From ee3fdc0adeb253a7f72afd0afd39bcf683761bcd Mon Sep 17 00:00:00 2001 From: dj44vuri <julian.sagebiel@idiv.de> Date: Sat, 30 Dec 2023 21:23:57 +0100 Subject: [PATCH] readme updated --- README.html | 1767 ++++++++++++++++++++++++++++++ README.md | 1128 ++++++++++++++++++- man/figures/README-example-1.png | Bin 0 -> 36469 bytes man/figures/README-example-2.png | Bin 0 -> 46248 bytes man/figures/README-example-3.png | Bin 0 -> 31206 bytes 5 files changed, 2893 insertions(+), 2 deletions(-) create mode 100644 README.html create mode 100644 man/figures/README-example-1.png create mode 100644 man/figures/README-example-2.png create mode 100644 man/figures/README-example-3.png diff --git a/README.html b/README.html new file mode 100644 index 0000000..9b54d17 --- /dev/null +++ b/README.html @@ -0,0 +1,1767 @@ +<!DOCTYPE html> + +<html xmlns="http://www.w3.org/1999/xhtml"> + +<head> + +<meta charset="utf-8"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> +<meta name="generator" content="pandoc" /> +<meta name="viewport" content="width=device-width, initial-scale=1"> + +<style type="text/css"> +@font-face { +font-family: octicons-link; +src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff'); +} +body { +-webkit-text-size-adjust: 100%; +text-size-adjust: 100%; +color: #333; +font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; +font-size: 16px; +line-height: 1.6; +word-wrap: break-word; +} +a { +background-color: transparent; +} +a:active, +a:hover { +outline: 0; +} +strong { +font-weight: bold; +} +h1 { +font-size: 2em; +margin: 0.67em 0; +} +img { +border: 0; +} +hr { +box-sizing: content-box; +height: 0; +} +pre { +overflow: auto; +} +code, +kbd, +pre { +font-family: monospace, monospace; +font-size: 1em; +} +input { +color: inherit; +font: inherit; +margin: 0; +} +html input[disabled] { +cursor: default; +} +input { +line-height: normal; +} +input[type="checkbox"] { +box-sizing: border-box; +padding: 0; +} +table { +border-collapse: collapse; +border-spacing: 0; +} +td, +th { +padding: 0; +} +* { +box-sizing: border-box; +} +input { +font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; +} +a { +color: #4078c0; +text-decoration: none; +} +a:hover, +a:active { +text-decoration: underline; +} +hr { +height: 0; +margin: 15px 0; +overflow: hidden; +background: transparent; +border: 0; +border-bottom: 1px solid #ddd; +} +hr:before { +display: table; +content: ""; +} +hr:after { +display: table; +clear: both; +content: ""; +} +h1, +h2, +h3, +h4, +h5, +h6 { +margin-top: 15px; +margin-bottom: 15px; +line-height: 1.1; +} +h1 { +font-size: 30px; +} +h2 { +font-size: 21px; +} +h3 { +font-size: 16px; +} +h4 { +font-size: 14px; +} +h5 { +font-size: 12px; +} +h6 { +font-size: 11px; +} +blockquote { +margin: 0; +} +ul, +ol { +padding: 0; +margin-top: 0; +margin-bottom: 0; +} +ol ol, +ul ol { +list-style-type: lower-roman; +} +ul ul ol, +ul ol ol, +ol ul ol, +ol ol ol { +list-style-type: lower-alpha; +} +dd { +margin-left: 0; +} +code { +font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace; +font-size: 12px; +} +pre { +margin-top: 0; +margin-bottom: 0; +font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace; +} +.select::-ms-expand { +opacity: 0; +} +.octicon { +font: normal normal normal 16px/1 octicons-link; +display: inline-block; +text-decoration: none; +text-rendering: auto; +-webkit-font-smoothing: antialiased; +-moz-osx-font-smoothing: grayscale; +-webkit-user-select: none; +-moz-user-select: none; +-ms-user-select: none; +user-select: none; +} +.octicon-link:before { +content: '\f05c'; +} +.markdown-body:before { +display: table; +content: ""; +} +.markdown-body:after { +display: table; +clear: both; +content: ""; +} +.markdown-body>*:first-child { +margin-top: 0 !important; +} +.markdown-body>*:last-child { +margin-bottom: 0 !important; +} +a:not([href]) { +color: inherit; +text-decoration: none; +} +.anchor { +display: inline-block; +padding-right: 2px; +margin-left: -18px; +} +.anchor:focus { +outline: none; +} +h1, +h2, +h3, +h4, +h5, +h6 { +margin-top: 1em; +margin-bottom: 16px; +font-weight: bold; +line-height: 1.4; +} +h1 .octicon-link, +h2 .octicon-link, +h3 .octicon-link, +h4 .octicon-link, +h5 .octicon-link, +h6 .octicon-link { +color: #000; +vertical-align: middle; +visibility: hidden; +} +h1:hover .anchor, +h2:hover .anchor, +h3:hover .anchor, +h4:hover .anchor, +h5:hover .anchor, +h6:hover .anchor { +text-decoration: none; +} +h1:hover .anchor .octicon-link, +h2:hover .anchor .octicon-link, +h3:hover .anchor .octicon-link, +h4:hover .anchor .octicon-link, +h5:hover .anchor .octicon-link, +h6:hover .anchor .octicon-link { +visibility: visible; +} +h1 { +padding-bottom: 0.3em; +font-size: 2.25em; +line-height: 1.2; +border-bottom: 1px solid #eee; +} +h1 .anchor { +line-height: 1; +} +h2 { +padding-bottom: 0.3em; +font-size: 1.75em; +line-height: 1.225; +border-bottom: 1px solid #eee; +} +h2 .anchor { +line-height: 1; +} +h3 { +font-size: 1.5em; +line-height: 1.43; +} +h3 .anchor { +line-height: 1.2; +} +h4 { +font-size: 1.25em; +} +h4 .anchor { +line-height: 1.2; +} +h5 { +font-size: 1em; +} +h5 .anchor { +line-height: 1.1; +} +h6 { +font-size: 1em; +color: #777; +} +h6 .anchor { +line-height: 1.1; +} +p, +blockquote, +ul, +ol, +dl, +table, +pre { +margin-top: 0; +margin-bottom: 16px; +} +hr { +height: 4px; +padding: 0; +margin: 16px 0; +background-color: #e7e7e7; +border: 0 none; +} +ul, +ol { +padding-left: 2em; +} +ul ul, +ul ol, +ol ol, +ol ul { +margin-top: 0; +margin-bottom: 0; +} +li>p { +margin-top: 16px; +} +dl { +padding: 0; +} +dl dt { +padding: 0; +margin-top: 16px; +font-size: 1em; +font-style: italic; +font-weight: bold; +} +dl dd { +padding: 0 16px; +margin-bottom: 16px; +} +blockquote { +padding: 0 15px; +color: #777; +border-left: 4px solid #ddd; +} +blockquote>:first-child { +margin-top: 0; +} +blockquote>:last-child { +margin-bottom: 0; +} +table { +display: block; +width: 100%; +overflow: auto; +word-break: normal; +word-break: keep-all; +} +table th { +font-weight: bold; +} +table th, +table td { +padding: 6px 13px; +border: 1px solid #ddd; +} +table tr { +background-color: #fff; +border-top: 1px solid #ccc; +} +table tr:nth-child(2n) { +background-color: #f8f8f8; +} +img { +max-width: 100%; +box-sizing: content-box; +background-color: #fff; +} +code { +padding: 0; +padding-top: 0.2em; +padding-bottom: 0.2em; +margin: 0; +font-size: 85%; +background-color: rgba(0,0,0,0.04); +border-radius: 3px; +} +code:before, +code:after { +letter-spacing: -0.2em; +content: "\00a0"; +} +pre>code { +padding: 0; +margin: 0; +font-size: 100%; +word-break: normal; +white-space: pre; +background: transparent; +border: 0; +} +.highlight { +margin-bottom: 16px; +} +.highlight pre, +pre { +padding: 16px; +overflow: auto; +font-size: 85%; +line-height: 1.45; +background-color: #f7f7f7; +border-radius: 3px; +} +.highlight pre { +margin-bottom: 0; +word-break: normal; +} +pre { +word-wrap: normal; +} +pre code { +display: inline; +max-width: initial; +padding: 0; +margin: 0; +overflow: initial; +line-height: inherit; +word-wrap: normal; +background-color: transparent; +border: 0; +} +pre code:before, +pre code:after { +content: normal; +} +kbd { +display: inline-block; +padding: 3px 5px; +font-size: 11px; +line-height: 10px; +color: #555; +vertical-align: middle; +background-color: #fcfcfc; +border: solid 1px #ccc; +border-bottom-color: #bbb; +border-radius: 3px; +box-shadow: inset 0 -1px 0 #bbb; +} +.pl-c { +color: #969896; +} +.pl-c1, +.pl-s .pl-v { +color: #0086b3; +} +.pl-e, +.pl-en { +color: #795da3; +} +.pl-s .pl-s1, +.pl-smi { +color: #333; +} +.pl-ent { +color: #63a35c; +} +.pl-k { +color: #a71d5d; +} +.pl-pds, +.pl-s, +.pl-s .pl-pse .pl-s1, +.pl-sr, +.pl-sr .pl-cce, +.pl-sr .pl-sra, +.pl-sr .pl-sre { +color: #183691; +} +.pl-v { +color: #ed6a43; +} +.pl-id { +color: #b52a1d; +} +.pl-ii { +background-color: #b52a1d; +color: #f8f8f8; +} +.pl-sr .pl-cce { +color: #63a35c; +font-weight: bold; +} +.pl-ml { +color: #693a17; +} +.pl-mh, +.pl-mh .pl-en, +.pl-ms { +color: #1d3e81; +font-weight: bold; +} +.pl-mq { +color: #008080; +} +.pl-mi { +color: #333; +font-style: italic; +} +.pl-mb { +color: #333; +font-weight: bold; +} +.pl-md { +background-color: #ffecec; +color: #bd2c00; +} +.pl-mi1 { +background-color: #eaffea; +color: #55a532; +} +.pl-mdr { +color: #795da3; +font-weight: bold; +} +.pl-mo { +color: #1d3e81; +} +kbd { +display: inline-block; +padding: 3px 5px; +font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace; +line-height: 10px; +color: #555; +vertical-align: middle; +background-color: #fcfcfc; +border: solid 1px #ccc; +border-bottom-color: #bbb; +border-radius: 3px; +box-shadow: inset 0 -1px 0 #bbb; +} +.task-list-item { +list-style-type: none; +} +.task-list-item+.task-list-item { +margin-top: 3px; +} +.task-list-item input { +margin: 0 0.35em 0.25em -1.6em; +vertical-align: middle; +} +:checked+.radio-label { +z-index: 1; +position: relative; +border-color: #4078c0; +} +.sourceLine { +display: inline-block; +} +code .kw { color: #000000; } +code .dt { color: #ed6a43; } +code .dv { color: #009999; } +code .bn { color: #009999; } +code .fl { color: #009999; } +code .ch { color: #009999; } +code .st { color: #183691; } +code .co { color: #969896; } +code .ot { color: #0086b3; } +code .al { color: #a61717; } +code .fu { color: #63a35c; } +code .er { color: #a61717; background-color: #e3d2d2; } +code .wa { color: #000000; } +code .cn { color: #008080; } +code .sc { color: #008080; } +code .vs { color: #183691; } +code .ss { color: #183691; } +code .im { color: #000000; } +code .va {color: #008080; } +code .cf { color: #000000; } +code .op { color: #000000; } +code .bu { color: #000000; } +code .ex { color: #000000; } +code .pp { color: #999999; } +code .at { color: #008080; } +code .do { color: #969896; } +code .an { color: #008080; } +code .cv { color: #008080; } +code .in { color: #008080; } +</style> +<style> +body { + box-sizing: border-box; + min-width: 200px; + max-width: 980px; + margin: 0 auto; + padding: 45px; + padding-top: 0px; +} +</style> + + +</head> + +<body> + +<!-- README.md is generated from README.Rmd. Please edit that file --> + +<h1 id="simulatedce">simulateDCE</h1> +<!-- badges: start --> + +<!-- badges: end --> + +<p>The goal of simulateDCE is to make it easy to simulate choice +experiment datasets using designs from NGENE or <code>spdesign</code>. +You have to store the design file in a subfolder and need to specify +certain parameters and the utility functions for the data generating +process. The package is useful for</p> +<ol style="list-style-type: decimal"> +<li><p>Test different designs in terms of statistical power, efficiency +and unbiasedness</p></li> +<li><p>To test the effects of deviations from RUM, e.g. heuristics, on +model performance for different designs.</p></li> +<li><p>In teaching, using simulated data is useful, if you want to know +the data generating process. It helps to demonstrate Maximum likelihood +and choice models, knowing exactly what you should expect.</p></li> +<li><p>You can use simulation in pre-registration to justify your sample +size and design choice.</p></li> +<li><p>Before data collection, you can use simulated data to estimate +the models you plan to use in the actual analysis. You can thus make +sure, you can estimate all effects for given sample sizes.</p></li> +</ol> +<h2 id="installation">Installation</h2> +<p>You can install the development version of simulateDCE from gitlab. +You need to install the <code>remotes</code> package first. The current +version is alpha and there is no version on cran:</p> +<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># FILL THIS IN! HOW CAN PEOPLE INSTALL YOUR DEV PACKAGE?