diff --git a/README.html b/README.html new file mode 100644 index 0000000000000000000000000000000000000000..9b54d17a1f1c523ee07572b9b240fc0fdaa1ff0e --- /dev/null +++ b/README.html @@ -0,0 +1,1767 @@ +<!DOCTYPE html> + +<html xmlns="http://www.w3.org/1999/xhtml"> + +<head> + +<meta charset="utf-8"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> +<meta name="generator" content="pandoc" /> +<meta name="viewport" content="width=device-width, initial-scale=1"> + +<style type="text/css"> +@font-face { +font-family: octicons-link; +src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff'); +} +body { +-webkit-text-size-adjust: 100%; +text-size-adjust: 100%; +color: #333; +font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; +font-size: 16px; +line-height: 1.6; +word-wrap: break-word; +} +a { +background-color: transparent; +} +a:active, +a:hover { +outline: 0; +} +strong { +font-weight: bold; +} +h1 { +font-size: 2em; +margin: 0.67em 0; +} +img { +border: 0; +} +hr { +box-sizing: content-box; +height: 0; +} +pre { +overflow: auto; +} +code, +kbd, +pre { +font-family: monospace, monospace; +font-size: 1em; +} +input { +color: inherit; +font: inherit; +margin: 0; +} +html input[disabled] { +cursor: default; +} +input { +line-height: normal; +} +input[type="checkbox"] { +box-sizing: border-box; +padding: 0; +} +table { +border-collapse: collapse; +border-spacing: 0; +} +td, +th { +padding: 0; +} +* { +box-sizing: border-box; +} +input { +font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; +} +a { +color: #4078c0; +text-decoration: none; +} +a:hover, +a:active { +text-decoration: underline; +} +hr { +height: 0; +margin: 15px 0; +overflow: hidden; +background: transparent; +border: 0; +border-bottom: 1px solid #ddd; +} +hr:before { +display: table; +content: ""; +} +hr:after { +display: table; +clear: both; +content: ""; +} +h1, +h2, +h3, +h4, +h5, +h6 { +margin-top: 15px; +margin-bottom: 15px; +line-height: 1.1; +} +h1 { +font-size: 30px; +} +h2 { +font-size: 21px; +} +h3 { +font-size: 16px; +} +h4 { +font-size: 14px; +} +h5 { +font-size: 12px; +} +h6 { +font-size: 11px; +} +blockquote { +margin: 0; +} +ul, +ol { +padding: 0; +margin-top: 0; +margin-bottom: 0; +} +ol ol, +ul ol { +list-style-type: lower-roman; +} +ul ul ol, +ul ol ol, +ol ul ol, +ol ol ol { +list-style-type: lower-alpha; +} +dd { +margin-left: 0; +} +code { +font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace; +font-size: 12px; +} +pre { +margin-top: 0; +margin-bottom: 0; +font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace; +} +.select::-ms-expand { +opacity: 0; +} +.octicon { +font: normal normal normal 16px/1 octicons-link; +display: inline-block; +text-decoration: none; +text-rendering: auto; +-webkit-font-smoothing: antialiased; +-moz-osx-font-smoothing: grayscale; +-webkit-user-select: none; +-moz-user-select: none; +-ms-user-select: none; +user-select: none; +} +.octicon-link:before { +content: '\f05c'; +} +.markdown-body:before { +display: table; +content: ""; +} +.markdown-body:after { +display: table; +clear: both; +content: ""; +} +.markdown-body>*:first-child { +margin-top: 0 !important; +} +.markdown-body>*:last-child { +margin-bottom: 0 !important; +} +a:not([href]) { +color: inherit; +text-decoration: none; +} +.anchor { +display: inline-block; +padding-right: 2px; +margin-left: -18px; +} +.anchor:focus { +outline: none; +} +h1, +h2, +h3, +h4, +h5, +h6 { +margin-top: 1em; +margin-bottom: 16px; +font-weight: bold; +line-height: 1.4; +} +h1 .octicon-link, +h2 .octicon-link, +h3 .octicon-link, +h4 .octicon-link, +h5 .octicon-link, +h6 .octicon-link { +color: #000; +vertical-align: middle; +visibility: hidden; +} +h1:hover .anchor, +h2:hover .anchor, +h3:hover .anchor, +h4:hover .anchor, +h5:hover .anchor, +h6:hover .anchor { +text-decoration: none; +} +h1:hover .anchor .octicon-link, +h2:hover .anchor .octicon-link, +h3:hover .anchor .octicon-link, +h4:hover .anchor .octicon-link, +h5:hover .anchor .octicon-link, +h6:hover .anchor .octicon-link { +visibility: visible; +} +h1 { +padding-bottom: 0.3em; +font-size: 2.25em; +line-height: 1.2; +border-bottom: 1px solid #eee; +} +h1 .anchor { +line-height: 1; +} +h2 { +padding-bottom: 0.3em; +font-size: 1.75em; +line-height: 1.225; +border-bottom: 1px solid #eee; +} +h2 .anchor { +line-height: 1; +} +h3 { +font-size: 1.5em; +line-height: 1.43; +} +h3 .anchor { +line-height: 1.2; +} +h4 { +font-size: 1.25em; +} +h4 .anchor { +line-height: 1.2; +} +h5 { +font-size: 1em; +} +h5 .anchor { +line-height: 1.1; +} +h6 { +font-size: 1em; +color: #777; +} +h6 .anchor { +line-height: 1.1; +} +p, +blockquote, +ul, +ol, +dl, +table, +pre { +margin-top: 0; +margin-bottom: 16px; +} +hr { +height: 4px; +padding: 0; +margin: 16px 0; +background-color: #e7e7e7; +border: 0 none; +} +ul, +ol { +padding-left: 2em; +} +ul ul, +ul ol, +ol ol, +ol ul { +margin-top: 0; +margin-bottom: 0; +} +li>p { +margin-top: 16px; +} +dl { +padding: 0; +} +dl dt { +padding: 0; +margin-top: 16px; +font-size: 1em; +font-style: italic; +font-weight: bold; +} +dl dd { +padding: 0 16px; +margin-bottom: 16px; +} +blockquote { +padding: 0 15px; +color: #777; +border-left: 4px solid #ddd; +} +blockquote>:first-child { +margin-top: 0; +} +blockquote>:last-child { +margin-bottom: 0; +} +table { +display: block; +width: 100%; +overflow: auto; +word-break: normal; +word-break: keep-all; +} +table th { +font-weight: bold; +} +table th, +table td { +padding: 6px 13px; +border: 1px solid #ddd; +} +table tr { +background-color: #fff; +border-top: 1px solid #ccc; +} +table tr:nth-child(2n) { +background-color: #f8f8f8; +} +img { +max-width: 100%; +box-sizing: content-box; +background-color: #fff; +} +code { +padding: 0; +padding-top: 0.2em; +padding-bottom: 0.2em; +margin: 0; +font-size: 85%; +background-color: rgba(0,0,0,0.04); +border-radius: 3px; +} +code:before, +code:after { +letter-spacing: -0.2em; +content: "\00a0"; +} +pre>code { +padding: 0; +margin: 0; +font-size: 100%; +word-break: normal; +white-space: pre; +background: transparent; +border: 0; +} +.highlight { +margin-bottom: 16px; +} +.highlight pre, +pre { +padding: 16px; +overflow: auto; +font-size: 85%; +line-height: 1.45; +background-color: #f7f7f7; +border-radius: 3px; +} +.highlight pre { +margin-bottom: 0; +word-break: normal; +} +pre { +word-wrap: normal; +} +pre code { +display: inline; +max-width: initial; +padding: 0; +margin: 0; +overflow: initial; +line-height: inherit; +word-wrap: normal; +background-color: transparent; +border: 0; +} +pre code:before, +pre code:after { +content: normal; +} +kbd { +display: inline-block; +padding: 3px 5px; +font-size: 11px; +line-height: 10px; +color: #555; +vertical-align: middle; +background-color: #fcfcfc; +border: solid 1px #ccc; +border-bottom-color: #bbb; +border-radius: 3px; +box-shadow: inset 0 -1px 0 #bbb; +} +.pl-c { +color: #969896; +} +.pl-c1, +.pl-s .pl-v { +color: #0086b3; +} +.pl-e, +.pl-en { +color: #795da3; +} +.pl-s .pl-s1, +.pl-smi { +color: #333; +} +.pl-ent { +color: #63a35c; +} +.pl-k { +color: #a71d5d; +} +.pl-pds, +.pl-s, +.pl-s .pl-pse .pl-s1, +.pl-sr, +.pl-sr .pl-cce, +.pl-sr .pl-sra, +.pl-sr .pl-sre { +color: #183691; +} +.pl-v { +color: #ed6a43; +} +.pl-id { +color: #b52a1d; +} +.pl-ii { +background-color: #b52a1d; +color: #f8f8f8; +} +.pl-sr .pl-cce { +color: #63a35c; +font-weight: bold; +} +.pl-ml { +color: #693a17; +} +.pl-mh, +.pl-mh .pl-en, +.pl-ms { +color: #1d3e81; +font-weight: bold; +} +.pl-mq { +color: #008080; +} +.pl-mi { +color: #333; +font-style: italic; +} +.pl-mb { +color: #333; +font-weight: bold; +} +.pl-md { +background-color: #ffecec; +color: #bd2c00; +} +.pl-mi1 { +background-color: #eaffea; +color: #55a532; +} +.pl-mdr { +color: #795da3; +font-weight: bold; +} +.pl-mo { +color: #1d3e81; +} +kbd { +display: inline-block; +padding: 3px 5px; +font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace; +line-height: 10px; +color: #555; +vertical-align: middle; +background-color: #fcfcfc; +border: solid 1px #ccc; +border-bottom-color: #bbb; +border-radius: 3px; +box-shadow: inset 0 -1px 0 #bbb; +} +.task-list-item { +list-style-type: none; +} +.task-list-item+.task-list-item { +margin-top: 3px; +} +.task-list-item input { +margin: 0 0.35em 0.25em -1.6em; +vertical-align: middle; +} +:checked+.radio-label { +z-index: 1; +position: relative; +border-color: #4078c0; +} +.sourceLine { +display: inline-block; +} +code .kw { color: #000000; } +code .dt { color: #ed6a43; } +code .dv { color: #009999; } +code .bn { color: #009999; } +code .fl { color: #009999; } +code .ch { color: #009999; } +code .st { color: #183691; } +code .co { color: #969896; } +code .ot { color: #0086b3; } +code .al { color: #a61717; } +code .fu { color: #63a35c; } +code .er { color: #a61717; background-color: #e3d2d2; } +code .wa { color: #000000; } +code .cn { color: #008080; } +code .sc { color: #008080; } +code .vs { color: #183691; } +code .ss { color: #183691; } +code .im { color: #000000; } +code .va {color: #008080; } +code .cf { color: #000000; } +code .op { color: #000000; } +code .bu { color: #000000; } +code .ex { color: #000000; } +code .pp { color: #999999; } +code .at { color: #008080; } +code .do { color: #969896; } +code .an { color: #008080; } +code .cv { color: #008080; } +code .in { color: #008080; } +</style> +<style> +body { + box-sizing: border-box; + min-width: 200px; + max-width: 980px; + margin: 0 auto; + padding: 45px; + padding-top: 0px; +} +</style> + + +</head> + +<body> + +<!-- README.md is generated from README.Rmd. Please edit that file --> + +<h1 id="simulatedce">simulateDCE</h1> +<!-- badges: start --> + +<!-- badges: end --> + +<p>The goal of simulateDCE is to make it easy to simulate choice +experiment datasets using designs from NGENE or <code>spdesign</code>. +You have to store the design file in a subfolder and need to specify +certain parameters and the utility functions for the data generating +process. The package is useful for</p> +<ol style="list-style-type: decimal"> +<li><p>Test different designs in terms of statistical power, efficiency +and unbiasedness</p></li> +<li><p>To test the effects of deviations from RUM, e.g. heuristics, on +model performance for different designs.</p></li> +<li><p>In teaching, using simulated data is useful, if you want to know +the data generating process. It helps to demonstrate Maximum likelihood +and choice models, knowing exactly what you should expect.</p></li> +<li><p>You can use simulation in pre-registration to justify your sample +size and design choice.</p></li> +<li><p>Before data collection, you can use simulated data to estimate +the models you plan to use in the actual analysis. You can thus make +sure, you can estimate all effects for given sample sizes.</p></li> +</ol> +<h2 id="installation">Installation</h2> +<p>You can install the development version of simulateDCE from gitlab. +You need to install the <code>remotes</code> package first. The current +version is alpha and there is no version on cran:</p> +<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># FILL THIS IN! HOW CAN PEOPLE INSTALL YOUR DEV PACKAGE?</span></span> +<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"remotes"</span>)</span> +<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_gitlab</span>(<span class="at">repo =</span> <span class="st">"dj44vuri/simulateDCE"</span> , <span class="at">host =</span> <span class="st">"https://git.idiv.de"</span>)</span></code></pre></div> +<h2 id="example">Example</h2> +<p>This is a basic example which shows you how to solve a common +problem:</p> +<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a> <span class="fu">library</span>(simulateDCE)</span> +<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rlang)</span> +<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(<span class="st">"lests"</span>)</span> +<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "lests"</span></span> +<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="co">#set.seed(22233)</span></span> +<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or Robjects for spdesign)</span></span> +<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>designpath<span class="ot"><-</span> <span class="fu">system.file</span>(<span class="st">"extdata"</span>,<span class="st">"SE_DRIVE"</span> ,<span class="at">package =</span> <span class="st">"simulateDCE"</span>)</span> +<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="co"># on your computer, it would be something like</span></span> +<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="co"># designpath <- "c:/myfancyDCE/Designs"</span></span> +<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="co"># number of respondents</span></span> +<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a>resps <span class="ot">=</span><span class="dv">120</span></span> +<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="co"># number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.)</span></span> +<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a>nosim<span class="ot">=</span> <span class="dv">2</span> </span> +<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="co"># If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size</span></span> +<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a>decisiongroups<span class="ot">=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.7</span>,<span class="dv">1</span>)</span> +<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="co"># set the values of the parameters you want to use in the simulation</span></span> +<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a>bpreis <span class="ot">=</span> <span class="sc">-</span><span class="fl">0.01</span></span> +<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a>blade <span class="ot">=</span> <span class="sc">-</span><span class="fl">0.07</span></span> +<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a>bwarte <span class="ot">=</span> <span class="fl">0.02</span></span> +<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="co"># If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10</span></span> +<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a>manipulations <span class="ot">=</span> <span class="fu">list</span>(<span class="at">alt1.x2=</span> <span class="fu">expr</span>(alt1.x2<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a> <span class="at">alt1.x3=</span> <span class="fu">expr</span>(alt1.x3<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a> <span class="at">alt2.x2=</span> <span class="fu">expr</span>(alt2.x2<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a> <span class="at">alt2.x3=</span> <span class="fu">expr</span>(alt2.x3<span class="sc">/</span><span class="dv">10</span>)</span> +<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a>)</span> +<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-39"><a href="#cb2-39" aria-hidden="true" tabindex="-1"></a><span class="co">#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes)</span></span> +<span id="cb2-40"><a href="#cb2-40" aria-hidden="true" tabindex="-1"></a>u<span class="ot"><-</span><span class="fu">list</span>( <span class="at">u1 =</span></span> +<span id="cb2-41"><a href="#cb2-41" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-42"><a href="#cb2-42" aria-hidden="true" tabindex="-1"></a> <span class="fu">list</span>(</span> +<span id="cb2-43"><a href="#cb2-43" aria-hidden="true" tabindex="-1"></a> <span class="at">v1 =</span>V<span class="fl">.1</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt1.x1 <span class="sc">+</span> blade<span class="sc">*</span>alt1.x2 <span class="sc">+</span> bwarte<span class="sc">*</span>alt1.x3 ,</span> +<span id="cb2-44"><a href="#cb2-44" aria-hidden="true" tabindex="-1"></a> <span class="at">v2 =</span>V<span class="fl">.2</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt2.x1 <span class="sc">+</span> blade<span class="sc">*</span>alt2.x2 <span class="sc">+</span> bwarte<span class="sc">*</span>alt2.x3</span> +<span id="cb2-45"><a href="#cb2-45" aria-hidden="true" tabindex="-1"></a> )</span> +<span id="cb2-46"><a href="#cb2-46" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-47"><a href="#cb2-47" aria-hidden="true" tabindex="-1"></a> ,</span> +<span id="cb2-48"><a href="#cb2-48" aria-hidden="true" tabindex="-1"></a> <span class="at">u2 =</span> <span class="fu">list</span>( <span class="at">v1 =</span>V<span class="fl">.1</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt1.x1 ,</span> +<span id="cb2-49"><a href="#cb2-49" aria-hidden="true" tabindex="-1"></a> <span class="at">v2 =</span>V<span class="fl">.2</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt2.x1)</span> +<span id="cb2-50"><a href="#cb2-50" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-51"><a href="#cb2-51" aria-hidden="true" tabindex="-1"></a>)</span> +<span id="cb2-52"><a href="#cb2-52" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-53"><a href="#cb2-53" aria-hidden="true" tabindex="-1"></a><span class="co"># specify the designtype "ngene" or "spdesign"</span></span> +<span id="cb2-54"><a href="#cb2-54" aria-hidden="true" tabindex="-1"></a>destype<span class="ot">=</span><span class="st">"ngene"</span></span> +<span id="cb2-55"><a href="#cb2-55" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-56"><a href="#cb2-56" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-57"><a href="#cb2-57" aria-hidden="true" tabindex="-1"></a><span class="co">#lets go</span></span> +<span id="cb2-58"><a href="#cb2-58" aria-hidden="true" tabindex="-1"></a>sedrive <span class="ot"><-</span> simulateDCE<span class="sc">::</span><span class="fu">sim_all</span>()</span> +<span id="cb2-59"><a href="#cb2-59" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-60"><a