rob_pval0_bwarte 6 2 0.68 0.20 0.54 0.82 0.28 0.14 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> #> FALSE @@ -606,20 +606,20 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 9 80 5.0 0 60 20.0 10.0 1 -#> 2 1 12 60 2.5 10 40 20.0 0.0 1 -#> 3 1 13 20 20.0 10 80 2.5 0.0 1 -#> 4 1 70 80 5.0 10 20 20.0 2.5 1 -#> 5 1 71 60 20.0 10 80 10.0 0.0 1 -#> 6 1 73 60 10.0 0 40 20.0 10.0 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -1.800 0.458928485 2.0701754 -0.6910715 0.27017541 2 -#> 2 1 -0.575 -1.800 0.253655240 -0.6611997 -0.3213448 -2.46119970 1 -#> 3 1 -1.400 -0.975 -0.102031250 0.2036489 -1.5020312 -0.77135113 2 -#> 4 1 -0.950 -1.550 -0.559421410 0.8864091 -1.5094214 -0.66359093 2 -#> 5 1 -1.800 -1.500 5.674505169 1.5661040 3.8745052 0.06610405 1 -#> 6 1 -1.300 -1.600 -0.002309409 1.5711319 -1.3023094 -0.02886812 2 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 9 80 5.0 0 60 20.0 10.0 1 1 -1.150 -1.800 0.8053210 -0.7760447 -0.34467900 -2.5760447 +#> 2 1 12 60 2.5 10 40 20.0 0.0 1 1 -0.575 -1.800 2.4581484 -0.5422855 1.88314842 -2.3422855 +#> 3 1 13 20 20.0 10 80 2.5 0.0 1 1 -1.400 -0.975 0.4806134 -1.7030310 -0.91938664 -2.6780310 +#> 4 1 70 80 5.0 10 20 20.0 2.5 1 1 -0.950 -1.550 -0.8558539 1.9784273 -1.80585392 0.4284273 +#> 5 1 71 60 20.0 10 80 10.0 0.0 1 1 -1.800 -1.500 1.4200481 0.8856199 -0.37995187 -0.6143801 +#> 6 1 73 60 10.0 0 40 20.0 10.0 1 1 -1.300 -1.600 1.3592506 -0.1823192 0.05925063 -1.7823192 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 2 +#> 5 1 +#> 6 1 #> #> #> This is Run number 1 @@ -634,37 +634,37 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 9 80 5.0 0 60 20.0 10.0 1 -#> 2 1 12 60 2.5 10 40 20.0 0.0 1 -#> 3 1 13 20 20.0 10 80 2.5 0.0 1 -#> 4 1 70 80 5.0 10 20 20.0 2.5 1 -#> 5 1 71 60 20.0 10 80 10.0 0.0 1 -#> 6 1 73 60 10.0 0 40 20.0 10.0 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -1.800 -0.01463130 -0.22509832 -1.164631 -2.0250983 1 -#> 2 1 -0.575 -1.800 2.36022782 -0.36376052 1.785228 -2.1637605 1 -#> 3 1 -1.400 -0.975 1.59659499 -0.13121663 0.196595 -1.1062166 1 -#> 4 1 -0.950 -1.550 -1.33824416 1.40724463 -2.288244 -0.1427554 2 -#> 5 1 -1.800 -1.500 0.49308644 1.66211472 -1.306914 0.1621147 2 -#> 6 1 -1.300 -1.600 0.04407743 0.04227857 -1.255923 -1.5577214 1 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 9 80 5.0 0 60 20.0 10.0 1 1 -1.150 -1.800 1.1057596 0.8176933 -0.04424039 -0.9823067 +#> 2 1 12 60 2.5 10 40 20.0 0.0 1 1 -0.575 -1.800 1.4664332 0.2855647 0.89143319 -1.5144353 +#> 3 1 13 20 20.0 10 80 2.5 0.0 1 1 -1.400 -0.975 -0.2567456 2.0307365 -1.65674558 1.0557365 +#> 4 1 70 80 5.0 10 20 20.0 2.5 1 1 -0.950 -1.550 1.7936733 0.2273817 0.84367334 -1.3226183 +#> 5 1 71 60 20.0 10 80 10.0 0.0 1 1 -1.800 -1.500 -0.5080847 1.8371868 -2.30808468 0.3371868 +#> 6 1 73 60 10.0 0 40 20.0 10.0 1 1 -1.300 -1.600 0.2315646 0.5250324 -1.06843538 -1.0749676 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 2 +#> 4 1 +#> 5 2 +#> 6 