</span></span> +<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"remotes"</span>)</span> +<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_gitlab</span>(<span class="at">repo =</span> <span class="st">"dj44vuri/simulateDCE"</span> , <span class="at">host =</span> <span class="st">"https://git.idiv.de"</span>)</span></code></pre></div> +<h2 id="example">Example</h2> +<p>This is a basic example which shows you how to solve a common +problem:</p> +<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a> <span class="fu">library</span>(simulateDCE)</span> +<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(rlang)</span> +<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(<span class="st">"lests"</span>)</span> +<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "lests"</span></span> +<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="co">#set.seed(22233)</span></span> +<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or Robjects for spdesign)</span></span> +<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>designpath<span class="ot"><-</span> <span class="fu">system.file</span>(<span class="st">"extdata"</span>,<span class="st">"SE_DRIVE"</span> ,<span class="at">package =</span> <span class="st">"simulateDCE"</span>)</span> +<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="co"># on your computer, it would be something like</span></span> +<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="co"># designpath <- "c:/myfancyDCE/Designs"</span></span> +<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="co"># number of respondents</span></span> +<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a>resps <span class="ot">=</span><span class="dv">120</span></span> +<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="co"># number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.)</span></span> +<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a>nosim<span class="ot">=</span> <span class="dv">2</span> </span> +<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="co"># If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size</span></span> +<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a>decisiongroups<span class="ot">=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="fl">0.7</span>,<span class="dv">1</span>)</span> +<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-25"><a href="#cb2-25" aria-hidden="true" tabindex="-1"></a><span class="co"># set the values of the parameters you want to use in the simulation</span></span> +<span id="cb2-26"><a href="#cb2-26" aria-hidden="true" tabindex="-1"></a>bpreis <span class="ot">=</span> <span class="sc">-</span><span class="fl">0.01</span></span> +<span id="cb2-27"><a href="#cb2-27" aria-hidden="true" tabindex="-1"></a>blade <span class="ot">=</span> <span class="sc">-</span><span class="fl">0.07</span></span> +<span id="cb2-28"><a href="#cb2-28" aria-hidden="true" tabindex="-1"></a>bwarte <span class="ot">=</span> <span class="fl">0.02</span></span> +<span id="cb2-29"><a href="#cb2-29" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-30"><a href="#cb2-30" aria-hidden="true" tabindex="-1"></a><span class="co"># If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10</span></span> +<span id="cb2-31"><a href="#cb2-31" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-32"><a href="#cb2-32" aria-hidden="true" tabindex="-1"></a>manipulations <span class="ot">=</span> <span class="fu">list</span>(<span class="at">alt1.x2=</span> <span class="fu">expr</span>(alt1.x2<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-33"><a href="#cb2-33" aria-hidden="true" tabindex="-1"></a> <span class="at">alt1.x3=</span> <span class="fu">expr</span>(alt1.x3<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-34"><a href="#cb2-34" aria-hidden="true" tabindex="-1"></a> <span class="at">alt2.x2=</span> <span class="fu">expr</span>(alt2.x2<span class="sc">/</span><span class="dv">10</span>),</span> +<span id="cb2-35"><a href="#cb2-35" aria-hidden="true" tabindex="-1"></a> <span class="at">alt2.x3=</span> <span class="fu">expr</span>(alt2.x3<span class="sc">/</span><span class="dv">10</span>)</span> +<span id="cb2-36"><a href="#cb2-36" aria-hidden="true" tabindex="-1"></a>)</span> +<span id="cb2-37"><a href="#cb2-37" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-38"><a href="#cb2-38" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-39"><a href="#cb2-39" aria-hidden="true" tabindex="-1"></a><span class="co">#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes)</span></span> +<span id="cb2-40"><a href="#cb2-40" aria-hidden="true" tabindex="-1"></a>u<span class="ot"><-</span><span class="fu">list</span>( <span class="at">u1 =</span></span> +<span id="cb2-41"><a href="#cb2-41" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-42"><a href="#cb2-42" aria-hidden="true" tabindex="-1"></a> <span class="fu">list</span>(</span> +<span id="cb2-43"><a href="#cb2-43" aria-hidden="true" tabindex="-1"></a> <span class="at">v1 =</span>V<span class="fl">.1</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt1.x1 <span class="sc">+</span> blade<span class="sc">*</span>alt1.x2 <span class="sc">+</span> bwarte<span class="sc">*</span>alt1.x3 ,</span> +<span id="cb2-44"><a href="#cb2-44" aria-hidden="true" tabindex="-1"></a> <span class="at">v2 =</span>V<span class="fl">.2</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt2.x1 <span class="sc">+</span> blade<span class="sc">*</span>alt2.x2 <span class="sc">+</span> bwarte<span class="sc">*</span>alt2.x3</span> +<span id="cb2-45"><a href="#cb2-45" aria-hidden="true" tabindex="-1"></a> )</span> +<span id="cb2-46"><a href="#cb2-46" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-47"><a href="#cb2-47" aria-hidden="true" tabindex="-1"></a> ,</span> +<span id="cb2-48"><a href="#cb2-48" aria-hidden="true" tabindex="-1"></a> <span class="at">u2 =</span> <span class="fu">list</span>( <span class="at">v1 =</span>V<span class="fl">.1</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt1.x1 ,</span> +<span id="cb2-49"><a href="#cb2-49" aria-hidden="true" tabindex="-1"></a> <span class="at">v2 =</span>V<span class="fl">.2</span><span class="sc">~</span> bpreis <span class="sc">*</span> alt2.x1)</span> +<span id="cb2-50"><a href="#cb2-50" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-51"><a href="#cb2-51" aria-hidden="true" tabindex="-1"></a>)</span> +<span id="cb2-52"><a href="#cb2-52" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-53"><a href="#cb2-53" aria-hidden="true" tabindex="-1"></a><span class="co"># specify the designtype "ngene" or "spdesign"</span></span> +<span id="cb2-54"><a href="#cb2-54" aria-hidden="true" tabindex="-1"></a>destype<span class="ot">=</span><span class="st">"ngene"</span></span> +<span id="cb2-55"><a href="#cb2-55" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-56"><a href="#cb2-56" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb2-57"><a href="#cb2-57" aria-hidden="true" tabindex="-1"></a><span class="co">#lets go</span></span> +<span id="cb2-58"><a href="#cb2-58" aria-hidden="true" tabindex="-1"></a>sedrive <span class="ot"><-</span> simulateDCE<span class="sc">::</span><span class="fu">sim_all</span>()</span> +<span id="cb2-59"><a href="#cb2-59" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-60"><a href="#cb2-60" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-61"><a href="#cb2-61" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-62"><a href="#cb2-62" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-63"><a href="#cb2-63" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-64"><a href="#cb2-64" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-65"><a href="#cb2-65" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-66"><a href="#cb2-66" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-67"><a href="#cb2-67" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-68"><a href="#cb2-68" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-69"><a href="#cb2-69" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-70"><a href="#cb2-70" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-71"><a href="#cb2-71" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-72"><a href="#cb2-72" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-73"><a href="#cb2-73" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-74"><a href="#cb2-74" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-75"><a href="#cb2-75" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-76"><a href="#cb2-76" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-77"><a href="#cb2-77" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-78"><a href="#cb2-78" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-79"><a href="#cb2-79" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-80"><a href="#cb2-80" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-81"><a href="#cb2-81" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-82"><a href="#cb2-82" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-83"><a href="#cb2-83" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-84"><a href="#cb2-84" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-85"><a href="#cb2-85" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-86"><a href="#cb2-86" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-87"><a href="#cb2-87" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-88"><a href="#cb2-88" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-89"><a href="#cb2-89" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-90"><a href="#cb2-90" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-91"><a href="#cb2-91" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-92"><a href="#cb2-92" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-93"><a href="#cb2-93" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-94"><a href="#cb2-94" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-95"><a href="#cb2-95" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-96"><a href="#cb2-96" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-97"><a href="#cb2-97" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-98"><a href="#cb2-98" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-99"><a href="#cb2-99" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-100"><a href="#cb2-100" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-101"><a href="#cb2-101" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-102"><a href="#cb2-102" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5</span></span> +<span id="cb2-103"><a href="#cb2-103" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5</span></span> +<span id="cb2-104"><a href="#cb2-104" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0</span></span> +<span id="cb2-105"><a href="#cb2-105" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0</span></span> +<span id="cb2-106"><a href="#cb2-106" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0</span></span> +<span id="cb2-107"><a href="#cb2-107" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0</span></span> +<span id="cb2-108"><a href="#cb2-108" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-109"><a href="#cb2-109" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 10.0 60 20.0 10 1</span></span> +<span id="cb2-110"><a href="#cb2-110" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 60 2.5 0 1</span></span> +<span id="cb2-111"><a href="#cb2-111" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 5.0 80 5.0 10 1</span></span> +<span id="cb2-112"><a href="#cb2-112" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2.5 80 2.5 0 1</span></span> +<span id="cb2-113"><a href="#cb2-113" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.0 80 10.0 10 1</span></span> +<span id="cb2-114"><a href="#cb2-114" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 20 5.0 10 1</span></span> +<span id="cb2-115"><a href="#cb2-115" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-116"><a href="#cb2-116" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.800 2.8927045</span></span> +<span