href="#cb2-60" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-61"><a href="#cb2-61" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-62"><a href="#cb2-62" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-63"><a href="#cb2-63" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-64"><a href="#cb2-64" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-65"><a href="#cb2-65" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-66"><a href="#cb2-66" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-67"><a href="#cb2-67" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-68"><a href="#cb2-68" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-69"><a href="#cb2-69" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-70"><a href="#cb2-70" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-71"><a href="#cb2-71" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-72"><a href="#cb2-72" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-73"><a href="#cb2-73" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-74"><a href="#cb2-74" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-75"><a href="#cb2-75" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-76"><a href="#cb2-76" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-77"><a href="#cb2-77" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-78"><a href="#cb2-78" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-79"><a href="#cb2-79" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-80"><a href="#cb2-80" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-81"><a href="#cb2-81" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-82"><a href="#cb2-82" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-83"><a href="#cb2-83" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-84"><a href="#cb2-84" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-85"><a href="#cb2-85" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-86"><a href="#cb2-86" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-87"><a href="#cb2-87" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-88"><a href="#cb2-88" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-89"><a href="#cb2-89" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-90"><a href="#cb2-90" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-91"><a href="#cb2-91" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-92"><a href="#cb2-92" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-93"><a href="#cb2-93" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-94"><a href="#cb2-94" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-95"><a href="#cb2-95" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-96"><a href="#cb2-96" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-97"><a href="#cb2-97" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-98"><a href="#cb2-98" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-99"><a href="#cb2-99" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-100"><a href="#cb2-100" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-101"><a href="#cb2-101" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-102"><a href="#cb2-102" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5</span></span> +<span id="cb2-103"><a href="#cb2-103" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5</span></span> +<span id="cb2-104"><a href="#cb2-104" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0</span></span> +<span id="cb2-105"><a href="#cb2-105" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0</span></span> +<span id="cb2-106"><a href="#cb2-106" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0</span></span> +<span id="cb2-107"><a href="#cb2-107" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0</span></span> +<span id="cb2-108"><a href="#cb2-108" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-109"><a href="#cb2-109" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 10.0 60 20.0 10 1</span></span> +<span id="cb2-110"><a href="#cb2-110" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 60 2.5 0 1</span></span> +<span id="cb2-111"><a href="#cb2-111" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 5.0 80 5.0 10 1</span></span> +<span id="cb2-112"><a href="#cb2-112" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2.5 80 2.5 0 1</span></span> +<span id="cb2-113"><a href="#cb2-113" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.0 80 10.0 10 1</span></span> +<span id="cb2-114"><a href="#cb2-114" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 20 5.0 10 1</span></span> +<span id="cb2-115"><a href="#cb2-115" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-116"><a href="#cb2-116" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.800 2.8927045</span></span> +<span id="cb2-117"><a href="#cb2-117" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.275 -0.775 2.1129458</span></span> +<span id="cb2-118"><a href="#cb2-118" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.800 -0.950 -0.3070059</span></span> +<span id="cb2-119"><a href="#cb2-119" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.750 -0.975 0.2125815</span></span> +<span id="cb2-120"><a href="#cb2-120" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.300 0.5101632</span></span> +<span id="cb2-121"><a href="#cb2-121" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.900 -0.350 -0.9494807</span></span> +<span id="cb2-122"><a href="#cb2-122" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-123"><a href="#cb2-123" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.09958433 2.117705 -1.700416 1</span></span> +<span id="cb2-124"><a href="#cb2-124" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 3.47451776 1.837946 2.699518 2</span></span> +<span id="cb2-125"><a href="#cb2-125" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.28860974 -1.107006 -1.238610 1</span></span> +<span id="cb2-126"><a href="#cb2-126" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 3.65240491 -1.537418 2.677405 2</span></span> +<span id="cb2-127"><a href="#cb2-127" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.14448942 -1.289837 -1.444489 1</span></span> +<span id="cb2-128"><a href="#cb2-128" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -1.04296995 -1.849481 -1.392970 2</span></span> +<span id="cb2-129"><a href="#cb2-129" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-130"><a href="#cb2-130" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-131"><a href="#cb2-131" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-132"><a href="#cb2-132" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-133"><a href="#cb2-133" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-134"><a href="#cb2-134" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-135"><a href="#cb2-135" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-136"><a href="#cb2-136" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-137"><a href="#cb2-137" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-138"><a href="#cb2-138" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-139"><a href="#cb2-139" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-140"><a href="#cb2-140" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-141"><a href="#cb2-141" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-142"><a href="#cb2-142" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-143"><a href="#cb2-143" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-144"><a href="#cb2-144" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5</span></span> +<span id="cb2-145"><a href="#cb2-145" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5</span></span> +<span id="cb2-146"><a href="#cb2-146" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0</span></span> +<span id="cb2-147"><a href="#cb2-147" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0</span></span> +<span id="cb2-148"><a href="#cb2-148" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0</span></span> +<span id="cb2-149"><a href="#cb2-149" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0</span></span> +<span id="cb2-150"><a href="#cb2-150" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-151"><a href="#cb2-151" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 10.0 60 20.0 10 1</span></span> +<span id="cb2-152"><a href="#cb2-152" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 60 2.5 0 1</span></span> +<span id="cb2-153"><a href="#cb2-153" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 5.0 80 5.0 10 1</span></span> +<span id="cb2-154"><a href="#cb2-154" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2.5 80 2.5 0 1</span></span> +<span id="cb2-155"><a href="#cb2-155" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.0 80 10.0 10 1</span></span> +<span id="cb2-156"><a href="#cb2-156" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 20 5.0 10 1</span></span> +<span id="cb2-157"><a href="#cb2-157" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-158"><a href="#cb2-158" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.800 -0.06362638</span></span> +<span id="cb2-159"><a href="#cb2-159" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.275 -0.775 -0.81571577</span></span> +<span id="cb2-160"><a href="#cb2-160" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.800 -0.950 -1.09388352</span></span> +<span id="cb2-161"><a href="#cb2-161" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.750 -0.975 0.28996875</span></span> +<span id="cb2-162"><a href="#cb2-162" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.300 1.03059224</span></span> +<span id="cb2-163"><a href="#cb2-163" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.900 -0.350 -1.10504379</span></span> +<span id="cb2-164"><a href="#cb2-164" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-165"><a href="#cb2-165" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.1958595 -0.8386264 -1.6041405 1</span></span> +<span id="cb2-166"><a href="#cb2-166" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.1028995 -1.0907158 -0.6721005 2</span></span> +<span id="cb2-167"><a href="#cb2-167" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.7165451 -1.8938835 -0.2334549 2</span></span> +<span id="cb2-168"><a href="#cb2-168" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1.4748351 -1.4600313 0.4998351 2</span></span> +<span id="cb2-169"><a href="#cb2-169" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 4.5718398 -0.7694078 3.2718398 2</span></span> +<span id="cb2-170"><a href="#cb2-170" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.8766732 -2.0050438 0.5266732 2</span></span> +<span id="cb2-171"><a href="#cb2-171" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-172"><a href="#cb2-172" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-173"><a href="#cb2-173" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-174"><a href="#cb2-174" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-175"><a href="#cb2-175" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-176"><a href="#cb2-176" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-177"><a href="#cb2-177" aria-hidden="true" tabindex="-1"></a><span class="co">#> -860.0 -1147.5 532.5 </span></span> +<span id="cb2-178"><a href="#cb2-178" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-179"><a href="#cb2-179" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 988.178813</span></span> +<span id="cb2-180"><a href="#cb2-180" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 959.683236</span></span> +<span id="cb2-181"><a href="#cb2-181" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 959.648380</span></span> +<span id="cb2-182"><a href="#cb2-182" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 955.999179</span></span> +<span id="cb2-183"><a href="#cb2-183" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 955.979330</span></span> +<span id="cb2-184"><a href="#cb2-184" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 955.979295</span></span> +<span id="cb2-185"><a href="#cb2-185" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 955.979295</span></span> +<span id="cb2-186"><a href="#cb2-186" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 955.979295</span></span> +<span id="cb2-187"><a href="#cb2-187" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 955.979295 </span></span> +<span id="cb2-188"><a href="#cb2-188" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-189"><a href="#cb2-189" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-190"><a href="#cb2-190" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-191"><a href="#cb2-191" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-192"><a href="#cb2-192" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-193"><a href="#cb2-193" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-194"><a href="#cb2-194" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-195"><a href="#cb2-195" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-196"><a href="#cb2-196" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-197"><a href="#cb2-197" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-198"><a href="#cb2-198" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-199"><a href="#cb2-199" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-200"><a href="#cb2-200" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-201"><a href="#cb2-201" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-202"><a href="#cb2-202" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5</span></span> +<span id="cb2-203"><a href="#cb2-203" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5</span></span> +<span id="cb2-204"><a href="#cb2-204" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0</span></span> +<span id="cb2-205"><a href="#cb2-205" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0</span></span> +<span id="cb2-206"><a href="#cb2-206" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0</span></span> +<span id="cb2-207"><a href="#cb2-207" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0</span></span> +<span id="cb2-208"><a href="#cb2-208" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-209"><a href="#cb2-209" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 10.0 60 20.0 10 1</span></span> +<span id="cb2-210"><a href="#cb2-210" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 60 2.5 0 1</span></span> +<span id="cb2-211"><a href="#cb2-211" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 5.0 80 5.0 10 1</span></span> +<span id="cb2-212"><a href="#cb2-212" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2.5 80 2.5 0 1</span></span> +<span id="cb2-213"><a href="#cb2-213" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.0 80 10.0 10 1</span></span> +<span id="cb2-214"><a href="#cb2-214" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 20 5.0 10 1</span></span> +<span id="cb2-215"><a href="#cb2-215" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-216"><a href="#cb2-216" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.800 -0.8816771</span></span> +<span id="cb2-217"><a href="#cb2-217" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.275 -0.775 0.9004269</span></span> +<span id="cb2-218"><a href="#cb2-218" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.800 -0.950 -0.3108731</span></span> +<span id="cb2-219"><a href="#cb2-219" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.750 -0.975 -0.7695269</span></span> +<span id="cb2-220"><a href="#cb2-220" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.300 2.8853455</span></span> +<span id="cb2-221"><a href="#cb2-221" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.900 -0.350 -0.1098324</span></span> +<span id="cb2-222"><a href="#cb2-222" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-223"><a href="#cb2-223" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.6516580 -1.6566771 -1.14834197</span></span> +<span id="cb2-224"><a href="#cb2-224" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.4584193 0.6254269 -0.31658066</span></span> +<span id="cb2-225"><a href="#cb2-225" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1.2184928 -1.1108731 0.26849278</span></span> +<span id="cb2-226"><a href="#cb2-226" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.1660211 -2.5195269 -1.14102109</span></span> +<span id="cb2-227"><a href="#cb2-227" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.5943992 1.0853455 -1.89439922</span></span> +<span id="cb2-228"><a href="#cb2-228" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.3193140 -1.0098324 -0.03068595</span></span> +<span id="cb2-229"><a href="#cb2-229" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-230"><a href="#cb2-230" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-231"><a href="#cb2-231" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-232"><a href="#cb2-232" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-233"><a href="#cb2-233" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-234"><a href="#cb2-234" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-235"><a href="#cb2-235" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-236"><a href="#cb2-236" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-237"><a href="#cb2-237" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-238"><a href="#cb2-238" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-239"><a href="#cb2-239" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-240"><a href="#cb2-240" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-241"><a href="#cb2-241" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-242"><a href="#cb2-242" aria-hidden="true" tabindex="-1"></a><span class="co">#> 120 -655 295 </span></span> +<span id="cb2-243"><a href="#cb2-243" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-244"><a