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -2640.0 -3282.5 1152.5 +#> -2720.0 -3230.0 1477.5 #> initial value 998.131940 -#> iter 2 value 963.302525 -#> iter 3 value 925.984100 -#> iter 4 value 925.959587 -#> iter 5 value 905.721674 -#> iter 6 value 905.488066 -#> iter 7 value 905.484178 -#> iter 7 value 905.484176 -#> iter 7 value 905.484176 -#> final value 905.484176 +#> iter 2 value 961.903346 +#> iter 3 value 923.013503 +#> iter 4 value 921.553693 +#> iter 5 value 899.826852 +#> iter 6 value 899.416093 +#> iter 7 value 899.408733 +#> iter 7 value 899.408728 +#> iter 7 value 899.408728 +#> final value 899.408728 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -678,37 +678,37 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block -#> 1 1 9 80 5.0 0 60 20.0 10.0 1 -#> 2 1 12 60 2.5 10 40 20.0 0.0 1 -#> 3 1 13 20 20.0 10 80 2.5 0.0 1 -#> 4 1 70 80 5.0 10 20 20.0 2.5 1 -#> 5 1 71 60 20.0 10 80 10.0 0.0 1 -#> 6 1 73 60 10.0 0 40 20.0 10.0 1 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -1.150 -1.800 3.0041977 0.38322958 1.8541977 -1.4167704 1 -#> 2 1 -0.575 -1.800 3.0101002 0.72197923 2.4351002 -1.0780208 1 -#> 3 1 -1.400 -0.975 1.1260977 0.06998784 -0.2739023 -0.9050122 1 -#> 4 1 -0.950 -1.550 1.9511131 0.39768983 1.0011131 -1.1523102 1 -#> 5 1 -1.800 -1.500 -0.4686622 -0.83175553 -2.2686622 -2.3317555 1 -#> 6 1 -1.300 -1.600 1.5102954 0.98561984 0.2102954 -0.6143802 1 +#> ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 9 80 5.0 0 60 20.0 10.0 1 1 -1.150 -1.800 -0.55606335 0.4418297 -1.7060633 -1.3581703 +#> 2 1 12 60 2.5 10 40 20.0 0.0 1 1 -0.575 -1.800 -0.70525965 0.3030154 -1.2802596 -1.4969846 +#> 3 1 13 20 20.0 10 80 2.5 0.0 1 1 -1.400 -0.975 0.76358526 1.1547805 -0.6364147 0.1797805 +#> 4 1 70 80 5.0 10 20 20.0 2.5 1 1 -0.950 -1.550 -0.50057341 1.6569802 -1.4505734 0.1069802 +#> 5 1 71 60 20.0 10 80 10.0 0.0 1 1 -1.800 -1.500 0.95196390 4.6640005 -0.8480361 3.1640005 +#> 6 1 73 60 10.0 0 40 20.0 10.0 1 1 -1.300 -1.600 -0.07807331 0.9519585 -1.3780733 -0.6480415 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 2 +#> 4 2 +#> 5 2 +#> 6 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -2840.0 -2792.5 980.0 +#> -1480.0 -3742.5 752.5 #> initial value 998.131940 -#> iter 2 value 970.451816 -#> iter 3 value 943.596118 -#> iter 4 value 943.593445 -#> iter 5 value 937.085850 -#> iter 6 value 927.191585 -#> iter 7 value 927.129298 -#> iter 8 value 927.128981 -#> iter 8 value 927.128980 -#> final value 927.128980 +#> iter 2 value 931.326512 +#> iter 3 value 904.389362 +#> iter 4 value 902.747564 +#> iter 5 value 895.585146 +#> iter 6 value 895.212841 +#> iter 7 value 895.208094 +#> iter 7 value 895.208091 +#> iter 7 value 895.208091 +#> final value 895.208091 #> converged #> #> @@ -716,11 +716,11 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.04 0.00 -0.05 -0.04 0.01 0.00 -#> est_bwarte 3 2 0.01 0.00 0.01 0.02 0.00 0.00 +#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.01 +#> est_bwarte 3 