id="cb2-117"><a href="#cb2-117" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.275 -0.775 2.1129458</span></span> +<span id="cb2-118"><a href="#cb2-118" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.800 -0.950 -0.3070059</span></span> +<span id="cb2-119"><a href="#cb2-119" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.750 -0.975 0.2125815</span></span> +<span id="cb2-120"><a href="#cb2-120" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.300 0.5101632</span></span> +<span id="cb2-121"><a href="#cb2-121" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.900 -0.350 -0.9494807</span></span> +<span id="cb2-122"><a href="#cb2-122" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-123"><a href="#cb2-123" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.09958433 2.117705 -1.700416 1</span></span> +<span id="cb2-124"><a href="#cb2-124" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 3.47451776 1.837946 2.699518 2</span></span> +<span id="cb2-125"><a href="#cb2-125" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.28860974 -1.107006 -1.238610 1</span></span> +<span id="cb2-126"><a href="#cb2-126" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 3.65240491 -1.537418 2.677405 2</span></span> +<span id="cb2-127"><a href="#cb2-127" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.14448942 -1.289837 -1.444489 1</span></span> +<span id="cb2-128"><a href="#cb2-128" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -1.04296995 -1.849481 -1.392970 2</span></span> +<span id="cb2-129"><a href="#cb2-129" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-130"><a href="#cb2-130" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-131"><a href="#cb2-131" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-132"><a href="#cb2-132" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-133"><a href="#cb2-133" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-134"><a href="#cb2-134" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-135"><a href="#cb2-135" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-136"><a href="#cb2-136" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-137"><a href="#cb2-137" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-138"><a href="#cb2-138" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-139"><a href="#cb2-139" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-140"><a href="#cb2-140" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-141"><a href="#cb2-141" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-142"><a href="#cb2-142" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-143"><a href="#cb2-143" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-144"><a href="#cb2-144" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5</span></span> +<span id="cb2-145"><a href="#cb2-145" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5</span></span> +<span id="cb2-146"><a href="#cb2-146" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0</span></span> +<span id="cb2-147"><a href="#cb2-147" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0</span></span> +<span id="cb2-148"><a href="#cb2-148" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0</span></span> +<span id="cb2-149"><a href="#cb2-149" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0</span></span> +<span id="cb2-150"><a href="#cb2-150" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-151"><a href="#cb2-151" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 10.0 60 20.0 10 1</span></span> +<span id="cb2-152"><a href="#cb2-152" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 60 2.5 0 1</span></span> +<span id="cb2-153"><a href="#cb2-153" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 5.0 80 5.0 10 1</span></span> +<span id="cb2-154"><a href="#cb2-154" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2.5 80 2.5 0 1</span></span> +<span id="cb2-155"><a href="#cb2-155" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.0 80 10.0 10 1</span></span> +<span id="cb2-156"><a href="#cb2-156" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 20 5.0 10 1</span></span> +<span id="cb2-157"><a href="#cb2-157" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-158"><a href="#cb2-158" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.800 -0.06362638</span></span> +<span id="cb2-159"><a href="#cb2-159" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.275 -0.775 -0.81571577</span></span> +<span id="cb2-160"><a href="#cb2-160" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.800 -0.950 -1.09388352</span></span> +<span id="cb2-161"><a href="#cb2-161" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.750 -0.975 0.28996875</span></span> +<span id="cb2-162"><a href="#cb2-162" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.300 1.03059224</span></span> +<span id="cb2-163"><a href="#cb2-163" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.900 -0.350 -1.10504379</span></span> +<span id="cb2-164"><a href="#cb2-164" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-165"><a href="#cb2-165" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.1958595 -0.8386264 -1.6041405 1</span></span> +<span id="cb2-166"><a href="#cb2-166" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.1028995 -1.0907158 -0.6721005 2</span></span> +<span id="cb2-167"><a href="#cb2-167" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.7165451 -1.8938835 -0.2334549 2</span></span> +<span id="cb2-168"><a href="#cb2-168" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1.4748351 -1.4600313 0.4998351 2</span></span> +<span id="cb2-169"><a href="#cb2-169" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 4.5718398 -0.7694078 3.2718398 2</span></span> +<span id="cb2-170"><a href="#cb2-170" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.8766732 -2.0050438 0.5266732 2</span></span> +<span id="cb2-171"><a href="#cb2-171" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-172"><a href="#cb2-172" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-173"><a href="#cb2-173" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-174"><a href="#cb2-174" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-175"><a href="#cb2-175" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-176"><a href="#cb2-176" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-177"><a href="#cb2-177" aria-hidden="true" tabindex="-1"></a><span class="co">#> -860.0 -1147.5 532.5 </span></span> +<span id="cb2-178"><a href="#cb2-178" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-179"><a href="#cb2-179" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 988.178813</span></span> +<span id="cb2-180"><a href="#cb2-180" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 959.683236</span></span> +<span id="cb2-181"><a href="#cb2-181" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 959.648380</span></span> +<span id="cb2-182"><a href="#cb2-182" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 955.999179</span></span> +<span id="cb2-183"><a href="#cb2-183" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 955.979330</span></span> +<span id="cb2-184"><a href="#cb2-184" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 955.979295</span></span> +<span id="cb2-185"><a href="#cb2-185" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 955.979295</span></span> +<span id="cb2-186"><a href="#cb2-186" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 955.979295</span></span> +<span id="cb2-187"><a href="#cb2-187" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 955.979295 </span></span> +<span id="cb2-188"><a href="#cb2-188" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-189"><a href="#cb2-189" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-190"><a href="#cb2-190" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-191"><a href="#cb2-191" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-192"><a href="#cb2-192" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-193"><a href="#cb2-193" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-194"><a href="#cb2-194" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-195"><a href="#cb2-195" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-196"><a href="#cb2-196" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-197"><a href="#cb2-197" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-198"><a href="#cb2-198" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-199"><a href="#cb2-199" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-200"><a href="#cb2-200" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-201"><a href="#cb2-201" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-202"><a href="#cb2-202" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 7 80 2.5</span></span> +<span id="cb2-203"><a href="#cb2-203" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 19 20 2.5</span></span> +<span id="cb2-204"><a href="#cb2-204" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 30 20 10.0</span></span> +<span id="cb2-205"><a href="#cb2-205" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 32 40 20.0</span></span> +<span id="cb2-206"><a href="#cb2-206" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 39 40 20.0</span></span> +<span id="cb2-207"><a href="#cb2-207" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 48 60 5.0</span></span> +<span id="cb2-208"><a href="#cb2-208" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-209"><a href="#cb2-209" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 10.0 60 20.0 10 1</span></span> +<span id="cb2-210"><a href="#cb2-210" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 60 2.5 0 1</span></span> +<span id="cb2-211"><a href="#cb2-211" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 5.0 80 5.0 10 1</span></span> +<span id="cb2-212"><a href="#cb2-212" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2.5 80 2.5 0 1</span></span> +<span id="cb2-213"><a href="#cb2-213" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.0 80 10.0 10 1</span></span> +<span id="cb2-214"><a href="#cb2-214" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 20 5.0 10 1</span></span> +<span id="cb2-215"><a href="#cb2-215" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-216"><a href="#cb2-216" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.800 -0.8816771</span></span> +<span id="cb2-217"><a href="#cb2-217" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.275 -0.775 0.9004269</span></span> +<span id="cb2-218"><a href="#cb2-218" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.800 -0.950 -0.3108731</span></span> +<span id="cb2-219"><a href="#cb2-219" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.750 -0.975 -0.7695269</span></span> +<span id="cb2-220"><a href="#cb2-220" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.300 2.8853455</span></span> +<span id="cb2-221"><a href="#cb2-221" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.900 -0.350 -0.1098324</span></span> +<span id="cb2-222"><a href="#cb2-222" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-223"><a href="#cb2-223" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.6516580 -1.6566771 -1.14834197</span></span> +<span id="cb2-224"><a href="#cb2-224" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.4584193 0.6254269 -0.31658066</span></span> +<span id="cb2-225"><a href="#cb2-225" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1.2184928 -1.1108731 0.26849278</span></span> +<span id="cb2-226"><a href="#cb2-226" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.1660211 -2.5195269 -1.14102109</span></span> +<span id="cb2-227"><a href="#cb2-227" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.5943992 1.0853455 -1.89439922</span></span> +<span id="cb2-228"><a href="#cb2-228" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.3193140 -1.0098324 -0.03068595</span></span> +<span id="cb2-229"><a