href="#cb2-244" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 994.305298</span></span> +<span id="cb2-245"><a href="#cb2-245" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 990.053293</span></span> +<span id="cb2-246"><a href="#cb2-246" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 989.940656</span></span> +<span id="cb2-247"><a href="#cb2-247" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 987.629292</span></span> +<span id="cb2-248"><a href="#cb2-248" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 987.628992</span></span> +<span id="cb2-249"><a href="#cb2-249" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 987.628991</span></span> +<span id="cb2-250"><a href="#cb2-250" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 987.628991</span></span> +<span id="cb2-251"><a href="#cb2-251" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 987.628991 </span></span> +<span id="cb2-252"><a href="#cb2-252" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-253"><a href="#cb2-253" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-254"><a href="#cb2-254" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-255"><a href="#cb2-255" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-256"><a href="#cb2-256" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-257"><a href="#cb2-257" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-258"><a href="#cb2-258" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.01 -0.01 0.00 0.01 0.00</span></span> +<span id="cb2-259"><a href="#cb2-259" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.04 0.02 -0.06 -0.02 0.03 0.02</span></span> +<span id="cb2-260"><a href="#cb2-260" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.00 0.02 0.03 0.01 0.00</span></span> +<span id="cb2-261"><a href="#cb2-261" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.04 0.06 0.00 0.09 0.09 0.04</span></span> +<span id="cb2-262"><a href="#cb2-262" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-263"><a href="#cb2-263" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.04 0.03 0.02 0.06 0.04 0.02</span></span> +<span id="cb2-264"><a href="#cb2-264" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-265"><a href="#cb2-265" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-266"><a href="#cb2-266" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE TRUE </span></span> +<span id="cb2-267"><a href="#cb2-267" aria-hidden="true" tabindex="-1"></a><span class="co">#> 50 50 </span></span> +<span id="cb2-268"><a href="#cb2-268" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-269"><a href="#cb2-269" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-270"><a href="#cb2-270" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-271"><a href="#cb2-271" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-272"><a href="#cb2-272" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-273"><a href="#cb2-273" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-274"><a href="#cb2-274" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-275"><a href="#cb2-275" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-276"><a href="#cb2-276" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-277"><a href="#cb2-277" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-278"><a href="#cb2-278" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-279"><a href="#cb2-279" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-280"><a href="#cb2-280" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-281"><a href="#cb2-281" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-282"><a href="#cb2-282" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-283"><a href="#cb2-283" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-284"><a href="#cb2-284" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-285"><a href="#cb2-285" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-286"><a href="#cb2-286" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-287"><a href="#cb2-287" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-288"><a href="#cb2-288" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-289"><a href="#cb2-289" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-290"><a href="#cb2-290" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-291"><a href="#cb2-291" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-292"><a href="#cb2-292" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-293"><a href="#cb2-293" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-294"><a href="#cb2-294" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-295"><a href="#cb2-295" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-296"><a href="#cb2-296" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-297"><a href="#cb2-297" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-298"><a href="#cb2-298" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-299"><a href="#cb2-299" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-300"><a href="#cb2-300" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-301"><a href="#cb2-301" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-302"><a href="#cb2-302" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-303"><a href="#cb2-303" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-304"><a href="#cb2-304" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-305"><a href="#cb2-305" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-306"><a href="#cb2-306" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-307"><a href="#cb2-307" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-308"><a href="#cb2-308" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-309"><a href="#cb2-309" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-310"><a href="#cb2-310" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-311"><a href="#cb2-311" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5</span></span> +<span id="cb2-312"><a href="#cb2-312" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0</span></span> +<span id="cb2-313"><a href="#cb2-313" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0</span></span> +<span id="cb2-314"><a href="#cb2-314" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0</span></span> +<span id="cb2-315"><a href="#cb2-315" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0</span></span> +<span id="cb2-316"><a href="#cb2-316" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0</span></span> +<span id="cb2-317"><a href="#cb2-317" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-318"><a href="#cb2-318" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 20.0 10 1</span></span> +<span id="cb2-319"><a href="#cb2-319" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 40 5.0 0 1</span></span> +<span id="cb2-320"><a href="#cb2-320" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.0 80 10.0 10 1</span></span> +<span id="cb2-321"><a href="#cb2-321" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10.0 20 20.0 5 1</span></span> +<span id="cb2-322"><a href="#cb2-322" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 80 5.0 0 1</span></span> +<span id="cb2-323"><a href="#cb2-323" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 80 2.5 5 1</span></span> +<span id="cb2-324"><a href="#cb2-324" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-325"><a href="#cb2-325" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.400 1.20580231</span></span> +<span id="cb2-326"><a href="#cb2-326" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.800 -0.750 -0.72752412</span></span> +<span id="cb2-327"><a href="#cb2-327" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.600 -1.300 -0.05762304</span></span> +<span id="cb2-328"><a href="#cb2-328" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.750 -1.500 -0.83547157</span></span> +<span id="cb2-329"><a href="#cb2-329" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.350 -1.150 3.85444600</span></span> +<span id="cb2-330"><a href="#cb2-330" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.050 -0.875 1.64701776</span></span> +<span id="cb2-331"><a href="#cb2-331" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-332"><a href="#cb2-332" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.28691332 0.4308023 -1.6869133</span></span> +<span id="cb2-333"><a href="#cb2-333" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.06648158 -1.5275241 -0.6835184</span></span> +<span id="cb2-334"><a href="#cb2-334" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1.68916541 -1.6576230 0.3891654</span></span> +<span id="cb2-335"><a href="#cb2-335" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.40357792 -1.5854716 -1.0964221</span></span> +<span id="cb2-336"><a href="#cb2-336" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.13880669 3.5044460 -1.0111933</span></span> +<span id="cb2-337"><a href="#cb2-337" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1.09745093 0.5970178 0.2224509</span></span> +<span id="cb2-338"><a href="#cb2-338" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-339"><a href="#cb2-339" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-340"><a href="#cb2-340" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2</span></span> +<span id="cb2-341"><a href="#cb2-341" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-342"><a href="#cb2-342" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-343"><a href="#cb2-343" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-344"><a href="#cb2-344" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-345"><a href="#cb2-345" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-346"><a href="#cb2-346" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-347"><a href="#cb2-347" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-348"><a href="#cb2-348" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-349"><a href="#cb2-349" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-350"><a href="#cb2-350" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-351"><a href="#cb2-351" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-352"><a href="#cb2-352" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-353"><a href="#cb2-353" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-354"><a href="#cb2-354" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-355"><a href="#cb2-355" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-356"><a href="#cb2-356" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-357"><a href="#cb2-357" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-358"><a href="#cb2-358" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-359"><a href="#cb2-359" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-360"><a href="#cb2-360" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5</span></span> +<span id="cb2-361"><a href="#cb2-361" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0</span></span> +<span id="cb2-362"><a href="#cb2-362" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0</span></span> +<span id="cb2-363"><a href="#cb2-363" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0</span></span> +<span id="cb2-364"><a href="#cb2-364" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0</span></span> +<span id="cb2-365"><a href="#cb2-365" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0</span></span> +<span id="cb2-366"><a href="#cb2-366" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-367"><a href="#cb2-367" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 20.0 10 1</span></span> +<span id="cb2-368"><a href="#cb2-368" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 40 5.0 0 1</span></span> +<span id="cb2-369"><a href="#cb2-369" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.0 80 10.0 10 1</span></span> +<span id="cb2-370"><a href="#cb2-370" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10.0 20 20.0 5 1</span></span> +<span id="cb2-371"><a href="#cb2-371" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 80 5.0 0 1</span></span> +<span id="cb2-372"><a href="#cb2-372" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 80 2.5 5 1</span></span> +<span id="cb2-373"><a href="#cb2-373" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-374"><a href="#cb2-374" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.400 -0.09932726</span></span> +<span id="cb2-375"><a href="#cb2-375" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.800 -0.750 2.18018219</span></span> +<span id="cb2-376"><a href="#cb2-376" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.600 -1.300 1.30134429</span></span> +<span id="cb2-377"><a href="#cb2-377" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.750 -1.500 1.55197796</span></span> +<span id="cb2-378"><a href="#cb2-378" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.350 -1.150 0.07874983</span></span> +<span id="cb2-379"><a href="#cb2-379" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.050 -0.875 -1.06565108</span></span> +<span id="cb2-380"><a href="#cb2-380" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-381"><a href="#cb2-381" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2.2497903 -0.8743273 0.84979034</span></span> +<span id="cb2-382"><a href="#cb2-382" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.3329742 1.3801822 -0.41702578</span></span> +<span id="cb2-383"><a href="#cb2-383" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.9046182 -0.2986557 -0.39538182</span></span> +<span id="cb2-384"><a href="#cb2-384" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -1.2414809 0.8019780 -2.74148090</span></span> +<span id="cb2-385"><a href="#cb2-385" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.8624243 -0.2712502 -2.01242427</span></span> +<span id="cb2-386"><a href="#cb2-386" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.9398788 -2.1156511 0.06487882</span></span> +<span id="cb2-387"><a href="#cb2-387" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-388"><a href="#cb2-388" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-389"><a href="#cb2-389" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-390"><a href="#cb2-390" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-391"><a href="#cb2-391" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-392"><a href="#cb2-392" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-393"><a href="#cb2-393" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-394"><a href="#cb2-394" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-395"><a href="#cb2-395" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-396"><a href="#cb2-396" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-397"><a href="#cb2-397" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-398"><a href="#cb2-398" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-399"><a href="#cb2-399" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-400"><a href="#cb2-400" aria-hidden="true" tabindex="-1"></a><span class="co">#> -340 -1095 305 </span></span> +<span id="cb2-401"><a href="#cb2-401" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-402"><a href="#cb2-402" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 984.073383</span></span> +<span id="cb2-403"><a href="#cb2-403" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 978.081615</span></span> +<span id="cb2-404"><a href="#cb2-404" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 977.767304</span></span> +<span id="cb2-405"><a href="#cb2-405" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 971.033395</span></span> +<span id="cb2-406"><a href="#cb2-406" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 971.027390</span></span> +<span id="cb2-407"><a href="#cb2-407" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 971.027385</span></span> +<span id="cb2-408"><a href="#cb2-408" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 971.027385</span></span> +<span id="cb2-409"><a href="#cb2-409" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 971.027385 </span></span> +<span id="cb2-410"><a href="#cb2-410" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-411"><a href="#cb2-411" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-412"><a href="#cb2-412" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-413"><a href="#cb2-413" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-414"><a href="#cb2-414" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-415"><a href="#cb2-415" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-416"><a href="#cb2-416" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-417"><a href="#cb2-417" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-418"><a href="#cb2-418" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-419"><a href="#cb2-419" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-420"><a href="#cb2-420" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-421"><a href="#cb2-421" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-422"><a href="#cb2-422" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-423"><a href="#cb2-423" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-424"><a href="#cb2-424" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5</span></span> +<span id="cb2-425"><a href="#cb2-425" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0</span></span> +<span id="cb2-426"><a href="#cb2-426" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0</span></span> +<span id="cb2-427"><a href="#cb2-427" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0</span></span> +<span id="cb2-428"><a href="#cb2-428" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0</span></span> +<span id="cb2-429"><a href="#cb2-429" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0</span></span> +<span id="cb2-430"><a href="#cb2-430" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-431"><a