2 0.01 0.03 0.00 0.03 0.04 0.02 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.05 0.06 0.01 0.09 0.08 0.04 +#> rob_pval0_bwarte 6 2 0.28 0.40 0.00 0.57 0.57 0.28 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> #> FALSE TRUE @@ -760,20 +760,20 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 -#> 1 1 1 1 80 20 2.5 20.0 10 5 -#> 2 1 2 1 60 40 5.0 10.0 5 10 -#> 3 1 3 1 60 20 20.0 20.0 0 10 -#> 4 1 4 1 20 80 20.0 2.5 0 10 -#> 5 1 5 1 40 80 10.0 5.0 10 5 -#> 6 1 6 1 60 80 5.0 2.5 0 0 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.500 0.1987193 -1.0900058 -0.5762807 -2.590005753 1 -#> 2 1 -0.850 -0.900 0.2937177 1.3988380 -0.5562823 0.498837973 2 -#> 3 1 -2.000 -1.400 1.2142542 0.5244772 -0.7857458 -0.875522760 1 -#> 4 1 -1.600 -0.775 2.2587676 0.2695545 0.6587676 -0.505445461 1 -#> 5 1 -0.900 -1.050 0.7958478 1.0485339 -0.1041522 -0.001466141 2 -#> 6 1 -0.950 -0.975 0.3019734 -0.4699530 -0.6480266 -1.444953045 1 +#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 1 1 80 20 2.5 20.0 10 5 1 -0.775 -1.500 0.12234341 0.6503776 -0.6526566 -0.84962241 +#> 2 1 2 1 60 40 5.0 10.0 5 10 1 -0.850 -0.900 -0.43360819 0.6615210 -1.2836082 -0.23847900 +#> 3 1 3 1 60 20 20.0 20.0 0 10 1 -2.000 -1.400 -0.31286639 5.7827787 -2.3128664 4.38277870 +#> 4 1 4 1 20 80 20.0 2.5 0 10 1 -1.600 -0.775 -0.15949911 0.6857678 -1.7594991 -0.08923219 +#> 5 1 5 1 40 80 10.0 5.0 10 5 1 -0.900 -1.050 -0.05237788 1.5859039 -0.9523779 0.53590389 +#> 6 1 6 1 60 80 5.0 2.5 0 0 1 -0.950 -0.975 2.34036634 0.2393918 1.3903663 -0.73560816 +#> CHOICE +#> 1 1 +#> 2 2 +#> 3 2 +#> 4 2 +#> 5 2 +#> 6 1 #> #> #> This is Run number 1 @@ -788,36 +788,36 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 -#> 1 1 1 1 80 20 2.5 20.0 10 5 -#> 2 1 2 1 60 40 5.0 10.0 5 10 -#> 3 1 3 1 60 20 20.0 20.0 0 10 -#> 4 1 4 1 20 80 20.0 2.5 0 10 -#> 5 1 5 1 40 80 10.0 5.0 10 5 -#> 6 1 6 1 60 80 5.0 2.5 0 0 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.500 -0.3472514 2.3168155 -1.1222514 0.8168155 2 -#> 2 1 -0.850 -0.900 0.2943507 -1.7082525 -0.5556493 -2.6082525 1 -#> 3 1 -2.000 -1.400 0.4742717 1.1619537 -1.5257283 -0.2380463 2 -#> 4 1 -1.600 -0.775 0.5628095 2.7090502 -1.0371905 1.9340502 2 -#> 5 1 -0.900 -1.050 -0.2128470 -1.3149155 -1.1128470 -2.3649155 1 -#> 6 1 -0.950 -0.975 1.6192730 0.3695527 0.6692730 -0.6054473 1 +#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 group V_1 V_2 e_1 e_2 U_1 +#> 1 1 1 1 80 20 2.5 20.0 10 5 1 -0.775 -1.500 1.74395858 1.6507121 0.968958575 +#> 2 1 2 1 60 40 5.0 10.0 5 10 1 -0.850 -0.900 1.10763894 0.9337414 0.257638936 +#> 3 1 3 1 60 20 20.0 20.0 0 10 1 -2.000 -1.400 -1.23519031 -0.7089281 -3.235190315 +#> 4 1 4 1 20 80 20.0 2.5 0 10 1 -1.600 -0.775 -0.06854059 2.1896932 -1.668540589 +#> 5 1 5 1 40 80 10.0 5.0 10 5 1 -0.900 -1.050 0.90927543 0.3884170 0.009275432 +#> 6 1 6 1 60 80 5.0 2.5 0 0 1 -0.950 -0.975 0.57272851 0.4992305 -0.377271490 +#> U_2 CHOICE +#> 1 0.15071215 1 +#> 2 0.03374141 1 +#> 3 -2.10892809 