href="#cb2-229" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-230"><a href="#cb2-230" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-231"><a href="#cb2-231" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-232"><a href="#cb2-232" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-233"><a href="#cb2-233" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-234"><a href="#cb2-234" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-235"><a href="#cb2-235" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-236"><a href="#cb2-236" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-237"><a href="#cb2-237" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-238"><a href="#cb2-238" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-239"><a href="#cb2-239" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-240"><a href="#cb2-240" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-241"><a href="#cb2-241" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-242"><a href="#cb2-242" aria-hidden="true" tabindex="-1"></a><span class="co">#> 120 -655 295 </span></span> +<span id="cb2-243"><a href="#cb2-243" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-244"><a href="#cb2-244" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 994.305298</span></span> +<span id="cb2-245"><a href="#cb2-245" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 990.053293</span></span> +<span id="cb2-246"><a href="#cb2-246" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 989.940656</span></span> +<span id="cb2-247"><a href="#cb2-247" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 987.629292</span></span> +<span id="cb2-248"><a href="#cb2-248" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 987.628992</span></span> +<span id="cb2-249"><a href="#cb2-249" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 987.628991</span></span> +<span id="cb2-250"><a href="#cb2-250" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 987.628991</span></span> +<span id="cb2-251"><a href="#cb2-251" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 987.628991 </span></span> +<span id="cb2-252"><a href="#cb2-252" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-253"><a href="#cb2-253" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-254"><a href="#cb2-254" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-255"><a href="#cb2-255" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-256"><a href="#cb2-256" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-257"><a href="#cb2-257" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-258"><a href="#cb2-258" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.01 -0.01 0.00 0.01 0.00</span></span> +<span id="cb2-259"><a href="#cb2-259" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.04 0.02 -0.06 -0.02 0.03 0.02</span></span> +<span id="cb2-260"><a href="#cb2-260" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.00 0.02 0.03 0.01 0.00</span></span> +<span id="cb2-261"><a href="#cb2-261" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.04 0.06 0.00 0.09 0.09 0.04</span></span> +<span id="cb2-262"><a href="#cb2-262" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-263"><a href="#cb2-263" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.04 0.03 0.02 0.06 0.04 0.02</span></span> +<span id="cb2-264"><a href="#cb2-264" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-265"><a href="#cb2-265" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-266"><a href="#cb2-266" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE TRUE </span></span> +<span id="cb2-267"><a href="#cb2-267" aria-hidden="true" tabindex="-1"></a><span class="co">#> 50 50 </span></span> +<span id="cb2-268"><a href="#cb2-268" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-269"><a href="#cb2-269" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-270"><a href="#cb2-270" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-271"><a href="#cb2-271" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-272"><a href="#cb2-272" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-273"><a href="#cb2-273" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-274"><a href="#cb2-274" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-275"><a href="#cb2-275" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-276"><a href="#cb2-276" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-277"><a href="#cb2-277" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-278"><a href="#cb2-278" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-279"><a href="#cb2-279" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-280"><a href="#cb2-280" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-281"><a href="#cb2-281" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-282"><a href="#cb2-282" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-283"><a href="#cb2-283" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-284"><a href="#cb2-284" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-285"><a href="#cb2-285" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-286"><a href="#cb2-286" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-287"><a href="#cb2-287" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-288"><a href="#cb2-288" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-289"><a href="#cb2-289" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-290"><a href="#cb2-290" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-291"><a href="#cb2-291" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-292"><a href="#cb2-292" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-293"><a href="#cb2-293" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-294"><a href="#cb2-294" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-295"><a href="#cb2-295" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-296"><a href="#cb2-296" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-297"><a href="#cb2-297" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-298"><a href="#cb2-298" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-299"><a href="#cb2-299" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-300"><a href="#cb2-300" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-301"><a href="#cb2-301" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-302"><a href="#cb2-302" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-303"><a href="#cb2-303" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-304"><a href="#cb2-304" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-305"><a href="#cb2-305" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-306"><a href="#cb2-306" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-307"><a href="#cb2-307" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-308"><a href="#cb2-308" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-309"><a href="#cb2-309" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-310"><a href="#cb2-310" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-311"><a href="#cb2-311" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5</span></span> +<span id="cb2-312"><a href="#cb2-312" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0</span></span> +<span id="cb2-313"><a href="#cb2-313" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0</span></span> +<span id="cb2-314"><a href="#cb2-314" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0</span></span> +<span id="cb2-315"><a href="#cb2-315" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0</span></span> +<span id="cb2-316"><a href="#cb2-316" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0</span></span> +<span id="cb2-317"><a href="#cb2-317" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-318"><a href="#cb2-318" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 20.0 10 1</span></span> +<span id="cb2-319"><a href="#cb2-319" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 40 5.0 0 1</span></span> +<span id="cb2-320"><a href="#cb2-320" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.0 80 10.0 10 1</span></span> +<span id="cb2-321"><a href="#cb2-321" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10.0 20 20.0 5 1</span></span> +<span id="cb2-322"><a href="#cb2-322" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 80 5.0 0 1</span></span> +<span id="cb2-323"><a href="#cb2-323" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 80 2.5 5 1</span></span> +<span id="cb2-324"><a href="#cb2-324" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-325"><a href="#cb2-325" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.400 1.20580231</span></span> +<span id="cb2-326"><a href="#cb2-326" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.800 -0.750 -0.72752412</span></span> +<span id="cb2-327"><a href="#cb2-327" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.600 -1.300 -0.05762304</span></span> +<span id="cb2-328"><a href="#cb2-328" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.750 -1.500 -0.83547157</span></span> +<span id="cb2-329"><a href="#cb2-329" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.350 -1.150 3.85444600</span></span> +<span id="cb2-330"><a href="#cb2-330" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.050 -0.875 1.64701776</span></span> +<span id="cb2-331"><a href="#cb2-331" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-332"><a href="#cb2-332" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.28691332 0.4308023 -1.6869133</span></span> +<span id="cb2-333"><a href="#cb2-333" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.06648158 -1.5275241 -0.6835184</span></span> +<span id="cb2-334"><a href="#cb2-334" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1.68916541 -1.6576230 0.3891654</span></span> +<span id="cb2-335"><a href="#cb2-335" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.40357792 -1.5854716 -1.0964221</span></span> +<span id="cb2-336"><a href="#cb2-336" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.13880669 3.5044460 -1.0111933</span></span> +<span id="cb2-337"><a href="#cb2-337" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1.09745093 0.5970178 0.2224509</span></span> +<span id="cb2-338"><a href="#cb2-338" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-339"><a href="#cb2-339" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-340"><a href="#cb2-340" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2</span></span> +<span id="cb2-341"><a href="#cb2-341" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-342"><a href="#cb2-342" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-343"><a href="#cb2-343" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-344"><a href="#cb2-344" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-345"><a href="#cb2-345" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-346"><a href="#cb2-346" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-347"><a href="#cb2-347" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-348"><a href="#cb2-348" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-349"><a href="#cb2-349" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-350"><a href="#cb2-350" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-351"><a href="#cb2-351" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-352"><a href="#cb2-352" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-353"><a href="#cb2-353" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-354"><a href="#cb2-354" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-355"><a href="#cb2-355" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-356"><a href="#cb2-356" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-357"><a href="#cb2-357" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-358"><a href="#cb2-358" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-359"><a href="#cb2-359" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-360"><a