href="#cb2-431" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 20.0 10 1</span></span> +<span id="cb2-432"><a href="#cb2-432" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 40 5.0 0 1</span></span> +<span id="cb2-433"><a href="#cb2-433" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.0 80 10.0 10 1</span></span> +<span id="cb2-434"><a href="#cb2-434" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10.0 20 20.0 5 1</span></span> +<span id="cb2-435"><a href="#cb2-435" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 80 5.0 0 1</span></span> +<span id="cb2-436"><a href="#cb2-436" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 80 2.5 5 1</span></span> +<span id="cb2-437"><a href="#cb2-437" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-438"><a href="#cb2-438" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.400 0.44334136</span></span> +<span id="cb2-439"><a href="#cb2-439" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.800 -0.750 -0.43185157</span></span> +<span id="cb2-440"><a href="#cb2-440" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.600 -1.300 -0.09584172</span></span> +<span id="cb2-441"><a href="#cb2-441" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.750 -1.500 2.74658736</span></span> +<span id="cb2-442"><a href="#cb2-442" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.350 -1.150 -0.51575280</span></span> +<span id="cb2-443"><a href="#cb2-443" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.050 -0.875 -0.33088933</span></span> +<span id="cb2-444"><a href="#cb2-444" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-445"><a href="#cb2-445" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.3975165 -0.3316586 -1.0024835 1</span></span> +<span id="cb2-446"><a href="#cb2-446" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1.4211569 -1.2318516 0.6711569 2</span></span> +<span id="cb2-447"><a href="#cb2-447" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1.0034880 -1.6958417 -0.2965120 2</span></span> +<span id="cb2-448"><a href="#cb2-448" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.8780181 1.9965874 -0.6219819 1</span></span> +<span id="cb2-449"><a href="#cb2-449" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.9818505 -0.8657528 -0.1681495 2</span></span> +<span id="cb2-450"><a href="#cb2-450" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1.7042698 -1.3808893 0.8292698 2</span></span> +<span id="cb2-451"><a href="#cb2-451" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-452"><a href="#cb2-452" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-453"><a href="#cb2-453" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-454"><a href="#cb2-454" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-455"><a href="#cb2-455" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-456"><a href="#cb2-456" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-457"><a href="#cb2-457" aria-hidden="true" tabindex="-1"></a><span class="co">#> -280 -905 345 </span></span> +<span id="cb2-458"><a href="#cb2-458" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-459"><a href="#cb2-459" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 988.003109</span></span> +<span id="cb2-460"><a href="#cb2-460" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 983.732741</span></span> +<span id="cb2-461"><a href="#cb2-461" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 983.724196</span></span> +<span id="cb2-462"><a href="#cb2-462" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 979.048736</span></span> +<span id="cb2-463"><a href="#cb2-463" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 979.044949</span></span> +<span id="cb2-464"><a href="#cb2-464" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 979.044947</span></span> +<span id="cb2-465"><a href="#cb2-465" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 979.044947</span></span> +<span id="cb2-466"><a href="#cb2-466" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 979.044947 </span></span> +<span id="cb2-467"><a href="#cb2-467" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-468"><a href="#cb2-468" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-469"><a href="#cb2-469" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-470"><a href="#cb2-470" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-471"><a href="#cb2-471" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-472"><a href="#cb2-472" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-473"><a href="#cb2-473" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-474"><a href="#cb2-474" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.04 0.01 -0.05 -0.04 0.01 0.01</span></span> +<span id="cb2-475"><a href="#cb2-475" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.01 0.00</span></span> +<span id="cb2-476"><a href="#cb2-476" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-477"><a href="#cb2-477" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-478"><a href="#cb2-478" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.50 0.41 0.21 0.79 0.58 0.29</span></span> +<span id="cb2-479"><a href="#cb2-479" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-480"><a href="#cb2-480" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-481"><a href="#cb2-481" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-482"><a href="#cb2-482" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-483"><a href="#cb2-483" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-484"><a href="#cb2-484" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-485"><a href="#cb2-485" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-486"><a href="#cb2-486" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-487"><a href="#cb2-487" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-488"><a href="#cb2-488" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-489"><a href="#cb2-489" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-490"><a href="#cb2-490" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-491"><a href="#cb2-491" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-492"><a href="#cb2-492" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-493"><a href="#cb2-493" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-494"><a href="#cb2-494" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-495"><a href="#cb2-495" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-496"><a href="#cb2-496" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-497"><a href="#cb2-497" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-498"><a href="#cb2-498" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-499"><a href="#cb2-499" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-500"><a href="#cb2-500" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-501"><a href="#cb2-501" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-502"><a href="#cb2-502" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-503"><a href="#cb2-503" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-504"><a href="#cb2-504" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-505"><a href="#cb2-505" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-506"><a href="#cb2-506" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-507"><a href="#cb2-507" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-508"><a href="#cb2-508" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-509"><a href="#cb2-509" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-510"><a href="#cb2-510" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-511"><a href="#cb2-511" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-512"><a href="#cb2-512" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-513"><a href="#cb2-513" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-514"><a href="#cb2-514" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-515"><a href="#cb2-515" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-516"><a href="#cb2-516" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-517"><a href="#cb2-517" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-518"><a href="#cb2-518" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-519"><a href="#cb2-519" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-520"><a href="#cb2-520" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-521"><a href="#cb2-521" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-522"><a href="#cb2-522" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-523"><a href="#cb2-523" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-524"><a href="#cb2-524" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-525"><a href="#cb2-525" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-526"><a href="#cb2-526" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0</span></span> +<span id="cb2-527"><a href="#cb2-527" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5</span></span> +<span id="cb2-528"><a href="#cb2-528" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5</span></span> +<span id="cb2-529"><a href="#cb2-529" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5</span></span> +<span id="cb2-530"><a href="#cb2-530" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0</span></span> +<span id="cb2-531"><a href="#cb2-531" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0</span></span> +<span id="cb2-532"><a href="#cb2-532" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-533"><a href="#cb2-533" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 5.0 10.0 1</span></span> +<span id="cb2-534"><a href="#cb2-534" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 20 20.0 5.0 1</span></span> +<span id="cb2-535"><a href="#cb2-535" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2.5 20 20.0 0.0 1</span></span> +<span id="cb2-536"><a href="#cb2-536" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 5.0 60 5.0 5.0 1</span></span> +<span id="cb2-537"><a href="#cb2-537" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 60 5.0 2.5 1</span></span> +<span id="cb2-538"><a href="#cb2-538" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 60 2.5 2.5 1</span></span> +<span id="cb2-539"><a href="#cb2-539" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-540"><a href="#cb2-540" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -0.350 -0.32663211</span></span> +<span id="cb2-541"><a href="#cb2-541" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.675 -1.500 -0.04162689</span></span> +<span id="cb2-542"><a href="#cb2-542" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.925 -1.600 -0.52492188</span></span> +<span id="cb2-543"><a href="#cb2-543" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.875 -0.850 -1.14189023</span></span> +<span id="cb2-544"><a href="#cb2-544" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.550 -0.900 0.19650068</span></span> +<span id="cb2-545"><a href="#cb2-545" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.550 -0.725 2.74825383</span></span> +<span id="cb2-546"><a href="#cb2-546" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-547"><a href="#cb2-547" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.2288010 -1.4766321 -0.1211990 2</span></span> +<span id="cb2-548"><a href="#cb2-548" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1.0875948 -0.7166269 -0.4124052 2</span></span> +<span id="cb2-549"><a href="#cb2-549" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.1472598 -1.4499219 -1.4527402 1</span></span> +<span id="cb2-550"><a href="#cb2-550" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.5765191 -2.0168902 -0.2734809 2</span></span> +<span id="cb2-551"><a href="#cb2-551" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.5803934 -0.3534993 -1.4803934 1</span></span> +<span id="cb2-552"><a href="#cb2-552" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.8761884 1.1982538 -1.6011884 1</span></span> +<span id="cb2-553"><a href="#cb2-553" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-554"><a href="#cb2-554" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-555"><a href="#cb2-555" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-556"><a href="#cb2-556" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-557"><a href="#cb2-557" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-558"><a href="#cb2-558" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-559"><a href="#cb2-559" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-560"><a href="#cb2-560" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-561"><a href="#cb2-561" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-562"><a href="#cb2-562" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-563"><a href="#cb2-563" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-564"><a href="#cb2-564" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-565"><a href="#cb2-565" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-566"><a href="#cb2-566" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-567"><a href="#cb2-567" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-568"><a href="#cb2-568" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0</span></span> +<span id="cb2-569"><a href="#cb2-569" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5</span></span> +<span id="cb2-570"><a href="#cb2-570" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5</span></span> +<span id="cb2-571"><a href="#cb2-571" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5</span></span> +<span id="cb2-572"><a href="#cb2-572" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0</span></span> +<span id="cb2-573"><a href="#cb2-573" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0</span></span> +<span id="cb2-574"><a href="#cb2-574" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-575"><a href="#cb2-575" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 5.0 10.0 1</span></span> +<span id="cb2-576"><a href="#cb2-576" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 20 20.0 5.0 1</span></span> +<span id="cb2-577"><a href="#cb2-577" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2.5 20 20.0 0.0 1</span></span> +<span id="cb2-578"><a href="#cb2-578" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 5.0 60 5.0 5.0 1</span></span> +<span id="cb2-579"><a href="#cb2-579" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 60 5.0 2.5 1</span></span> +<span id="cb2-580"><a href="#cb2-580" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 60 2.5 2.5 1</span></span> +<span id="cb2-581"><a href="#cb2-581" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-582"><a href="#cb2-582" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -0.350 0.9214793</span></span> +<span id="cb2-583"><a href="#cb2-583" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.675 -1.500 -0.7937151</span></span> +<span id="cb2-584"><a href="#cb2-584" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.925 -1.600 0.5612728</span></span> +<span id="cb2-585"><a href="#cb2-585" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.875 -0.850 2.9230889</span></span> +<span id="cb2-586"><a href="#cb2-586" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.550 -0.900 0.1761764</span></span> +<span id="cb2-587"><a href="#cb2-587" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.550 -0.725 1.0340286</span></span> +<span id="cb2-588"><a href="#cb2-588" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-589"><a href="#cb2-589" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.09295071 -0.2285207 -0.25704929</span></span> +<span id="cb2-590"><a href="#cb2-590" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 -0.18278050 -1.4687151 -1.68278050</span></span> +<span id="cb2-591"><a href="#cb2-591" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.24595450 -0.3637272 -1.84595450</span></span> +<span id="cb2-592"><a href="#cb2-592" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.74954312 2.0480889 -1.59954312</span></span> +<span id="cb2-593"><a href="#cb2-593" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.52864852 -0.3738236 -1.42864852</span></span> +<span id="cb2-594"><a href="#cb2-594" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.69916199 -0.5159714 -0.02583801</span></span> +<span id="cb2-595"><a href="#cb2-595" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-596"><a href="#cb2-596" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-597"><a href="#cb2-597" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-598"><a href="#cb2-598" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-599"><a href="#cb2-599" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-600"><a href="#cb2-600" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-601"><a href="#cb2-601" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-602"><a href="#cb2-602" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-603"><a href="#cb2-603" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-604"><a href="#cb2-604" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-605"><a href="#cb2-605" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-606"><a href="#cb2-606" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-607"><a href="#cb2-607" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-608"><a href="#cb2-608" aria-hidden="true" tabindex="-1"></a><span class="co">#> -2640.0 -1060.0 662.5 </span></span> +<span id="cb2-609"><a href="#cb2-609" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-610"><a href="#cb2-610" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 987.031183</span></span> +<span id="cb2-611"><a href="#cb2-611" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 957.685378</span></span> +<span id="cb2-612"><a href="#cb2-612" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 957.680370</span></span> +<span id="cb2-613"><a