2 +#> 4 1.41469320 2 +#> 5 -0.66158301 1 +#> 6 -0.47576952 1 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -620.0 -877.5 407.5 +#> -880 -830 405 #> initial value 998.131940 -#> iter 2 value 991.196029 -#> iter 3 value 975.595269 -#> iter 4 value 975.571052 -#> iter 5 value 971.582698 -#> iter 6 value 971.577726 -#> iter 6 value 971.577720 -#> iter 6 value 971.577720 -#> final value 971.577720 +#> iter 2 value 994.862696 +#> iter 3 value 973.696602 +#> iter 4 value 973.644209 +#> iter 5 value 971.118222 +#> iter 6 value 971.113908 +#> iter 6 value 971.113906 +#> iter 6 value 971.113906 +#> final value 971.113906 #> converged #> This is Run number 2 #> does sou_gis exist: FALSE @@ -831,36 +831,36 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> data has been made #> #> First few observations -#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 -#> 1 1 1 1 80 20 2.5 20.0 10 5 -#> 2 1 2 1 60 40 5.0 10.0 5 10 -#> 3 1 3 1 60 20 20.0 20.0 0 10 -#> 4 1 4 1 20 80 20.0 2.5 0 10 -#> 5 1 5 1 40 80 10.0 5.0 10 5 -#> 6 1 6 1 60 80 5.0 2.5 0 0 -#> group V_1 V_2 e_1 e_2 U_1 U_2 CHOICE -#> 1 1 -0.775 -1.500 0.5287428 1.2994989 -0.2462572 -0.2005011 2 -#> 2 1 -0.850 -0.900 3.2064378 0.4735037 2.3564378 -0.4264963 1 -#> 3 1 -2.000 -1.400 1.2595242 0.1146570 -0.7404758 -1.2853430 1 -#> 4 1 -1.600 -0.775 4.2748306 -0.7146858 2.6748306 -1.4896858 1 -#> 5 1 -0.900 -1.050 0.1088246 2.2911218 -0.7911754 1.2411218 2 -#> 6 1 -0.950 -0.975 1.1654639 1.3627596 0.2154639 0.3877596 2 +#> ID Choice_situation Block alt1_x1 alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 group V_1 V_2 e_1 e_2 U_1 U_2 +#> 1 1 1 1 80 20 2.5 20.0 10 5 1 -0.775 -1.500 -1.1552146 1.6918663 -1.930215 0.1918663 +#> 2 1 2 1 60 40 5.0 10.0 5 10 1 -0.850 -0.900 3.5255143 2.5874719 2.675514 1.6874719 +#> 3 1 3 1 60 20 20.0 20.0 0 10 1 -2.000 -1.400 -0.1288440 3.2280170 -2.128844 1.8280170 +#> 4 1 4 1 20 80 20.0 2.5 0 10 1 -1.600 -0.775 -0.3072974 -0.3710956 -1.907297 -1.1460956 +#> 5 1 5 1 40 80 10.0 5.0 10 5 1 -0.900 -1.050 -0.6042191 -0.1952303 -1.504219 -1.2452303 +#> 6 1 6 1 60 80 5.0 2.5 0 0 1 -0.950 -0.975 -0.6233011 -0.2803958 -1.573301 -1.2553958 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 2 +#> 4 2 +#> 5 2 +#> 6 2 #> #> #> This is the utility functions #> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 #> Initial gradient value: #> bpreis blade bwarte -#> -580.0 -1077.5 495.0 +#> -1060.0 -832.5 460.0 #> initial value 998.131940 -#> iter 2 value 984.134259 -#> iter 3 value 967.898748 -#> iter 4 value 967.884812 -#> iter 5 value 960.128712 -#> iter 6 value 960.126933 -#> iter 6 value 960.126928 -#> iter 6 value 960.126928 -#> final value 960.126928 +#> iter 2 value 994.307556 +#> iter 3 value 972.255010 +#> iter 4 value 972.242499 +#> iter 5 value 968.104609 +#> iter 6 value 968.103010 +#> iter 6 value 968.103008 +#> iter 6 value 968.103008 +#> final value 968.103008 #> converged #> #> @@ -868,29 +868,29 @@ sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, #> \ vars n mean sd min max range se #> ================ ==== === ===== ==== ===== ===== ===== ==== #> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 -#> est_blade 2 2 -0.05 0.01 -0.06 -0.05 0.01 0.00 -#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.01 0.00 +#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00 +#> est_bwarte 3 2 0.02 0.00 0.01 0.02 0.00 0.00 #> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 #> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 -#> rob_pval0_bwarte 6 2 0.11 0.04 0.08 0.13 0.05 0.03 +#> rob_pval0_bwarte 6 2 0.12 0.08 0.06 0.18 0.12 0.06 #> ================ ==== === ===== ==== ===== ===== ===== ==== #> #> FALSE #> 100 -#> 32.978 sec elapsed +#> 9.804 sec elapsed #> $tic -#> elapsed -#> 0.8 +#> elapsed +#> 10314.36 #> #> $toc -#> elapsed -#> 33.778 +#> elapsed +#> 10324.16 #> #> $msg #> logical(0) #> #> $callback_msg -#> [1] "32.978 sec elapsed" +#> [1] "9.804 sec elapsed" ``` <img src="man/figures/README-example-1.png" width="100%" /><img src="man/figures/README-example-2.png" width="100%" /><img src="man/figures/README-example-3.png" width="100%" /> diff --git a/man/figures/README-example-1.png b/man/figures/README-example-1.png index 9d2a3edfa30b18c1fc3ebad59646993121ad0037..f636af7374dc7f8c732b4fcdfdd9dd26b880ffee 100644 Binary files a/man/figures/README-example-1.png and b/man/figures/README-example-1.png differ diff --git a/man/figures/README-example-2.png b/man/figures/README-example-2.png index 02013fae37873a26c3aebfdbde76c0eb8e268387..fcd9b871286e73d3b069d55872696893f3c64dc3 100644 Binary files a/man/figures/README-example-2.png and b/man/figures/README-example-2.png differ diff --git a/man/figures/README-example-3.png b/man/figures/README-example-3.png index 86086b5a7abb632bc944569de38aee08f99ad634..5c8cdd7080b2322e1c8c200f7e05c649cea48a78 100644 Binary files a/man/figures/README-example-3.png and b/man/figures/README-example-3.png differ diff --git a/man/sim_all.Rd b/man/sim_all.Rd index fb98d8e2640c9e694c22da328431668f2119ed27..4b5e8930d8fb91c9e9ac84c63df2ad3879024589 100644 --- a/man/sim_all.Rd +++ b/man/sim_all.Rd @@ -2,7 +2,8 @@ % Please edit documentation in R/sim_all.R \name{sim_all} \alias{sim_all} -\title{Is a wrapper for sim_choice executing the simulation over all designs stored in a specific folder} +\title{Is a wrapper for sim_choice executing the simulation over all designs stored in a specific folder +update} \usage{ sim_all(nosim = 2, resps, destype = "ngene", designpath, u, bcoeff) } @@ -24,6 +25,7 @@ A list, with all information on the simulation. This list an be easily processed } \description{ Is a wrapper for sim_choice executing the simulation over all designs stored in a specific folder +update } \examples{ diff --git a/tests/manual-tests/SE_Drive.R b/tests/manual-tests/SE_Drive.R index 33c5a0791c435c62147f1cb49b5348e0d22376d9..e5d644deea9838a0f7cd0cb9aa96fa70df0a13cb 100644 --- a/tests/manual-tests/SE_Drive.R +++ b/tests/manual-tests/SE_Drive.R @@ -11,11 +11,6 @@ designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE") resps =120 # number of respondents nosim= 2 # number of simulations to run (about 500 is minimum) - - - - - # bpreis = -0.036 # blade = -0.034 # bwarte = -0.049 @@ -25,10 +20,11 @@ decisiongroups=c(0,0.7,1) # wrong parameters -# -bpreis = -0.01 -blade = -0.07 -bwarte = 0.02 +# pass beta coefficients as a list + bcoeff <- list( + bpreis = -0.01, + blade = -0.07, + bwarte = 0.02) manipulations = list(alt1.x2= expr(alt1.x2/10), alt1.x3= expr(alt1.x3/10), @@ -55,4 +51,4 @@ ul<-list( u1 = destype="ngene" sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype, - designpath = designpath, u=ul) + designpath = designpath, u=ul, bcoeff = bcoeff) diff --git a/tests/testthat/Rplots.pdf b/tests/testthat/Rplots.pdf index 9003f1bdf3d2ade490ac90fe7301a5db6f49d843..8809a1169cd18196e4da209f19e222171cef5a32 100644 Binary files a/tests/testthat/Rplots.pdf and b/tests/testthat/Rplots.pdf differ diff --git a/tests/testthat/test-sim_all.R b/tests/testthat/test-sim_all.R index 283ef565a904e164fc3f2ca40b657de0b77e45b5..e4e4a9d359c9a1b1bd5aa99da72967bf0da5b383 100644 --- a/tests/testthat/test-sim_all.R +++ b/tests/testthat/test-sim_all.R @@ -10,14 +10,6 @@ resps =40 # number of respondents nosim=2 # number of simulations to run (about 500 is minimum) #betacoefficients should not include "-" -bsq=0.00 -bredkite=-0.05 -bdistance=0.50 -bcost=-0.05 -bfarm2=0.25 -bfarm3=0.50 -bheight2=0.25 -bheight3=0.50 bcoeff <-list(bsq=0.00, bredkite=-0.05, @@ -39,40 +31,32 @@ ul<- list(u1= list( ) ) - - - - - -test_that(" u is not a list", { +test_that("u is not a list of lists", { expect_error(sim_all(nosim = nosim, resps=resps, destype = destype, - designpath = designpath, u=data.frame(u=" alp")), - "must be provided and must be a list containing ") + designpath = designpath, u=data.frame(u=" alp"), bcoeff = bcoeff), + "must be provided and must be a list containing at least one list") }) test_that("no value provided for utility", { expect_error(sim_all(nosim = nosim, resps=resps, destype = destype, - designpath = designpath), - "must be provided and must be a list containing ") + designpath = designpath, bcoeff = bcoeff), + "must be provided and must be a list containing at least one list") }) test_that("wrong designtype", { expect_error(sim_all(nosim = nosim, resps=resps, destype = "ng", - designpath = designpath, u=ul),"Invalid value for design. Please provide either 'ngene' or 'spdesign'.") + designpath = designpath, u=ul, bcoeff = bcoeff),"Invalid value for design. Please provide either 'ngene' or 'spdesign'.") }) test_that("folder does not exist", { expect_error(sim_all(nosim = nosim, resps=resps, destype = destype, - designpath = system.file("da/bullshit", package = "simulateDCE"), u=ul) + designpath = system.file("da/bullshit", package = "simulateDCE"), u=ul, bcoeff = bcoeff) , "The folder where your designs are stored does not