href="#cb2-360" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5</span></span> +<span id="cb2-361"><a href="#cb2-361" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0</span></span> +<span id="cb2-362"><a href="#cb2-362" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0</span></span> +<span id="cb2-363"><a href="#cb2-363" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0</span></span> +<span id="cb2-364"><a href="#cb2-364" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0</span></span> +<span id="cb2-365"><a href="#cb2-365" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0</span></span> +<span id="cb2-366"><a href="#cb2-366" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-367"><a href="#cb2-367" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 20.0 10 1</span></span> +<span id="cb2-368"><a href="#cb2-368" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 40 5.0 0 1</span></span> +<span id="cb2-369"><a href="#cb2-369" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.0 80 10.0 10 1</span></span> +<span id="cb2-370"><a href="#cb2-370" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10.0 20 20.0 5 1</span></span> +<span id="cb2-371"><a href="#cb2-371" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 80 5.0 0 1</span></span> +<span id="cb2-372"><a href="#cb2-372" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 80 2.5 5 1</span></span> +<span id="cb2-373"><a href="#cb2-373" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-374"><a href="#cb2-374" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.400 -0.09932726</span></span> +<span id="cb2-375"><a href="#cb2-375" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.800 -0.750 2.18018219</span></span> +<span id="cb2-376"><a href="#cb2-376" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.600 -1.300 1.30134429</span></span> +<span id="cb2-377"><a href="#cb2-377" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.750 -1.500 1.55197796</span></span> +<span id="cb2-378"><a href="#cb2-378" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.350 -1.150 0.07874983</span></span> +<span id="cb2-379"><a href="#cb2-379" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.050 -0.875 -1.06565108</span></span> +<span id="cb2-380"><a href="#cb2-380" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-381"><a href="#cb2-381" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2.2497903 -0.8743273 0.84979034</span></span> +<span id="cb2-382"><a href="#cb2-382" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.3329742 1.3801822 -0.41702578</span></span> +<span id="cb2-383"><a href="#cb2-383" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.9046182 -0.2986557 -0.39538182</span></span> +<span id="cb2-384"><a href="#cb2-384" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -1.2414809 0.8019780 -2.74148090</span></span> +<span id="cb2-385"><a href="#cb2-385" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.8624243 -0.2712502 -2.01242427</span></span> +<span id="cb2-386"><a href="#cb2-386" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.9398788 -2.1156511 0.06487882</span></span> +<span id="cb2-387"><a href="#cb2-387" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-388"><a href="#cb2-388" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2</span></span> +<span id="cb2-389"><a href="#cb2-389" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-390"><a href="#cb2-390" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-391"><a href="#cb2-391" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-392"><a href="#cb2-392" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-393"><a href="#cb2-393" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-394"><a href="#cb2-394" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-395"><a href="#cb2-395" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-396"><a href="#cb2-396" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-397"><a href="#cb2-397" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-398"><a href="#cb2-398" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-399"><a href="#cb2-399" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-400"><a href="#cb2-400" aria-hidden="true" tabindex="-1"></a><span class="co">#> -340 -1095 305 </span></span> +<span id="cb2-401"><a href="#cb2-401" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-402"><a href="#cb2-402" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 984.073383</span></span> +<span id="cb2-403"><a href="#cb2-403" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 978.081615</span></span> +<span id="cb2-404"><a href="#cb2-404" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 977.767304</span></span> +<span id="cb2-405"><a href="#cb2-405" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 971.033395</span></span> +<span id="cb2-406"><a href="#cb2-406" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 971.027390</span></span> +<span id="cb2-407"><a href="#cb2-407" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 971.027385</span></span> +<span id="cb2-408"><a href="#cb2-408" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 971.027385</span></span> +<span id="cb2-409"><a href="#cb2-409" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 971.027385 </span></span> +<span id="cb2-410"><a href="#cb2-410" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-411"><a href="#cb2-411" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-412"><a href="#cb2-412" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-413"><a href="#cb2-413" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-414"><a href="#cb2-414" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-415"><a href="#cb2-415" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-416"><a href="#cb2-416" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-417"><a href="#cb2-417" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-418"><a href="#cb2-418" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-419"><a href="#cb2-419" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-420"><a href="#cb2-420" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-421"><a href="#cb2-421" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-422"><a href="#cb2-422" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-423"><a href="#cb2-423" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-424"><a href="#cb2-424" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 12 60 2.5</span></span> +<span id="cb2-425"><a href="#cb2-425" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 16 20 10.0</span></span> +<span id="cb2-426"><a href="#cb2-426" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 17 20 20.0</span></span> +<span id="cb2-427"><a href="#cb2-427" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 25 60 5.0</span></span> +<span id="cb2-428"><a href="#cb2-428" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 29 20 5.0</span></span> +<span id="cb2-429"><a href="#cb2-429" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 32 40 10.0</span></span> +<span id="cb2-430"><a href="#cb2-430" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-431"><a href="#cb2-431" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 20.0 10 1</span></span> +<span id="cb2-432"><a href="#cb2-432" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 40 5.0 0 1</span></span> +<span id="cb2-433"><a href="#cb2-433" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.0 80 10.0 10 1</span></span> +<span id="cb2-434"><a href="#cb2-434" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10.0 20 20.0 5 1</span></span> +<span id="cb2-435"><a href="#cb2-435" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 80 5.0 0 1</span></span> +<span id="cb2-436"><a href="#cb2-436" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 80 2.5 5 1</span></span> +<span id="cb2-437"><a href="#cb2-437" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-438"><a href="#cb2-438" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.400 0.44334136</span></span> +<span id="cb2-439"><a href="#cb2-439" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.800 -0.750 -0.43185157</span></span> +<span id="cb2-440"><a href="#cb2-440" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.600 -1.300 -0.09584172</span></span> +<span id="cb2-441"><a href="#cb2-441" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.750 -1.500 2.74658736</span></span> +<span id="cb2-442"><a href="#cb2-442" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.350 -1.150 -0.51575280</span></span> +<span id="cb2-443"><a href="#cb2-443" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.050 -0.875 -0.33088933</span></span> +<span id="cb2-444"><a href="#cb2-444" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-445"><a href="#cb2-445" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.3975165 -0.3316586 -1.0024835 1</span></span> +<span id="cb2-446"><a href="#cb2-446" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1.4211569 -1.2318516 0.6711569 2</span></span> +<span id="cb2-447"><a href="#cb2-447" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1.0034880 -1.6958417 -0.2965120 2</span></span> +<span id="cb2-448"><a href="#cb2-448" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.8780181 1.9965874 -0.6219819 1</span></span> +<span id="cb2-449"><a href="#cb2-449" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.9818505 -0.8657528 -0.1681495 2</span></span> +<span id="cb2-450"><a href="#cb2-450" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1.7042698 -1.3808893 0.8292698 2</span></span> +<span id="cb2-451"><a href="#cb2-451" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-452"><a href="#cb2-452" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-453"><a href="#cb2-453" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-454"><a href="#cb2-454" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-455"><a href="#cb2-455" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-456"><a href="#cb2-456" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-457"><a href="#cb2-457" aria-hidden="true" tabindex="-1"></a><span class="co">#> -280 -905 345 </span></span> +<span id="cb2-458"><a href="#cb2-458" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-459"><a href="#cb2-459" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 988.003109</span></span> +<span id="cb2-460"><a href="#cb2-460" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 983.732741</span></span> +<span id="cb2-461"><a href="#cb2-461" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 983.724196</span></span> +<span id="cb2-462"><a href="#cb2-462" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 979.048736</span></span> +<span id="cb2-463"><a href="#cb2-463" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 979.044949</span></span> +<span id="cb2-464"><a href="#cb2-464" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 979.044947</span></span> +<span id="cb2-465"><a href="#cb2-465" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 979.044947</span></span> +<span id="cb2-466"><a href="#cb2-466" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 979.044947 </span></span> +<span id="cb2-467"><a href="#cb2-467" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-468"><a href="#cb2-468" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-469"><a href="#cb2-469" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-470"><a href="#cb2-470" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-471"><a href="#cb2-471" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-472"><a href="#cb2-472" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-473"><a href="#cb2-473" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-474"><a href="#cb2-474" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.04 0.01 -0.05 -0.04 0.01 0.01</span></span> +<span id="cb2-475"><a href="#cb2-475" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.01 