href="#cb2-613" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 954.925156</span></span> +<span id="cb2-614"><a href="#cb2-614" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 945.725076</span></span> +<span id="cb2-615"><a href="#cb2-615" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 945.695285</span></span> +<span id="cb2-616"><a href="#cb2-616" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 945.695175</span></span> +<span id="cb2-617"><a href="#cb2-617" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 945.695175</span></span> +<span id="cb2-618"><a href="#cb2-618" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 945.695175 </span></span> +<span id="cb2-619"><a href="#cb2-619" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-620"><a href="#cb2-620" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-621"><a href="#cb2-621" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-622"><a href="#cb2-622" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-623"><a href="#cb2-623" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-624"><a href="#cb2-624" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-625"><a href="#cb2-625" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-626"><a href="#cb2-626" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-627"><a href="#cb2-627" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-628"><a href="#cb2-628" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-629"><a href="#cb2-629" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-630"><a href="#cb2-630" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-631"><a href="#cb2-631" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-632"><a href="#cb2-632" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-633"><a href="#cb2-633" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0</span></span> +<span id="cb2-634"><a href="#cb2-634" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5</span></span> +<span id="cb2-635"><a href="#cb2-635" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5</span></span> +<span id="cb2-636"><a href="#cb2-636" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5</span></span> +<span id="cb2-637"><a href="#cb2-637" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0</span></span> +<span id="cb2-638"><a href="#cb2-638" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0</span></span> +<span id="cb2-639"><a href="#cb2-639" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-640"><a href="#cb2-640" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 5.0 10.0 1</span></span> +<span id="cb2-641"><a href="#cb2-641" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 20 20.0 5.0 1</span></span> +<span id="cb2-642"><a href="#cb2-642" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2.5 20 20.0 0.0 1</span></span> +<span id="cb2-643"><a href="#cb2-643" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 5.0 60 5.0 5.0 1</span></span> +<span id="cb2-644"><a href="#cb2-644" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 60 5.0 2.5 1</span></span> +<span id="cb2-645"><a href="#cb2-645" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 60 2.5 2.5 1</span></span> +<span id="cb2-646"><a href="#cb2-646" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-647"><a href="#cb2-647" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -0.350 -0.8218428</span></span> +<span id="cb2-648"><a href="#cb2-648" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.675 -1.500 0.4133131</span></span> +<span id="cb2-649"><a href="#cb2-649" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.925 -1.600 0.4824588</span></span> +<span id="cb2-650"><a href="#cb2-650" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.875 -0.850 -1.2658097</span></span> +<span id="cb2-651"><a href="#cb2-651" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.550 -0.900 -0.6930574</span></span> +<span id="cb2-652"><a href="#cb2-652" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.550 -0.725 -0.6815915</span></span> +<span id="cb2-653"><a href="#cb2-653" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-654"><a href="#cb2-654" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.6493651 -1.9718428 -0.9993651 2</span></span> +<span id="cb2-655"><a href="#cb2-655" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.8461510 -0.2616869 -0.6538490 1</span></span> +<span id="cb2-656"><a href="#cb2-656" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.3849732 -0.4425412 -1.2150268 1</span></span> +<span id="cb2-657"><a href="#cb2-657" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.2971578 -2.1408097 -1.1471578 2</span></span> +<span id="cb2-658"><a href="#cb2-658" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.8024491 -1.2430574 -1.7024491 1</span></span> +<span id="cb2-659"><a href="#cb2-659" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.4752339 -2.2315915 -1.2002339 2</span></span> +<span id="cb2-660"><a href="#cb2-660" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-661"><a href="#cb2-661" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-662"><a href="#cb2-662" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-663"><a href="#cb2-663" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-664"><a href="#cb2-664" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-665"><a href="#cb2-665" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-666"><a href="#cb2-666" aria-hidden="true" tabindex="-1"></a><span class="co">#> -1320.0 -1027.5 537.5 </span></span> +<span id="cb2-667"><a href="#cb2-667" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-668"><a href="#cb2-668" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 992.731937</span></span> +<span id="cb2-669"><a href="#cb2-669" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 967.306984</span></span> +<span id="cb2-670"><a href="#cb2-670" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 967.287995</span></span> +<span id="cb2-671"><a href="#cb2-671" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 964.318376</span></span> +<span id="cb2-672"><a href="#cb2-672" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 964.313823</span></span> +<span id="cb2-673"><a href="#cb2-673" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 964.313820</span></span> +<span id="cb2-674"><a href="#cb2-674" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 964.313820</span></span> +<span id="cb2-675"><a href="#cb2-675" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 964.313820 </span></span> +<span id="cb2-676"><a href="#cb2-676" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-677"><a href="#cb2-677" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-678"><a href="#cb2-678" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-679"><a href="#cb2-679" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-680"><a href="#cb2-680" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-681"><a href="#cb2-681" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-682"><a href="#cb2-682" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-683"><a href="#cb2-683" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.01 -0.06 -0.05 0.01 0.01</span></span> +<span id="cb2-684"><a href="#cb2-684" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00</span></span> +<span id="cb2-685"><a href="#cb2-685" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-686"><a href="#cb2-686" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-687"><a href="#cb2-687" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.06 0.01 0.06 0.07 0.01 0.01</span></span> +<span id="cb2-688"><a href="#cb2-688" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-689"><a href="#cb2-689" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-690"><a href="#cb2-690" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-691"><a href="#cb2-691" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-692"><a href="#cb2-692" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-693"><a href="#cb2-693" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-694"><a href="#cb2-694" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-695"><a href="#cb2-695" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-696"><a href="#cb2-696" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-697"><a href="#cb2-697" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-698"><a href="#cb2-698" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-699"><a href="#cb2-699" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-700"><a href="#cb2-700" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-701"><a href="#cb2-701" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-702"><a href="#cb2-702" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-703"><a href="#cb2-703" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-704"><a href="#cb2-704" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-705"><a href="#cb2-705" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-706"><a href="#cb2-706" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-707"><a href="#cb2-707" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-708"><a href="#cb2-708" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-709"><a href="#cb2-709" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-710"><a href="#cb2-710" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-711"><a href="#cb2-711" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-712"><a href="#cb2-712" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-713"><a href="#cb2-713" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-714"><a href="#cb2-714" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-715"><a href="#cb2-715" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-716"><a href="#cb2-716" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-717"><a href="#cb2-717" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-718"><a href="#cb2-718" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-719"><a href="#cb2-719" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-720"><a href="#cb2-720" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-721"><a href="#cb2-721" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-722"><a href="#cb2-722" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-723"><a href="#cb2-723" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-724"><a href="#cb2-724" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-725"><a href="#cb2-725" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-726"><a href="#cb2-726" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-727"><a href="#cb2-727" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-728"><a href="#cb2-728" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-729"><a href="#cb2-729" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-730"><a href="#cb2-730" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-731"><a href="#cb2-731" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-732"><a href="#cb2-732" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-733"><a href="#cb2-733" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-734"><a href="#cb2-734" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-735"><a href="#cb2-735" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0</span></span> +<span id="cb2-736"><a href="#cb2-736" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5</span></span> +<span id="cb2-737"><a href="#cb2-737" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0</span></span> +<span id="cb2-738"><a href="#cb2-738" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0</span></span> +<span id="cb2-739"><a href="#cb2-739" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0</span></span> +<span id="cb2-740"><a href="#cb2-740" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0</span></span> +<span id="cb2-741"><a href="#cb2-741" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-742"><a href="#cb2-742" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0 60 20.0 10.0 1</span></span> +<span id="cb2-743"><a href="#cb2-743" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 10 40 20.0 0.0 1</span></span> +<span id="cb2-744"><a href="#cb2-744" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 10 80 2.5 0.0 1</span></span> +<span id="cb2-745"><a href="#cb2-745" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10 20 20.0 2.5 1</span></span> +<span id="cb2-746"><a href="#cb2-746" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10 80 10.0 0.0 1</span></span> +<span id="cb2-747"><a href="#cb2-747" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0 40 20.0 10.0 1</span></span> +<span id="cb2-748"><a href="#cb2-748" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-749"><a href="#cb2-749" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -1.800 0.4772651</span></span> +<span id="cb2-750"><a href="#cb2-750" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.575 -1.800 -1.0611813</span></span> +<span id="cb2-751"><a href="#cb2-751" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.400 -0.975 -0.4549814</span></span> +<span id="cb2-752"><a href="#cb2-752" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.950 -1.550 1.0741179</span></span> +<span id="cb2-753"><a href="#cb2-753" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.500 0.6850764</span></span> +<span id="cb2-754"><a href="#cb2-754" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.300 -1.600 2.1581413</span></span> +<span id="cb2-755"><a href="#cb2-755" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-756"><a href="#cb2-756" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.58862455 -0.6727349 -2.3886245</span></span> +<span id="cb2-757"><a href="#cb2-757" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1.67391615 -1.6361813 -0.1260839</span></span> +<span id="cb2-758"><a href="#cb2-758" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.08433351 -1.8549814 -0.8906665</span></span> +<span id="cb2-759"><a href="#cb2-759" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.16471135 0.1241179 -1.3852887</span></span> +<span id="cb2-760"><a href="#cb2-760" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.80503749 -1.1149236 -2.3050375</span></span> +<span id="cb2-761"><a href="#cb2-761" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.78193942 0.8581413 -2.3819394</span></span> +<span id="cb2-762"><a href="#cb2-762" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-763"><a href="#cb2-763" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-764"><a href="#cb2-764" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2</span></span> +<span id="cb2-765"><a href="#cb2-765" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-766"><a href="#cb2-766" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-767"><a href="#cb2-767" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-768"><a href="#cb2-768" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-769"><a href="#cb2-769" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-770"><a href="#cb2-770" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-771"><a href="#cb2-771" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-772"><a href="#cb2-772" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-773"><a href="#cb2-773" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-774"><a href="#cb2-774" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-775"><a href="#cb2-775" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-776"><a href="#cb2-776" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-777"><a href="#cb2-777" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-778"><a href="#cb2-778" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-779"><a href="#cb2-779" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-780"><a href="#cb2-780" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-781"><a href="#cb2-781" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-782"><a href="#cb2-782" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-783"><a href="#cb2-783" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-784"><a href="#cb2-784" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0</span></span> +<span id="cb2-785"><a href="#cb2-785" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5</span></span> +<span id="cb2-786"><a href="#cb2-786" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0</span></span> +<span id="cb2-787"><a href="#cb2-787" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0</span></span> +<span id="cb2-788"><a href="#cb2-788" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0</span></span> +<span id="cb2-789"><a href="#cb2-789" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0</span></span> +<span id="cb2-790"><a href="#cb2-790" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-791"><a href="#cb2-791" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0 60 20.0 10.0 1</span></span> +<span id="cb2-792"><a href="#cb2-792" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 10 40 20.0 0.0 1</span></span> +<span id="cb2-793"><a href="#cb2-793" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 10 80 2.5 0.0 1</span></span> +<span id="cb2-794"><a href="#cb2-794" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10 20 20.0 2.5 1</span></span> +<span id="cb2-795"><a href="#cb2-795" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10 80 10.0 0.0 1</span></span> +<span id="cb2-796"><a href="#cb2-796" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0 40 20.0 10.0 1</span></span> +<span id="cb2-797"><a href="#cb2-797" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-798"><a href="#cb2-798" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -1.800 -0.284096565</span></span> +<span id="cb2-799"><a