exist.") }) - - - test_that("seed setting makes code reproducible", { set.seed(3333) bcoeff <-list(bsq=0.00, @@ -99,9 +83,6 @@ test_that("seed setting makes code reproducible", { expect_identical(result1[["summaryall"]], result2[["summaryall"]]) }) - - - test_that("No seed setting makes code results different", { result1 <- sim_all(nosim = nosim, resps = resps, destype = destype, designpath = designpath, u = ul, bcoeff = bcoeff) @@ -112,3 +93,66 @@ test_that("No seed setting makes code results different", { expect_failure(expect_identical(result1[["summaryall"]], result2[["summaryall"]])) }) + +########### Additional Tests ############## +test_that("bcoeff is provided", { + expect_error(sim_all(nosim = nosim, resps = resps, destype = destype, + designpath = designpath, u = ul)) +}) + +test_that("bcoeff contains valid values", { + expect_error(sim_all(nosim = nosim, resps = resps, destype = destype, + designpath = designpath, u = ul, bcoeff = list(bsq = "invalid"))) +}) + +test_that("bcoeff is a list", { + expect_error(sim_all(nosim = nosim, resps = resps, destype = destype, + designpath = designpath, u = ul, bcoeff = "not a list") + ) +}) + +test_that("B coefficients in the utility functions dont match those in the bcoeff list", { + expect_error(sim_all(nosim = nosim, resps=resps, destype = destype, + designpath = designpath, u = ul, bcoeff <- list(bWRONG = 0.00))) +}) + +test_that("Utility functions are valid", { + expect_no_error(eval(ul$u1$v1)) + expect_no_error(eval(ul$u1$v2)) +}) + +test_that("Design path must be a valid directory", { + # Test case: designpath is not a character string + expect_error(sim_all(nosim = nosim, resps = resps, destype = destype, designpath = 123, u = ul, bcoeff = bcoeff)) + + # Test case: designpath does not exist + expect_error(sim_all(nosim = nosim, resps = resps, destype = destype, designpath = '/nonexistent/path', u = ul, bcoeff = bcoeff)) + + # Test case: designpath is not a directory + expect_error(sim_all(nosim = nosim, resps = resps, destype = destype, designpath = 'path/to/a/file.txt', u = ul, bcoeff = bcoeff)) +}) + +test_that("Resps must be an integer", { + # Test case: resps is missing + expect_error(sim_all(nosim = nosim, destype = destype, designpath = designpath, u = ul, bcoeff = bcoeff)) + + # Test case: resps is not an integer + expect_error(sim_all(nosim = nosim, resps = "abc", destype = destype, designpath = designpath, u = ul, bcoeff = bcoeff)) + + # Test case: resps is a numeric but not an integer + expect_error(sim_all(nosim = nosim, resps = 1.5, destype = destype, designpath = designpath, u = ul, bcoeff = bcoeff)) + +}) + +test_that("Function exists in simulateDCE", { + expect_true("sim_all" %in% ls("package:simulateDCE")) +}) + +test_that("Simulation results are reasonable", { + + result1 <- sim_all(nosim = nosim, resps = resps, destype = destype, designpath = designpath, u = ul, bcoeff = bcoeff) + + expect_gt(result1$est_bsq, -1) + expect_lt(result1$est_bsq, 1) + +})