0.00</span></span> +<span id="cb2-476"><a href="#cb2-476" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-477"><a href="#cb2-477" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-478"><a href="#cb2-478" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.50 0.41 0.21 0.79 0.58 0.29</span></span> +<span id="cb2-479"><a href="#cb2-479" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-480"><a href="#cb2-480" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-481"><a href="#cb2-481" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-482"><a href="#cb2-482" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-483"><a href="#cb2-483" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-484"><a href="#cb2-484" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-485"><a href="#cb2-485" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-486"><a href="#cb2-486" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-487"><a href="#cb2-487" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-488"><a href="#cb2-488" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-489"><a href="#cb2-489" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-490"><a href="#cb2-490" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-491"><a href="#cb2-491" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-492"><a href="#cb2-492" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-493"><a href="#cb2-493" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-494"><a href="#cb2-494" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-495"><a href="#cb2-495" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-496"><a href="#cb2-496" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-497"><a href="#cb2-497" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-498"><a href="#cb2-498" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-499"><a href="#cb2-499" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-500"><a href="#cb2-500" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-501"><a href="#cb2-501" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-502"><a href="#cb2-502" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-503"><a href="#cb2-503" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-504"><a href="#cb2-504" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-505"><a href="#cb2-505" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-506"><a href="#cb2-506" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-507"><a href="#cb2-507" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-508"><a href="#cb2-508" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-509"><a href="#cb2-509" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-510"><a href="#cb2-510" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-511"><a href="#cb2-511" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-512"><a href="#cb2-512" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-513"><a href="#cb2-513" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-514"><a href="#cb2-514" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-515"><a href="#cb2-515" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-516"><a href="#cb2-516" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-517"><a href="#cb2-517" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-518"><a href="#cb2-518" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-519"><a href="#cb2-519" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-520"><a href="#cb2-520" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-521"><a href="#cb2-521" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-522"><a href="#cb2-522" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-523"><a href="#cb2-523" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-524"><a href="#cb2-524" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-525"><a href="#cb2-525" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-526"><a href="#cb2-526" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0</span></span> +<span id="cb2-527"><a href="#cb2-527" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5</span></span> +<span id="cb2-528"><a href="#cb2-528" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5</span></span> +<span id="cb2-529"><a href="#cb2-529" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5</span></span> +<span id="cb2-530"><a href="#cb2-530" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0</span></span> +<span id="cb2-531"><a href="#cb2-531" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0</span></span> +<span id="cb2-532"><a href="#cb2-532" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-533"><a href="#cb2-533" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 5.0 10.0 1</span></span> +<span id="cb2-534"><a href="#cb2-534" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 20 20.0 5.0 1</span></span> +<span id="cb2-535"><a href="#cb2-535" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2.5 20 20.0 0.0 1</span></span> +<span id="cb2-536"><a href="#cb2-536" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 5.0 60 5.0 5.0 1</span></span> +<span id="cb2-537"><a href="#cb2-537" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 60 5.0 2.5 1</span></span> +<span id="cb2-538"><a href="#cb2-538" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 60 2.5 2.5 1</span></span> +<span id="cb2-539"><a href="#cb2-539" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-540"><a href="#cb2-540" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -0.350 -0.32663211</span></span> +<span id="cb2-541"><a href="#cb2-541" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.675 -1.500 -0.04162689</span></span> +<span id="cb2-542"><a href="#cb2-542" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.925 -1.600 -0.52492188</span></span> +<span id="cb2-543"><a href="#cb2-543" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.875 -0.850 -1.14189023</span></span> +<span id="cb2-544"><a href="#cb2-544" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.550 -0.900 0.19650068</span></span> +<span id="cb2-545"><a href="#cb2-545" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.550 -0.725 2.74825383</span></span> +<span id="cb2-546"><a href="#cb2-546" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-547"><a href="#cb2-547" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.2288010 -1.4766321 -0.1211990 2</span></span> +<span id="cb2-548"><a href="#cb2-548" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1.0875948 -0.7166269 -0.4124052 2</span></span> +<span id="cb2-549"><a href="#cb2-549" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.1472598 -1.4499219 -1.4527402 1</span></span> +<span id="cb2-550"><a href="#cb2-550" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.5765191 -2.0168902 -0.2734809 2</span></span> +<span id="cb2-551"><a href="#cb2-551" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.5803934 -0.3534993 -1.4803934 1</span></span> +<span id="cb2-552"><a href="#cb2-552" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.8761884 1.1982538 -1.6011884 1</span></span> +<span id="cb2-553"><a href="#cb2-553" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-554"><a href="#cb2-554" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-555"><a href="#cb2-555" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-556"><a href="#cb2-556" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-557"><a href="#cb2-557" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-558"><a href="#cb2-558" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-559"><a href="#cb2-559" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-560"><a href="#cb2-560" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-561"><a href="#cb2-561" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-562"><a href="#cb2-562" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-563"><a href="#cb2-563" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-564"><a href="#cb2-564" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-565"><a href="#cb2-565" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-566"><a href="#cb2-566" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-567"><a href="#cb2-567" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-568"><a href="#cb2-568" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0</span></span> +<span id="cb2-569"><a href="#cb2-569" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5</span></span> +<span id="cb2-570"><a href="#cb2-570" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5</span></span> +<span id="cb2-571"><a href="#cb2-571" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5</span></span> +<span id="cb2-572"><a href="#cb2-572" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0</span></span> +<span id="cb2-573"><a href="#cb2-573" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0</span></span> +<span id="cb2-574"><a href="#cb2-574" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-575"><a href="#cb2-575" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 5.0 10.0 1</span></span> +<span id="cb2-576"><a href="#cb2-576" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 20 20.0 5.0 1</span></span> +<span id="cb2-577"><a href="#cb2-577" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2.5 20 20.0 0.0 1</span></span> +<span id="cb2-578"><a href="#cb2-578" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 5.0 60 5.0 5.0 1</span></span> +<span id="cb2-579"><a href="#cb2-579" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 60 5.0 2.5 1</span></span> +<span id="cb2-580"><a href="#cb2-580" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 60 2.5 2.5 1</span></span> +<span id="cb2-581"><a href="#cb2-581" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-582"><a href="#cb2-582" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -0.350 0.9214793</span></span> +<span id="cb2-583"><a href="#cb2-583" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.675 -1.500 -0.7937151</span></span> +<span id="cb2-584"><a href="#cb2-584" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.925 -1.600 0.5612728</span></span> +<span id="cb2-585"><a href="#cb2-585" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.875 -0.850 2.9230889</span></span> +<span id="cb2-586"><a href="#cb2-586" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.550 -0.900 0.1761764</span></span> +<span id="cb2-587"><a href="#cb2-587" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.550 -0.725 1.0340286</span></span> +<span id="cb2-588"><a href="#cb2-588" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-589"><a href="#cb2-589" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.09295071 -0.2285207 -0.25704929</span></span> +<span id="cb2-590"><a href="#cb2-590" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 -0.18278050 -1.4687151 -1.68278050</span></span> +<span id="cb2-591"><a href="#cb2-591" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.24595450 -0.3637272 -1.84595450</span></span> +<span id="cb2-592"><a href="#cb2-592" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.74954312 2.0480889 -1.59954312</span></span> +<span id="cb2-593"><a href="#cb2-593" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.52864852 -0.3738236 -1.42864852</span></span> +<span id="cb2-594"><a href="#cb2-594" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.69916199 -0.5159714 -0.02583801</span></span> +<span id="cb2-595"><a href="#cb2-595" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-596"><a href="#cb2-596" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-597"><a href="#cb2-597" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-598"><a href="#cb2-598" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-599"><a href="#cb2-599" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-600"><a href="#cb2-600" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-601"><a