href="#cb2-799" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.575 -1.800 -0.020855208</span></span> +<span id="cb2-800"><a href="#cb2-800" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.400 -0.975 2.808193631</span></span> +<span id="cb2-801"><a href="#cb2-801" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.950 -1.550 1.512635398</span></span> +<span id="cb2-802"><a href="#cb2-802" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.500 -0.869856696</span></span> +<span id="cb2-803"><a href="#cb2-803" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.300 -1.600 0.001496538</span></span> +<span id="cb2-804"><a href="#cb2-804" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-805"><a href="#cb2-805" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 3.7852439 -1.4340966 1.9852439 2</span></span> +<span id="cb2-806"><a href="#cb2-806" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2.5441347 -0.5958552 0.7441347 2</span></span> +<span id="cb2-807"><a href="#cb2-807" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.1408644 1.4081936 -1.1158644 1</span></span> +<span id="cb2-808"><a href="#cb2-808" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.2739250 0.5626354 -1.8239250 1</span></span> +<span id="cb2-809"><a href="#cb2-809" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.2920285 -2.6698567 -1.7920285 2</span></span> +<span id="cb2-810"><a href="#cb2-810" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.9243727 -1.2985035 -0.6756273 2</span></span> +<span id="cb2-811"><a href="#cb2-811" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-812"><a href="#cb2-812" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-813"><a href="#cb2-813" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-814"><a href="#cb2-814" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-815"><a href="#cb2-815" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-816"><a href="#cb2-816" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-817"><a href="#cb2-817" aria-hidden="true" tabindex="-1"></a><span class="co">#> -2400 -3680 1320 </span></span> +<span id="cb2-818"><a href="#cb2-818" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-819"><a href="#cb2-819" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 956.785003</span></span> +<span id="cb2-820"><a href="#cb2-820" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 912.039295</span></span> +<span id="cb2-821"><a href="#cb2-821" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 911.870417</span></span> +<span id="cb2-822"><a href="#cb2-822" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 885.881709</span></span> +<span id="cb2-823"><a href="#cb2-823" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 885.187568</span></span> +<span id="cb2-824"><a href="#cb2-824" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 885.171492</span></span> +<span id="cb2-825"><a href="#cb2-825" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 885.171476</span></span> +<span id="cb2-826"><a href="#cb2-826" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 885.171476</span></span> +<span id="cb2-827"><a href="#cb2-827" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 885.171476 </span></span> +<span id="cb2-828"><a href="#cb2-828" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-829"><a href="#cb2-829" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-830"><a href="#cb2-830" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-831"><a href="#cb2-831" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-832"><a href="#cb2-832" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-833"><a href="#cb2-833" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-834"><a href="#cb2-834" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-835"><a href="#cb2-835" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-836"><a href="#cb2-836" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-837"><a href="#cb2-837" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-838"><a href="#cb2-838" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-839"><a href="#cb2-839" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-840"><a href="#cb2-840" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-841"><a href="#cb2-841" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-842"><a href="#cb2-842" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0</span></span> +<span id="cb2-843"><a href="#cb2-843" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5</span></span> +<span id="cb2-844"><a href="#cb2-844" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0</span></span> +<span id="cb2-845"><a href="#cb2-845" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0</span></span> +<span id="cb2-846"><a href="#cb2-846" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0</span></span> +<span id="cb2-847"><a href="#cb2-847" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0</span></span> +<span id="cb2-848"><a href="#cb2-848" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-849"><a href="#cb2-849" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0 60 20.0 10.0 1</span></span> +<span id="cb2-850"><a href="#cb2-850" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 10 40 20.0 0.0 1</span></span> +<span id="cb2-851"><a href="#cb2-851" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 10 80 2.5 0.0 1</span></span> +<span id="cb2-852"><a href="#cb2-852" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10 20 20.0 2.5 1</span></span> +<span id="cb2-853"><a href="#cb2-853" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10 80 10.0 0.0 1</span></span> +<span id="cb2-854"><a href="#cb2-854" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0 40 20.0 10.0 1</span></span> +<span id="cb2-855"><a href="#cb2-855" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-856"><a href="#cb2-856" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -1.800 0.6645192</span></span> +<span id="cb2-857"><a href="#cb2-857" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.575 -1.800 -0.8450051</span></span> +<span id="cb2-858"><a href="#cb2-858" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.400 -0.975 0.1125148</span></span> +<span id="cb2-859"><a href="#cb2-859" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.950 -1.550 1.0543183</span></span> +<span id="cb2-860"><a href="#cb2-860" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.500 1.1168013</span></span> +<span id="cb2-861"><a href="#cb2-861" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.300 -1.600 -0.1311416</span></span> +<span id="cb2-862"><a href="#cb2-862" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-863"><a href="#cb2-863" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2.3304233 -0.4854808 0.5304233 2</span></span> +<span id="cb2-864"><a href="#cb2-864" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.2022020 -1.4200051 -1.5977980 1</span></span> +<span id="cb2-865"><a href="#cb2-865" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.1148274 -1.2874852 -1.0898274 2</span></span> +<span id="cb2-866"><a href="#cb2-866" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -1.3880265 0.1043183 -2.9380265 1</span></span> +<span id="cb2-867"><a href="#cb2-867" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.1356148 -0.6831987 -1.3643852 1</span></span> +<span id="cb2-868"><a href="#cb2-868" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.9455601 -1.4311416 -0.6544399 2</span></span> +<span id="cb2-869"><a href="#cb2-869" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-870"><a href="#cb2-870" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-871"><a href="#cb2-871" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-872"><a href="#cb2-872" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-873"><a href="#cb2-873" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-874"><a href="#cb2-874" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-875"><a href="#cb2-875" aria-hidden="true" tabindex="-1"></a><span class="co">#> -3200.0 -2932.5 1142.5 </span></span> +<span id="cb2-876"><a href="#cb2-876" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-877"><a href="#cb2-877" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 965.989359</span></span> +<span id="cb2-878"><a href="#cb2-878" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 962.943975</span></span> +<span id="cb2-879"><a href="#cb2-879" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 962.790350</span></span> +<span id="cb2-880"><a href="#cb2-880" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 915.909913</span></span> +<span id="cb2-881"><a href="#cb2-881" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 915.781694</span></span> +<span id="cb2-882"><a href="#cb2-882" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 915.780836</span></span> +<span id="cb2-883"><a href="#cb2-883" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 915.780833</span></span> +<span id="cb2-884"><a href="#cb2-884" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 915.780833</span></span> +<span id="cb2-885"><a href="#cb2-885" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 915.780833 </span></span> +<span id="cb2-886"><a href="#cb2-886" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-887"><a href="#cb2-887" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-888"><a href="#cb2-888" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-889"><a href="#cb2-889" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-890"><a href="#cb2-890" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-891"><a href="#cb2-891" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-892"><a href="#cb2-892" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-893"><a href="#cb2-893" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.00</span></span> +<span id="cb2-894"><a href="#cb2-894" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00</span></span> +<span id="cb2-895"><a href="#cb2-895" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-896"><a href="#cb2-896" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-897"><a href="#cb2-897" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.01 0.02 0.00 0.03 0.03 0.01</span></span> +<span id="cb2-898"><a href="#cb2-898" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-899"><a href="#cb2-899" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-900"><a href="#cb2-900" aria-hidden="true" tabindex="-1"></a><span class="co">#> TRUE </span></span> +<span id="cb2-901"><a href="#cb2-901" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-902"><a href="#cb2-902" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-903"><a href="#cb2-903" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-904"><a href="#cb2-904" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-905"><a href="#cb2-905" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-906"><a href="#cb2-906" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-907"><a href="#cb2-907" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-908"><a href="#cb2-908" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-909"><a href="#cb2-909" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-910"><a href="#cb2-910" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-911"><a href="#cb2-911" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-912"><a href="#cb2-912" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-913"><a href="#cb2-913" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-914"><a href="#cb2-914" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-915"><a href="#cb2-915" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-916"><a href="#cb2-916" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-917"><a href="#cb2-917" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-918"><a href="#cb2-918" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-919"><a href="#cb2-919" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-920"><a href="#cb2-920" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-921"><a href="#cb2-921" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-922"><a href="#cb2-922" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-923"><a href="#cb2-923" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-924"><a href="#cb2-924" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-925"><a href="#cb2-925" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-926"><a href="#cb2-926" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-927"><a href="#cb2-927" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-928"><a href="#cb2-928" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-929"><a href="#cb2-929" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-930"><a href="#cb2-930" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-931"><a href="#cb2-931" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-932"><a href="#cb2-932" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-933"><a href="#cb2-933" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-934"><a href="#cb2-934" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-935"><a href="#cb2-935" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-936"><a href="#cb2-936" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-937"><a href="#cb2-937" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-938"><a href="#cb2-938" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1</span></span> +<span id="cb2-939"><a href="#cb2-939" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 1 1 80</span></span> +<span id="cb2-940"><a href="#cb2-940" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 2 1 60</span></span> +<span id="cb2-941"><a href="#cb2-941" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 3 1 60</span></span> +<span id="cb2-942"><a href="#cb2-942" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 4 1 20</span></span> +<span id="cb2-943"><a href="#cb2-943" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 5 1 40</span></span> +<span id="cb2-944"><a href="#cb2-944" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 6 1 60</span></span> +<span id="cb2-945"><a href="#cb2-945" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3</span></span> +<span id="cb2-946"><a href="#cb2-946" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 20 2.5 20.0 10 5</span></span> +<span id="cb2-947"><a href="#cb2-947" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 40 5.0 10.0 5 10</span></span> +<span id="cb2-948"><a href="#cb2-948" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 20 20.0 20.0 0 10</span></span> +<span id="cb2-949"><a href="#cb2-949" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 80 20.0 2.5 0 10</span></span> +<span id="cb2-950"><a href="#cb2-950" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 80 10.0 5.0 10 5</span></span> +<span id="cb2-951"><a href="#cb2-951" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 80 5.0 2.5 0 0</span></span> +<span id="cb2-952"><a href="#cb2-952" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-953"><a href="#cb2-953" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.500 0.53504757</span></span> +<span id="cb2-954"><a href="#cb2-954" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.850 -0.900 -0.93293876</span></span> +<span id="cb2-955"><a href="#cb2-955" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -2.000 -1.400 -1.97083982</span></span> +<span id="cb2-956"><a href="#cb2-956" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.600 -0.775 -0.09847358</span></span> +<span id="cb2-957"><a href="#cb2-957" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.900 -1.050 -0.91059496</span></span> +<span id="cb2-958"><a href="#cb2-958" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.950 -0.975 -0.27261150</span></span> +<span id="cb2-959"><a href="#cb2-959" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-960"><a href="#cb2-960" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.9131705 -0.2399524 -0.5868295 1</span></span> +<span id="cb2-961"><a href="#cb2-961" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 -1.5528907 -1.7829388 -2.4528907 1</span></span> +<span id="cb2-962"><a href="#cb2-962" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.2159494 -3.9708398 -1.6159494 2</span></span> +<span id="cb2-963"><a href="#cb2-963" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.1685500 -1.6984736 -0.6064500 2</span></span> +<span id="cb2-964"><a href="#cb2-964" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1.6256604 -1.8105950 0.5756604 2</span></span> +<span id="cb2-965"><a href="#cb2-965" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1.5055143 -1.2226115 0.5305143 2</span></span> +<span id="cb2-966"><a href="#cb2-966" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-967"><a href="#cb2-967" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-968"><a href="#cb2-968" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-969"><a href="#cb2-969" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-970"><a href="#cb2-970" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-971"><a href="#cb2-971" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-972"><a href="#cb2-972" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-973"><a href="#cb2-973" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-974"><a href="#cb2-974" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-975"><a href="#cb2-975" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-976"><a href="#cb2-976" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-977"><a href="#cb2-977" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-978"><a href="#cb2-978" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-979"><a href="#cb2-979" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-980"><a href="#cb2-980" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1</span></span> +<span id="cb2-981"><a href="#cb2-981" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 1 1 80</span></span> +<span id="cb2-982"><a href="#cb2-982" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 2 1 60</span></span> +<span id="cb2-983"><a href="#cb2-983" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 3 1 60</span></span> +<span id="cb2-984"><a href="#cb2-984" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 4 1 20</span></span> +<span id="cb2-985"><a href="#cb2-985" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 5 1 40</span></span> +<span id="cb2-986"><a href="#cb2-986" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 6 1 60</span></span> +<span id="cb2-987"><a href="#cb2-987" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3</span></span> +<span id="cb2-988"><a href="#cb2-988" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 20 2.5 20.0 10 5</span></span> +<span id="cb2-989"><a href="#cb2-989" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 40 5.0 10.0 5 10</span></span> +<span id="cb2-990"><a href="#cb2-990" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 20 20.0 20.0 0 10</span></span> +<span id="cb2-991"><a href="#cb2-991" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 80 20.0 2.5 0 10</span></span> +<span id="cb2-992"><a href="#cb2-992" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 80 10.0 5.0 10 5</span></span> +<span id="cb2-993"><a href="#cb2-993" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 80 5.0 2.5 0 0</span></span> +<span id="cb2-994"><a href="#cb2-994" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-995"><a href="#cb2-995" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.500 -0.2361754</span></span> +<span id="cb2-996"><a href="#cb2-996" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.850 -0.900 1.2985628</span></span> +<span id="cb2-997"><a href="#cb2-997" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -2.000 -1.400 2.6517108</span></span> +<span id="cb2-998"><a href="#cb2-998" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.600 -0.775 -0.3215271</span></span> +<span id="cb2-999"><a href="#cb2-999" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.900 -1.050 -1.1880836</span></span> +<span id="cb2-1000"><a href="#cb2-1000" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.950 -0.975 0.9386790</span></span> +<span id="cb2-1001"><a href="#cb2-1001" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-1002"><a href="#cb2-1002" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.2249671 -1.01117540 -1.72496708</span></span> +<span id="cb2-1003"><a href="#cb2-1003" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.4231642 0.44856278 -0.47683584</span></span> +<span id="cb2-1004"><a href="#cb2-1004" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.4632492 0.65171082 -0.93675077</span></span> +<span id="cb2-1005"><a href="#cb2-1005" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.6960098 -1.92152712 -0.07899021</span></span> +<span id="cb2-1006"><a href="#cb2-1006" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1.0360301 -2.08808358 -0.01396992</span></span> +<span id="cb2-1007"><a href="#cb2-1007" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.1024565 -0.01132103 -1.07745654</span></span> +<span id="cb2-1008"><a href="#cb2-1008" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-1009"><a href="#cb2-1009" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-1010"><a href="#cb2-1010" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-1011"><a href="#cb2-1011" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-1012"><a href="#cb2-1012" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-1013"><a href="#cb2-1013" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-1014"><a href="#cb2-1014" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-1015"><a href="#cb2-1015" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1016"><a href="#cb2-1016" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1017"><a href="#cb2-1017" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-1018"><a href="#cb2-1018" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-1019"><a href="#cb2-1019" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-1020"><a href="#cb2-1020" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-1021"><a href="#cb2-1021" aria-hidden="true" tabindex="-1"></a><span class="co">#> -140.0 -935.0 332.5 </span></span> +<span id="cb2-1022"><a href="#cb2-1022" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-1023"><a href="#cb2-1023" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 978.973745</span></span> +<span id="cb2-1024"><a href="#cb2-1024" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 978.139237</span></span> +<span id="cb2-1025"><a href="#cb2-1025" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 978.053388</span></span> +<span id="cb2-1026"><a href="#cb2-1026" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 974.539684</span></span> +<span id="cb2-1027"><a href="#cb2-1027" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 974.530921</span></span> +<span id="cb2-1028"><a href="#cb2-1028" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 974.530913</span></span> +<span id="cb2-1029"><a href="#cb2-1029" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 974.530913</span></span> +<span id="cb2-1030"><a href="#cb2-1030" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 974.530913 </span></span> +<span id="cb2-1031"><a href="#cb2-1031" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-1032"><a href="#cb2-1032" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-1033"><a href="#cb2-1033" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-1034"><a href="#cb2-1034" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1035"><a href="#cb2-1035" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-1036"><a href="#cb2-1036" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1037"><a href="#cb2-1037" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-1038"><a href="#cb2-1038" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-1039"><a href="#cb2-1039" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-1040"><a href="#cb2-1040" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1041"><a href="#cb2-1041" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-1042"><a href="#cb2-1042" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1043"><a href="#cb2-1043" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-1044"><a href="#cb2-1044" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1</span></span> +<span id="cb2-1045"><a href="#cb2-1045" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 1 1 80</span></span> +<span id="cb2-1046"><a href="#cb2-1046" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 2 1 60</span></span> +<span id="cb2-1047"><a href="#cb2-1047" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 3 1 60</span></span> +<span id="cb2-1048"><a href="#cb2-1048" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 4 1 20</span></span> +<span id="cb2-1049"><a href="#cb2-1049" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 5 1 40</span></span> +<span id="cb2-1050"><a href="#cb2-1050" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 6 1 60</span></span> +<span id="cb2-1051"><a href="#cb2-1051" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3</span></span> +<span id="cb2-1052"><a href="#cb2-1052" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 20 2.5 20.0 10 5</span></span> +<span id="cb2-1053"><a href="#cb2-1053" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 40 5.0 10.0 5 10</span></span> +<span id="cb2-1054"><a href="#cb2-1054" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 20 20.0 20.0 0 10</span></span> +<span id="cb2-1055"><a href="#cb2-1055" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 80 20.0 2.5 0 10</span></span> +<span id="cb2-1056"><a href="#cb2-1056" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 80 10.0 5.0 10 5</span></span> +<span id="cb2-1057"><a href="#cb2-1057" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 80 5.0 2.5 0 0</span></span> +<span id="cb2-1058"><a href="#cb2-1058" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-1059"><a href="#cb2-1059" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.500 0.2982044</span></span> +<span id="cb2-1060"><a href="#cb2-1060" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.850 -0.900 3.4745400</span></span> +<span id="cb2-1061"><a href="#cb2-1061" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -2.000 -1.400 3.5031943</span></span> +<span id="cb2-1062"><a href="#cb2-1062" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.600 -0.775 0.8386792</span></span> +<span id="cb2-1063"><a href="#cb2-1063" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.900 -1.050 1.8279937</span></span> +<span id="cb2-1064"><a href="#cb2-1064" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.950 -0.975 -1.1295965</span></span> +<span id="cb2-1065"><a href="#cb2-1065" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-1066"><a href="#cb2-1066" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.85521723 -0.4767956 -0.6447828</span></span> +<span id="cb2-1067"><a href="#cb2-1067" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2.20601106 2.6245400 1.3060111</span></span> +<span id="cb2-1068"><a href="#cb2-1068" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.03275998 1.5031943 -1.4327600</span></span> +<span id="cb2-1069"><a href="#cb2-1069" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.87875516 -0.7613208 0.1037552</span></span> +<span id="cb2-1070"><a href="#cb2-1070" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.45114524 0.9279937 -1.5011452</span></span> +<span id="cb2-1071"><a href="#cb2-1071" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.63521469 -2.0795965 -1.6102147</span></span> +<span id="cb2-1072"><a href="#cb2-1072" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-1073"><a href="#cb2-1073" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-1074"><a href="#cb2-1074" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-1075"><a href="#cb2-1075" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-1076"><a href="#cb2-1076" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-1077"><a href="#cb2-1077" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-1078"><a href="#cb2-1078" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-1079"><a href="#cb2-1079" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1080"><a href="#cb2-1080" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1081"><a href="#cb2-1081" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-1082"><a href="#cb2-1082" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-1083"><a href="#cb2-1083" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-1084"><a href="#cb2-1084" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-1085"><a href="#cb2-1085" aria-hidden="true" tabindex="-1"></a><span class="co">#> -660.0 -925.0 442.5 </span></span> +<span id="cb2-1086"><a href="#cb2-1086" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-1087"><a href="#cb2-1087" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 990.452175</span></span> +<span id="cb2-1088"><a href="#cb2-1088" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 972.395315</span></span> +<span id="cb2-1089"><a href="#cb2-1089" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 972.382101</span></span> +<span id="cb2-1090"><a href="#cb2-1090" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 968.290249</span></span> +<span id="cb2-1091"><a href="#cb2-1091" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 968.286828</span></span> +<span id="cb2-1092"><a href="#cb2-1092" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 968.286823</span></span> +<span id="cb2-1093"><a href="#cb2-1093" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 968.286823</span></span> +<span id="cb2-1094"><a href="#cb2-1094" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 968.286823 </span></span> +<span id="cb2-1095"><a href="#cb2-1095" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-1096"><a href="#cb2-1096" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1097"><a href="#cb2-1097" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1098"><a href="#cb2-1098" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-1099"><a href="#cb2-1099" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-1100"><a href="#cb2-1100" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-1101"><a href="#cb2-1101" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-1102"><a href="#cb2-1102" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00</span></span> +<span id="cb2-1103"><a href="#cb2-1103" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.01 0.01 0.01 0.02 0.01 0.00</span></span> +<span id="cb2-1104"><a href="#cb2-1104" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-1105"><a href="#cb2-1105" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-1106"><a href="#cb2-1106" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.20 0.13 0.10 0.29 0.19 0.09</span></span> +<span id="cb2-1107"><a href="#cb2-1107" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-1108"><a href="#cb2-1108" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1109"><a href="#cb2-1109" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-1110"><a href="#cb2-1110" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-1111"><a href="#cb2-1111" aria-hidden="true" tabindex="-1"></a><span class="co">#> 34.002 sec elapsed</span></span> +<span id="cb2-1112"><a href="#cb2-1112" aria-hidden="true" tabindex="-1"></a><span class="co">#> $tic</span></span> +<span id="cb2-1113"><a href="#cb2-1113" aria-hidden="true" tabindex="-1"></a><span class="co">#> elapsed </span></span> +<span id="cb2-1114"><a href="#cb2-1114" aria-hidden="true" tabindex="-1"></a><span class="co">#> 672.76 </span></span> +<span id="cb2-1115"><a href="#cb2-1115" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1116"><a href="#cb2-1116" aria-hidden="true" tabindex="-1"></a><span class="co">#> $toc</span></span> +<span id="cb2-1117"><a href="#cb2-1117" aria-hidden="true" tabindex="-1"></a><span class="co">#> elapsed </span></span> +<span id="cb2-1118"><a href="#cb2-1118" aria-hidden="true" tabindex="-1"></a><span class="co">#> 706.762 </span></span> +<span id="cb2-1119"><a href="#cb2-1119" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1120"><a href="#cb2-1120" aria-hidden="true" tabindex="-1"></a><span class="co">#> $msg</span></span> +<span id="cb2-1121"><a href="#cb2-1121" aria-hidden="true" tabindex="-1"></a><span class="co">#> logical(0)</span></span> +<span id="cb2-1122"><a href="#cb2-1122" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1123"><a href="#cb2-1123" aria-hidden="true" tabindex="-1"></a><span class="co">#> $callback_msg</span></span> +<span id="cb2-1124"><a href="#cb2-1124" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "34.002 sec elapsed"</span></span></code></pre></div> +<p><img src="" width="100%" /><img src="" width="100%" /><img src="" width="100%" /></p> + +</body> +</html> diff --git a/README.md b/README.md index c60ae4a269354e1020f50cd8ed08e360e9527014..42e8da0c18dcdd841de649e9d9c7c64df88cebd8 100644 --- a/README.md +++ b/README.md @@ -46,6 +46,1130 @@ remotes::install_gitlab(repo = "dj44vuri/simulateDCE" , host = "https://git.idiv This is a basic example which shows you how to solve a common problem: ``` r -library(simulateDCE) -## basic example code + library(simulateDCE) +library(rlang) + +print("lests") +#> [1] "lests" + +#set.seed(22233) + +# Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or Robjects for spdesign) +designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE") + +# on your computer, it would be something like +# designpath <- "c:/myfancyDCE/Designs" + + +# number of respondents +resps =120 + +# number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.) +nosim= 2 + +# If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size +decisiongroups=c(0,0.7,1) + +# set the values of the parameters you want to use in the simulation +bpreis = -0.01 +blade = -0.07 +bwarte = 0.02 + +# If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10 + +manipulations = list(alt1.x2= expr(alt1.x2/10), + alt1.x3= expr(alt1.x3/10), + alt2.x2= expr(alt2.x2/10), + alt2.x3= expr(alt2.x3/10) +) + + +#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes) +u<-list( u1 = + + list( + v1 =V.1~ bpreis * alt1.x1 + blade*alt1.x2 + bwarte*alt1.x3 , + v2 =V.2~ bpreis * alt2.x1 + blade*alt2.x2 + bwarte*alt2.x3 + ) + + , + u2 = list( v1 =V.1~ bpreis * alt1.x1 , + v2 =V.2~ bpreis * alt2.x1) + +) + +# specify the designtype "ngene" or "spdesign" +destype="ngene" + + +#lets go +sedrive <- simulateDCE::sim_all() +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 7 80 2.5 +#> 2 1 19 20 2.5 +#> 3 1 30 20 10.0 +#> 4 1 32 40 20.0 +#> 5 1 39 40 20.0 +#> 6 1 48 60 5.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 10.0 60 20.0 10 1 +#> 2 5.0 60 2.5 0 1 +#> 3 5.0 80 5.0 10 1 +#> 4 2.5 80 2.5 0 1 +#> 5 0.0 80 10.0 10 1 +#> 6 2.5 20 5.0 10 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.800 2.8927045 +#> 2 1 -0.275 -0.775 2.1129458 +#> 3 1 -0.800 -0.950 -0.3070059 +#> 4 1 -1.750 -0.975 0.2125815 +#> 5 1 -1.800 -1.300 0.5101632 +#> 6 1 -0.900 -0.350 -0.9494807 +#> e_2 U_1 U_2 CHOICE +#> 1 0.09958433 2.117705 -1.700416 1 +#> 2 3.47451776 1.837946 2.699518 2 +#> 3 -0.28860974 -1.107006 -1.238610 1 +#> 4 3.65240491 -1.537418 2.677405 2 +#> 5 -0.14448942 -1.289837 -1.444489 1 +#> 6 -1.04296995 -1.849481 -1.392970 2 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 7 80 2.5 +#> 2 1 19 20 2.5 +#> 3 1 30 20 10.0 +#> 4 1 32 40 20.0 +#> 5 1 39 40 20.0 +#> 6 1 48 60 5.