href="#cb2-601" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-602"><a href="#cb2-602" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-603"><a href="#cb2-603" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-604"><a href="#cb2-604" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-605"><a href="#cb2-605" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-606"><a href="#cb2-606" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-607"><a href="#cb2-607" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-608"><a href="#cb2-608" aria-hidden="true" tabindex="-1"></a><span class="co">#> -2640.0 -1060.0 662.5 </span></span> +<span id="cb2-609"><a href="#cb2-609" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-610"><a href="#cb2-610" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 987.031183</span></span> +<span id="cb2-611"><a href="#cb2-611" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 957.685378</span></span> +<span id="cb2-612"><a href="#cb2-612" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 957.680370</span></span> +<span id="cb2-613"><a href="#cb2-613" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 954.925156</span></span> +<span id="cb2-614"><a href="#cb2-614" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 945.725076</span></span> +<span id="cb2-615"><a href="#cb2-615" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 945.695285</span></span> +<span id="cb2-616"><a href="#cb2-616" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 945.695175</span></span> +<span id="cb2-617"><a href="#cb2-617" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 945.695175</span></span> +<span id="cb2-618"><a href="#cb2-618" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 945.695175 </span></span> +<span id="cb2-619"><a href="#cb2-619" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-620"><a href="#cb2-620" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-621"><a href="#cb2-621" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-622"><a href="#cb2-622" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-623"><a href="#cb2-623" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-624"><a href="#cb2-624" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-625"><a href="#cb2-625" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-626"><a href="#cb2-626" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-627"><a href="#cb2-627" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-628"><a href="#cb2-628" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-629"><a href="#cb2-629" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-630"><a href="#cb2-630" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-631"><a href="#cb2-631" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-632"><a href="#cb2-632" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-633"><a href="#cb2-633" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 3 80 5.0</span></span> +<span id="cb2-634"><a href="#cb2-634" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 5 60 2.5</span></span> +<span id="cb2-635"><a href="#cb2-635" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 10 80 2.5</span></span> +<span id="cb2-636"><a href="#cb2-636" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 34 80 2.5</span></span> +<span id="cb2-637"><a href="#cb2-637" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 37 40 5.0</span></span> +<span id="cb2-638"><a href="#cb2-638" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 39 20 20.0</span></span> +<span id="cb2-639"><a href="#cb2-639" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-640"><a href="#cb2-640" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.0 20 5.0 10.0 1</span></span> +<span id="cb2-641"><a href="#cb2-641" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 5.0 20 20.0 5.0 1</span></span> +<span id="cb2-642"><a href="#cb2-642" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2.5 20 20.0 0.0 1</span></span> +<span id="cb2-643"><a href="#cb2-643" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 5.0 60 5.0 5.0 1</span></span> +<span id="cb2-644"><a href="#cb2-644" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10.0 60 5.0 2.5 1</span></span> +<span id="cb2-645"><a href="#cb2-645" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2.5 60 2.5 2.5 1</span></span> +<span id="cb2-646"><a href="#cb2-646" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-647"><a href="#cb2-647" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -0.350 -0.8218428</span></span> +<span id="cb2-648"><a href="#cb2-648" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.675 -1.500 0.4133131</span></span> +<span id="cb2-649"><a href="#cb2-649" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -0.925 -1.600 0.4824588</span></span> +<span id="cb2-650"><a href="#cb2-650" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.875 -0.850 -1.2658097</span></span> +<span id="cb2-651"><a href="#cb2-651" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.550 -0.900 -0.6930574</span></span> +<span id="cb2-652"><a href="#cb2-652" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.550 -0.725 -0.6815915</span></span> +<span id="cb2-653"><a href="#cb2-653" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-654"><a href="#cb2-654" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.6493651 -1.9718428 -0.9993651 2</span></span> +<span id="cb2-655"><a href="#cb2-655" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.8461510 -0.2616869 -0.6538490 1</span></span> +<span id="cb2-656"><a href="#cb2-656" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.3849732 -0.4425412 -1.2150268 1</span></span> +<span id="cb2-657"><a href="#cb2-657" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.2971578 -2.1408097 -1.1471578 2</span></span> +<span id="cb2-658"><a href="#cb2-658" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.8024491 -1.2430574 -1.7024491 1</span></span> +<span id="cb2-659"><a href="#cb2-659" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.4752339 -2.2315915 -1.2002339 2</span></span> +<span id="cb2-660"><a href="#cb2-660" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-661"><a href="#cb2-661" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-662"><a href="#cb2-662" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-663"><a href="#cb2-663" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-664"><a href="#cb2-664" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-665"><a href="#cb2-665" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-666"><a href="#cb2-666" aria-hidden="true" tabindex="-1"></a><span class="co">#> -1320.0 -1027.5 537.5 </span></span> +<span id="cb2-667"><a href="#cb2-667" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-668"><a href="#cb2-668" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 992.731937</span></span> +<span id="cb2-669"><a href="#cb2-669" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 967.306984</span></span> +<span id="cb2-670"><a href="#cb2-670" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 967.287995</span></span> +<span id="cb2-671"><a href="#cb2-671" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 964.318376</span></span> +<span id="cb2-672"><a href="#cb2-672" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 964.313823</span></span> +<span id="cb2-673"><a href="#cb2-673" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 964.313820</span></span> +<span id="cb2-674"><a href="#cb2-674" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 964.313820</span></span> +<span id="cb2-675"><a href="#cb2-675" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 964.313820 </span></span> +<span id="cb2-676"><a href="#cb2-676" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-677"><a href="#cb2-677" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-678"><a href="#cb2-678" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-679"><a href="#cb2-679" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-680"><a href="#cb2-680" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-681"><a href="#cb2-681" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-682"><a href="#cb2-682" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-683"><a href="#cb2-683" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.01 -0.06 -0.05 0.01 0.01</span></span> +<span id="cb2-684"><a href="#cb2-684" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00</span></span> +<span id="cb2-685"><a href="#cb2-685" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-686"><a href="#cb2-686" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-687"><a href="#cb2-687" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.06 0.01 0.06 0.07 0.01 0.01</span></span> +<span id="cb2-688"><a href="#cb2-688" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-689"><a href="#cb2-689" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-690"><a href="#cb2-690" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-691"><a href="#cb2-691" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-692"><a href="#cb2-692" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-693"><a href="#cb2-693" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-694"><a href="#cb2-694" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-695"><a href="#cb2-695" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-696"><a href="#cb2-696" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-697"><a href="#cb2-697" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-698"><a href="#cb2-698" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-699"><a href="#cb2-699" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-700"><a href="#cb2-700" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-701"><a href="#cb2-701" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-702"><a href="#cb2-702" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-703"><a href="#cb2-703" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-704"><a href="#cb2-704" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-705"><a href="#cb2-705" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-706"><a href="#cb2-706" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-707"><a href="#cb2-707" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-708"><a href="#cb2-708" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-709"><a href="#cb2-709" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-710"><a href="#cb2-710" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-711"><a href="#cb2-711" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-712"><a href="#cb2-712" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-713"><a href="#cb2-713" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-714"><a href="#cb2-714" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-715"><a href="#cb2-715" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-716"><a href="#cb2-716" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `` -> `...10`</span></span> +<span id="cb2-717"><a href="#cb2-717" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning: One or more parsing issues, call</span></span> +<span id="cb2-718"><a href="#cb2-718" aria-hidden="true" tabindex="-1"></a><span class="co">#> `problems()` on your data frame for</span></span> +<span id="cb2-719"><a href="#cb2-719" aria-hidden="true" tabindex="-1"></a><span class="co">#> details, e.g.:</span></span> +<span id="cb2-720"><a href="#cb2-720" aria-hidden="true" tabindex="-1"></a><span class="co">#> dat <- vroom(...)