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 10.0 60 20.0 10 1 +#> 2 5.0 60 2.5 0 1 +#> 3 5.0 80 5.0 10 1 +#> 4 2.5 80 2.5 0 1 +#> 5 0.0 80 10.0 10 1 +#> 6 2.5 20 5.0 10 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.800 -0.06362638 +#> 2 1 -0.275 -0.775 -0.81571577 +#> 3 1 -0.800 -0.950 -1.09388352 +#> 4 1 -1.750 -0.975 0.28996875 +#> 5 1 -1.800 -1.300 1.03059224 +#> 6 1 -0.900 -0.350 -1.10504379 +#> e_2 U_1 U_2 CHOICE +#> 1 0.1958595 -0.8386264 -1.6041405 1 +#> 2 0.1028995 -1.0907158 -0.6721005 2 +#> 3 0.7165451 -1.8938835 -0.2334549 2 +#> 4 1.4748351 -1.4600313 0.4998351 2 +#> 5 4.5718398 -0.7694078 3.2718398 2 +#> 6 0.8766732 -2.0050438 0.5266732 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -860.0 -1147.5 532.5 +#> initial value 998.131940 +#> iter 2 value 988.178813 +#> iter 3 value 959.683236 +#> iter 4 value 959.648380 +#> iter 5 value 955.999179 +#> iter 6 value 955.979330 +#> iter 7 value 955.979295 +#> iter 7 value 955.979295 +#> iter 7 value 955.979295 +#> final value 955.979295 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 7 80 2.5 +#> 2 1 19 20 2.5 +#> 3 1 30 20 10.0 +#> 4 1 32 40 20.0 +#> 5 1 39 40 20.0 +#> 6 1 48 60 5.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 10.0 60 20.0 10 1 +#> 2 5.0 60 2.5 0 1 +#> 3 5.0 80 5.0 10 1 +#> 4 2.5 80 2.5 0 1 +#> 5 0.0 80 10.0 10 1 +#> 6 2.5 20 5.0 10 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.800 -0.8816771 +#> 2 1 -0.275 -0.775 0.9004269 +#> 3 1 -0.800 -0.950 -0.3108731 +#> 4 1 -1.750 -0.975 -0.7695269 +#> 5 1 -1.800 -1.300 2.8853455 +#> 6 1 -0.900 -0.350 -0.1098324 +#> e_2 U_1 U_2 +#> 1 0.6516580 -1.6566771 -1.14834197 +#> 2 0.4584193 0.6254269 -0.31658066 +#> 3 1.2184928 -1.1108731 0.26849278 +#> 4 -0.1660211 -2.5195269 -1.14102109 +#> 5 -0.5943992 1.0853455 -1.89439922 +#> 6 0.3193140 -1.0098324 -0.03068595 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 2 +#> 4 2 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> 120 -655 295 +#> initial value 998.131940 +#> iter 2 value 994.305298 +#> iter 3 value 990.053293 +#> iter 4 value 989.940656 +#> iter 5 value 987.629292 +#> iter 6 value 987.628992 +#> iter 6 value 987.628991 +#> iter 6 value 987.628991 +#> final value 987.628991 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.01 -0.01 0.00 0.01 0.00 +#> est_blade 2 2 -0.04 0.02 -0.06 -0.02 0.03 0.02 +#> est_bwarte 3 2 0.02 0.00 0.02 0.03 0.01 0.00 +#> rob_pval0_bpreis 4 2 0.04 0.06 0.00 0.09 0.09 0.04 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.04 0.03 0.02 0.06 0.04 0.02 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE TRUE +#> 50 50 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 12 60 2.5 +#> 2 1 16 20 10.0 +#> 3 1 17 20 20.0 +#> 4 1 25 60 5.0 +#> 5 1 29 20 5.0 +#> 6 1 32 40 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 20.0 10 1 +#> 2 5.0 40 5.0 0 1 +#> 3 0.0 80 10.0 10 1 +#> 4 10.0 20 20.0 5 1 +#> 5 10.0 80 5.0 0 1 +#> 6 2.5 80 2.5 5 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.400 1.20580231 +#> 2 1 -0.800 -0.750 -0.72752412 +#> 3 1 -1.600 -1.300 -0.05762304 +#> 4 1 -0.750 -1.500 -0.83547157 +#> 5 1 -0.350 -1.150 3.85444600 +#> 6 1 -1.050 -0.875 1.64701776 +#> e_2 U_1 U_2 +#> 1 -0.28691332 0.4308023 -1.6869133 +#> 2 0.06648158 -1.5275241 -0.6835184 +#> 3 1.68916541 -1.6576230 0.3891654 +#> 4 0.40357792 -1.5854716 -1.0964221 +#> 5 0.13880669 3.5044460 -1.0111933 +#> 6 1.09745093 0.5970178 0.2224509 +#> CHOICE +#> 1 1 +#> 2 2 +#> 3 2 +#> 4 2 +#> 5 1 +#> 6 1 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 12 60 2.5 +#> 2 1 16 20 10.0 +#> 3 1 17 20 20.0 +#> 4 1 25 60 5.0 +#> 5 1 29 20 5.0 +#> 6 1 32 40 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 20.0 10 1 +#> 2 5.0 40 5.0 0 1 +#> 3 0.0 80 10.0 10 1 +#> 4 10.0 20 20.0 5 1 +#> 5 10.0 80 5.0 0 1 +#> 6 2.5 80 2.5 5 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.400 -0.09932726 +#> 2 1 -0.800 -0.750 2.18018219 +#> 3 1 -1.600 -1.300 1.30134429 +#> 4 1 -0.750 -1.500 1.55197796 +#> 5 1 -0.350 -1.150 0.07874983 +#> 6 1 -1.050 -0.875 -1.06565108 +#> e_2 U_1 U_2 +#> 1 2.2497903 -0.8743273 0.84979034 +#> 2 0.3329742 1.3801822 -0.41702578 +#> 3 0.9046182 -0.2986557 -0.39538182 +#> 4 -1.2414809 0.8019780 -2.74148090 +#> 5 -0.8624243 -0.2712502 -2.01242427 +#> 6 0.9398788 -2.1156511 0.06487882 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 1 +#> 4 1 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -340 -1095 305 +#> initial value 998.131940 +#> iter 2 value 984.073383 +#> iter 3 value 978.081615 +#> iter 4 value 977.767304 +#> iter 5 value 971.033395 +#> iter 6 value 971.027390 +#> iter 6 value 971.027385 +#> iter 6 value 971.027385 +#> final value 971.027385 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 12 60 2.5 +#> 2 1 16 20 10.0 +#> 3 1 17 20 20.0 +#> 4 1 25 60 5.0 +#> 5 1 29 20 5.0 +#> 6 1 32 40 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 20.0 10 1 +#> 2 5.0 40 5.0 0 1 +#> 3 0.0 80 10.0 10 1 +#> 4 10.0 20 20.0 5 1 +#> 5 10.0 80 5.0 0 1 +#> 6 2.5 80 2.5 5 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.400 0.44334136 +#> 2 1 -0.800 -0.750 -0.43185157 +#> 3 1 -1.600 -1.300 -0.09584172 +#> 4 1 -0.750 -1.500 2.74658736 +#> 5 1 -0.350 -1.150 -0.51575280 +#> 6 1 -1.050 -0.875 -0.33088933 +#> e_2 U_1 U_2 CHOICE +#> 1 0.3975165 -0.3316586 -1.0024835 1 +#> 2 1.4211569 -1.2318516 0.6711569 2 +#> 3 1.0034880 -1.6958417 -0.2965120 2 +#> 4 0.8780181 1.9965874 -0.6219819 1 +#> 5 0.9818505 -0.8657528 -0.1681495 2 +#> 6 1.7042698 -1.3808893 0.8292698 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -280 -905 345 +#> initial value 998.131940 +#> iter 2 value 988.003109 +#> iter 3 value 983.732741 +#> iter 4 value 983.724196 +#> iter 5 value 979.048736 +#> iter 6 value 979.044949 +#> iter 6 value 979.044947 +#> iter 6 value 979.044947 +#> final value 979.044947 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.04 0.01 -0.05 -0.04 0.01 0.01 +#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.01 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.50 0.41 0.21 0.79 0.58 0.29 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE +#> 100 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 3 80 5.0 +#> 2 1 5 60 2.5 +#> 3 1 10 80 2.5 +#> 4 1 34 80 2.5 +#> 5 1 37 40 5.0 +#> 6 1 39 20 20.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 5.0 10.0 1 +#> 2 5.0 20 20.0 5.0 1 +#> 3 2.5 20 20.0 0.0 1 +#> 4 5.0 60 5.0 5.0 1 +#> 5 10.0 60 5.0 2.5 1 +#> 6 2.5 60 2.5 2.5 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -0.350 -0.32663211 +#> 2 1 -0.675 -1.500 -0.04162689 +#> 3 1 -0.925 -1.600 -0.52492188 +#> 4 1 -0.875 -0.850 -1.14189023 +#> 5 1 -0.550 -0.900 0.19650068 +#> 6 1 -1.550 -0.725 2.74825383 +#> e_2 U_1 U_2 CHOICE +#> 1 0.2288010 -1.4766321 -0.1211990 2 +#> 2 1.0875948 -0.7166269 -0.4124052 2 +#> 3 0.1472598 -1.4499219 -1.4527402 1 +#> 4 0.5765191 -2.0168902 -0.2734809 2 +#> 5 -0.5803934 -0.3534993 -1.4803934 1 +#> 6 -0.8761884 1.1982538 -1.6011884 1 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 3 80 5.0 +#> 2 1 5 60 2.5 +#> 3 1 10 80 2.5 +#> 4 1 34 80 2.5 +#> 5 1 37 40 5.0 +#> 6 1 39 20 20.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 5.0 10.0 1 +#> 2 5.0 20 20.0 5.0 1 +#> 3 2.5 20 20.0 0.0 1 +#> 4 5.0 60 5.0 5.0 1 +#> 5 10.0 60 5.0 2.5 1 +#> 6 2.5 60 2.5 2.5 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -0.350 0.9214793 +#> 2 1 -0.675 -1.500 -0.7937151 +#> 3 1 -0.925 -1.600 0.5612728 +#> 4 1 -0.875 -0.850 2.9230889 +#> 5 1 -0.550 -0.900 0.1761764 +#> 6 1 -1.550 -0.725 1.0340286 +#> e_2 U_1 U_2 +#> 1 0.09295071 -0.2285207 -0.25704929 +#> 2 -0.18278050 -1.4687151 -1.68278050 +#> 3 -0.24595450 -0.3637272 -1.84595450 +#> 4 -0.74954312 2.0480889 -1.59954312 +#> 5 -0.52864852 -0.3738236 -1.42864852 +#> 6 0.69916199 -0.5159714 -0.02583801 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 1 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -2640.0 -1060.0 662.5 +#> initial value 998.131940 +#> iter 2 value 987.031183 +#> iter 3 value 957.685378 +#> iter 4 value 957.680370 +#> iter 5 value 954.925156 +#> iter 6 value 945.725076 +#> iter 7 value 945.695285 +#> iter 8 value 945.695175 +#> iter 8 value 945.695175 +#> final value 945.695175 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 3 80 5.0 +#> 2 1 5 60 2.5 +#> 3 1 10 80 2.5 +#> 4 1 34 80 2.5 +#> 5 1 37 40 5.0 +#> 6 1 39 20 20.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 5.0 10.0 1 +#> 2 5.0 20 20.0 5.0 1 +#> 3 2.5 20 20.0 0.0 1 +#> 4 5.0 60 5.0 5.0 1 +#> 5 10.0 60 5.0 2.5 1 +#> 6 2.5 60 2.5 2.5 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -0.350 -0.8218428 +#> 2 1 -0.675 -1.500 0.4133131 +#> 3 1 -0.925 -1.600 0.4824588 +#> 4 1 -0.875 -0.850 -1.2658097 +#> 5 1 -0.550 -0.900 -0.6930574 +#> 6 1 -1.550 -0.725 -0.6815915 +#> e_2 U_1 U_2 CHOICE +#> 1 -0.6493651 -1.9718428 -0.9993651 2 +#> 2 0.8461510 -0.2616869 -0.6538490 1 +#> 3 0.3849732 -0.4425412 -1.2150268 1 +#> 4 -0.2971578 -2.1408097 -1.1471578 2 +#> 5 -0.8024491 -1.2430574 -1.7024491 1 +#> 6 -0.4752339 -2.2315915 -1.2002339 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -1320.0 -1027.5 537.5 +#> initial value 998.131940 +#> iter 2 value 992.731937 +#> iter 3 value 967.306984 +#> iter 4 value 967.287995 +#> iter 5 value 964.318376 +#> iter 6 value 964.313823 +#> iter 6 value 964.313820 +#> iter 6 value 964.313820 +#> final value 964.313820 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.05 0.01 -0.06 -0.05 0.01 0.01 +#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.06 0.01 0.06 0.07 0.01 0.01 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE +#> 100 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 9 80 5.0 +#> 2 1 12 60 2.5 +#> 3 1 13 20 20.0 +#> 4 1 70 80 5.0 +#> 5 1 71 60 20.0 +#> 6 1 73 60 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0 60 20.0 10.0 1 +#> 2 10 40 20.0 0.0 1 +#> 3 10 80 2.5 0.0 1 +#> 4 10 20 20.0 2.5 1 +#> 5 10 80 10.0 0.0 1 +#> 6 0 40 20.0 10.0 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -1.800 0.4772651 +#> 2 1 -0.575 -1.800 -1.0611813 +#> 3 1 -1.400 -0.975 -0.4549814 +#> 4 1 -0.950 -1.550 1.0741179 +#> 5 1 -1.800 -1.500 0.6850764 +#> 6 1 -1.300 -1.600 2.1581413 +#> e_2 U_1 U_2 +#> 1 -0.58862455 -0.6727349 -2.3886245 +#> 2 1.67391615 -1.6361813 -0.1260839 +#> 3 0.08433351 -1.8549814 -0.8906665 +#> 4 0.16471135 0.1241179 -1.3852887 +#> 5 -0.80503749 -1.1149236 -2.3050375 +#> 6 -0.78193942 0.8581413 -2.3819394 +#> CHOICE +#> 1 1 +#> 2 2 +#> 3 2 +#> 4 1 +#> 5 1 +#> 6 1 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 9 80 5.0 +#> 2 1 12 60 2.5 +#> 3 1 13 20 20.0 +#> 4 1 70 80 5.0 +#> 5 1 71 60 20.0 +#> 6 1 73 60 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0 60 20.0 10.0 1 +#> 2 10 40 20.0 0.0 1 +#> 3 10 80 2.5 0.0 1 +#> 4 10 20 20.0 2.5 1 +#> 5 10 80 10.0 0.0 1 +#> 6 0 40 20.0 10.0 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -1.800 -0.284096565 +#> 2 1 -0.575 -1.800 -0.020855208 +#> 3 1 -1.400 -0.975 2.808193631 +#> 4 1 -0.950 -1.550 1.512635398 +#> 5 1 -1.800 -1.500 -0.869856696 +#> 6 1 -1.300 -1.600 0.001496538 +#> e_2 U_1 U_2 CHOICE +#> 1 3.7852439 -1.4340966 1.9852439 2 +#> 2 2.5441347 -0.5958552 0.7441347 2 +#> 3 -0.1408644 1.4081936 -1.1158644 1 +#> 4 -0.2739250 0.5626354 -1.8239250 1 +#> 5 -0.2920285 -2.6698567 -1.7920285 2 +#> 6 0.9243727 -1.2985035 -0.6756273 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -2400 -3680 1320 +#> initial value 998.131940 +#> iter 2 value 956.785003 +#> iter 3 value 912.039295 +#> iter 4 value 911.870417 +#> iter 5 value 885.881709 +#> iter 6 value 885.187568 +#> iter 7 value 885.171492 +#> iter 8 value 885.171476 +#> iter 8 value 885.171476 +#> final value 885.171476 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 9 80 5.0 +#> 2 1 12 60 2.5 +#> 3 1 13 20 20.0 +#> 4 1 70 80 5.0 +#> 5 1 71 60 20.0 +#> 6 1 73 60 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0 60 20.0 10.0 1 +#> 2 10 40 20.0 0.0 1 +#> 3 10 80 2.5 0.0 1 +#> 4 10 20 20.0 2.5 1 +#> 5 10 80 10.0 0.0 1 +#> 6 0 40 20.0 10.0 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -1.800 0.6645192 +#> 2 1 -0.575 -1.800 -0.8450051 +#> 3 1 -1.400 -0.975 0.1125148 +#> 4 1 -0.950 -1.550 1.0543183 +#> 5 1 -1.800 -1.500 1.1168013 +#> 6 1 -1.300 -1.600 -0.1311416 +#> e_2 U_1 U_2 CHOICE +#> 1 2.3304233 -0.4854808 0.5304233 2 +#> 2 0.2022020 -1.4200051 -1.5977980 1 +#> 3 -0.1148274 -1.2874852 -1.0898274 2 +#> 4 -1.3880265 0.1043183 -2.9380265 1 +#> 5 0.1356148 -0.6831987 -1.3643852 1 +#> 6 0.9455601 -1.4311416 -0.6544399 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -3200.0 -2932.5 1142.5 +#> initial value 998.131940 +#> iter 2 value 965.989359 +#> iter 3 value 962.943975 +#> iter 4 value 962.790350 +#> iter 5 value 915.909913 +#> iter 6 value 915.781694 +#> iter 7 value 915.780836 +#> iter 7 value 915.780833 +#> iter 7 value 915.780833 +#> final value 915.780833 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.00 +#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.01 0.02 0.00 0.03 0.03 0.01 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> TRUE +#> 100 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation Block alt1_x1 +#> 1 1 1 1 80 +#> 2 1 2 1 60 +#> 3 1 3 1 60 +#> 4 1 4 1 20 +#> 5 1 5 1 40 +#> 6 1 6 1 60 +#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 +#> 1 20 2.5 20.0 10 5 +#> 2 40 5.0 10.0 5 10 +#> 3 20 20.0 20.0 0 10 +#> 4 80 20.0 2.5 0 10 +#> 5 80 10.0 5.0 10 5 +#> 6 80 5.0 2.5 0 0 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.500 0.53504757 +#> 2 1 -0.850 -0.900 -0.93293876 +#> 3 1 -2.000 -1.400 -1.97083982 +#> 4 1 -1.600 -0.775 -0.09847358 +#> 5 1 -0.900 -1.050 -0.91059496 +#> 6 1 -0.950 -0.975 -0.27261150 +#> e_2 U_1 U_2 CHOICE +#> 1 0.9131705 -0.2399524 -0.5868295 1 +#> 2 -1.5528907 -1.7829388 -2.4528907 1 +#> 3 -0.2159494 -3.9708398 -1.6159494 2 +#> 4 0.1685500 -1.6984736 -0.6064500 2 +#> 5 1.6256604 -1.8105950 0.5756604 2 +#> 6 1.5055143 -1.2226115 0.5305143 2 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation Block alt1_x1 +#> 1 1 1 1 80 +#> 2 1 2 1 60 +#> 3 1 3 1 60 +#> 4 1 4 1 20 +#> 5 1 5 1 40 +#> 6 1 6 1 60 +#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 +#> 1 20 2.5 20.0 10 5 +#> 2 40 5.0 10.0 5 10 +#> 3 20 20.0 20.0 0 10 +#> 4 80 20.0 2.5 0 10 +#> 5 80 10.0 5.0 10 5 +#> 6 80 5.0 2.5 0 0 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.500 -0.2361754 +#> 2 1 -0.850 -0.900 1.2985628 +#> 3 1 -2.000 -1.400 2.6517108 +#> 4 1 -1.600 -0.775 -0.3215271 +#> 5 1 -0.900 -1.050 -1.1880836 +#> 6 1 -0.950 -0.975 0.9386790 +#> e_2 U_1 U_2 +#> 1 -0.2249671 -1.01117540 -1.72496708 +#> 2 0.4231642 0.44856278 -0.47683584 +#> 3 0.4632492 0.65171082 -0.93675077 +#> 4 0.6960098 -1.92152712 -0.07899021 +#> 5 1.0360301 -2.08808358 -0.01396992 +#> 6 -0.1024565 -0.01132103 -1.07745654 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 2 +#> 5 2 +#> 6 1 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -140.0 -935.0 332.5 +#> initial value 998.131940 +#> iter 2 value 978.973745 +#> iter 3 value 978.139237 +#> iter 4 value 978.053388 +#> iter 5 value 974.539684 +#> iter 6 value 974.530921 +#> iter 6 value 974.530913 +#> iter 6 value 974.530913 +#> final value 974.530913 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation Block alt1_x1 +#> 1 1 1 1 80 +#> 2 1 2 1 60 +#> 3 1 3 1 60 +#> 4 1 4 1 20 +#> 5 1 5 1 40 +#> 6 1 6 1 60 +#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 +#> 1 20 2.5 20.0 10 5 +#> 2 40 5.0 10.0 5 10 +#> 3 20 20.0 20.0 0 10 +#> 4 80 20.0 2.5 0 10 +#> 5 80 10.0 5.0 10 5 +#> 6 80 5.0 2.5 0 0 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.500 0.2982044 +#> 2 1 -0.850 -0.900 3.4745400 +#> 3 1 -2.000 -1.400 3.5031943 +#> 4 1 -1.600 -0.775 0.8386792 +#> 5 1 -0.900 -1.050 1.8279937 +#> 6 1 -0.950 -0.975 -1.1295965 +#> e_2 U_1 U_2 +#> 1 0.85521723 -0.4767956 -0.6447828 +#> 2 2.20601106 2.6245400 1.3060111 +#> 3 -0.03275998 1.5031943 -1.4327600 +#> 4 0.87875516 -0.7613208 0.1037552 +#> 5 -0.45114524 0.9279937 -1.5011452 +#> 6 -0.63521469 -2.0795965 -1.6102147 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 2 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -660.0 -925.0 442.5 +#> initial value 998.131940 +#> iter 2 value 990.452175 +#> iter 3 value 972.395315 +#> iter 4 value 972.382101 +#> iter 5 value 968.290249 +#> iter 6 value 968.286828 +#> iter 6 value 968.286823 +#> iter 6 value 968.286823 +#> final value 968.286823 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00 +#> est_bwarte 3 2 0.01 0.01 0.01 0.02 0.01 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.20 0.13 0.10 0.29 0.19 0.09 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE +#> 100 +#> 34.002 sec elapsed +#> $tic +#> elapsed +#> 672.76 +#> +#> $toc +#> elapsed +#> 706.762 +#> +#> $msg +#> logical(0) +#> +#> $callback_msg +#> [1] "34.002 sec elapsed" ``` + +<img src="man/figures/README-example-1.png" width="100%" /><img src="man/figures/README-example-2.png" width="100%" /><img src="man/figures/README-example-3.png" width="100%" /> diff --git a/man/figures/README-example-1.png b/man/figures/README-example-1.png new file mode 100644 index 0000000000000000000000000000000000000000..8bbce51e5c2145789e69a78d4c36cd9dc3023f76 Binary files /dev/null and b/man/figures/README-example-1.png differ diff --git a/man/figures/README-example-2.png b/man/figures/README-example-2.png new file mode 100644 index 0000000000000000000000000000000000000000..d28fcd2838b4f0f5c7346e01d6f1af2f5d838e24 Binary files /dev/null and b/man/figures/README-example-2.png differ diff --git a/man/figures/README-example-3.png b/man/figures/README-example-3.png new file mode 100644 index 0000000000000000000000000000000000000000..9a63cff26e675937ecac1665d77d243d60b792e2 Binary files /dev/null and b/man/figures/README-example-3.png differ