</span></span> +<span id="cb2-721"><a href="#cb2-721" aria-hidden="true" tabindex="-1"></a><span class="co">#> problems(dat)</span></span> +<span id="cb2-722"><a href="#cb2-722" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-723"><a href="#cb2-723" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-724"><a href="#cb2-724" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-725"><a href="#cb2-725" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-726"><a href="#cb2-726" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-727"><a href="#cb2-727" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-728"><a href="#cb2-728" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-729"><a href="#cb2-729" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-730"><a href="#cb2-730" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-731"><a href="#cb2-731" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-732"><a href="#cb2-732" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-733"><a href="#cb2-733" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-734"><a href="#cb2-734" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-735"><a href="#cb2-735" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0</span></span> +<span id="cb2-736"><a href="#cb2-736" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5</span></span> +<span id="cb2-737"><a href="#cb2-737" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0</span></span> +<span id="cb2-738"><a href="#cb2-738" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0</span></span> +<span id="cb2-739"><a href="#cb2-739" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0</span></span> +<span id="cb2-740"><a href="#cb2-740" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0</span></span> +<span id="cb2-741"><a href="#cb2-741" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-742"><a href="#cb2-742" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0 60 20.0 10.0 1</span></span> +<span id="cb2-743"><a href="#cb2-743" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 10 40 20.0 0.0 1</span></span> +<span id="cb2-744"><a href="#cb2-744" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 10 80 2.5 0.0 1</span></span> +<span id="cb2-745"><a href="#cb2-745" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10 20 20.0 2.5 1</span></span> +<span id="cb2-746"><a href="#cb2-746" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10 80 10.0 0.0 1</span></span> +<span id="cb2-747"><a href="#cb2-747" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0 40 20.0 10.0 1</span></span> +<span id="cb2-748"><a href="#cb2-748" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-749"><a href="#cb2-749" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -1.800 0.4772651</span></span> +<span id="cb2-750"><a href="#cb2-750" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.575 -1.800 -1.0611813</span></span> +<span id="cb2-751"><a href="#cb2-751" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.400 -0.975 -0.4549814</span></span> +<span id="cb2-752"><a href="#cb2-752" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.950 -1.550 1.0741179</span></span> +<span id="cb2-753"><a href="#cb2-753" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.500 0.6850764</span></span> +<span id="cb2-754"><a href="#cb2-754" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.300 -1.600 2.1581413</span></span> +<span id="cb2-755"><a href="#cb2-755" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-756"><a href="#cb2-756" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.58862455 -0.6727349 -2.3886245</span></span> +<span id="cb2-757"><a href="#cb2-757" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1.67391615 -1.6361813 -0.1260839</span></span> +<span id="cb2-758"><a href="#cb2-758" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.08433351 -1.8549814 -0.8906665</span></span> +<span id="cb2-759"><a href="#cb2-759" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.16471135 0.1241179 -1.3852887</span></span> +<span id="cb2-760"><a href="#cb2-760" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.80503749 -1.1149236 -2.3050375</span></span> +<span id="cb2-761"><a href="#cb2-761" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.78193942 0.8581413 -2.3819394</span></span> +<span id="cb2-762"><a href="#cb2-762" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-763"><a href="#cb2-763" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-764"><a href="#cb2-764" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2</span></span> +<span id="cb2-765"><a href="#cb2-765" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 2</span></span> +<span id="cb2-766"><a href="#cb2-766" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1</span></span> +<span id="cb2-767"><a href="#cb2-767" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-768"><a href="#cb2-768" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-769"><a href="#cb2-769" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-770"><a href="#cb2-770" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-771"><a href="#cb2-771" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-772"><a href="#cb2-772" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-773"><a href="#cb2-773" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-774"><a href="#cb2-774" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-775"><a href="#cb2-775" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-776"><a href="#cb2-776" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-777"><a href="#cb2-777" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-778"><a href="#cb2-778" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-779"><a href="#cb2-779" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-780"><a href="#cb2-780" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-781"><a href="#cb2-781" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-782"><a href="#cb2-782" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-783"><a href="#cb2-783" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-784"><a href="#cb2-784" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0</span></span> +<span id="cb2-785"><a href="#cb2-785" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5</span></span> +<span id="cb2-786"><a href="#cb2-786" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0</span></span> +<span id="cb2-787"><a href="#cb2-787" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0</span></span> +<span id="cb2-788"><a href="#cb2-788" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0</span></span> +<span id="cb2-789"><a href="#cb2-789" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0</span></span> +<span id="cb2-790"><a href="#cb2-790" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-791"><a href="#cb2-791" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0 60 20.0 10.0 1</span></span> +<span id="cb2-792"><a href="#cb2-792" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 10 40 20.0 0.0 1</span></span> +<span id="cb2-793"><a href="#cb2-793" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 10 80 2.5 0.0 1</span></span> +<span id="cb2-794"><a href="#cb2-794" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10 20 20.0 2.5 1</span></span> +<span id="cb2-795"><a href="#cb2-795" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10 80 10.0 0.0 1</span></span> +<span id="cb2-796"><a href="#cb2-796" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0 40 20.0 10.0 1</span></span> +<span id="cb2-797"><a href="#cb2-797" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-798"><a href="#cb2-798" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -1.800 -0.284096565</span></span> +<span id="cb2-799"><a href="#cb2-799" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.575 -1.800 -0.020855208</span></span> +<span id="cb2-800"><a href="#cb2-800" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.400 -0.975 2.808193631</span></span> +<span id="cb2-801"><a href="#cb2-801" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.950 -1.550 1.512635398</span></span> +<span id="cb2-802"><a href="#cb2-802" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.500 -0.869856696</span></span> +<span id="cb2-803"><a href="#cb2-803" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.300 -1.600 0.001496538</span></span> +<span id="cb2-804"><a href="#cb2-804" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-805"><a href="#cb2-805" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 3.7852439 -1.4340966 1.9852439 2</span></span> +<span id="cb2-806"><a href="#cb2-806" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2.5441347 -0.5958552 0.7441347 2</span></span> +<span id="cb2-807"><a href="#cb2-807" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.1408644 1.4081936 -1.1158644 1</span></span> +<span id="cb2-808"><a href="#cb2-808" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -0.2739250 0.5626354 -1.8239250 1</span></span> +<span id="cb2-809"><a href="#cb2-809" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.2920285 -2.6698567 -1.7920285 2</span></span> +<span id="cb2-810"><a href="#cb2-810" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.9243727 -1.2985035 -0.6756273 2</span></span> +<span id="cb2-811"><a href="#cb2-811" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-812"><a href="#cb2-812" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-813"><a href="#cb2-813" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-814"><a href="#cb2-814" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-815"><a href="#cb2-815" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-816"><a href="#cb2-816" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-817"><a href="#cb2-817" aria-hidden="true" tabindex="-1"></a><span class="co">#> -2400 -3680 1320 </span></span> +<span id="cb2-818"><a href="#cb2-818" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-819"><a href="#cb2-819" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 956.785003</span></span> +<span id="cb2-820"><a href="#cb2-820" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 912.039295</span></span> +<span id="cb2-821"><a href="#cb2-821" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 911.870417</span></span> +<span id="cb2-822"><a href="#cb2-822" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 885.881709</span></span> +<span id="cb2-823"><a href="#cb2-823" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 885.187568</span></span> +<span id="cb2-824"><a href="#cb2-824" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 885.171492</span></span> +<span id="cb2-825"><a href="#cb2-825" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 885.171476</span></span> +<span id="cb2-826"><a href="#cb2-826" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 8 value 885.171476</span></span> +<span id="cb2-827"><a href="#cb2-827" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 885.171476 </span></span> +<span id="cb2-828"><a href="#cb2-828" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-829"><a href="#cb2-829" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-830"><a href="#cb2-830" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-831"><a href="#cb2-831" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-832"><a href="#cb2-832" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-833"><a href="#cb2-833" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-834"><a href="#cb2-834" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-835"><a href="#cb2-835" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-836"><a href="#cb2-836" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-837"><a href="#cb2-837" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-838"><a href="#cb2-838" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-839"><a href="#cb2-839" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-840"><a href="#cb2-840" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-841"><a href="#cb2-841" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation alt1_x1 alt1_x2</span></span> +<span id="cb2-842"><a href="#cb2-842" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 9 80 5.0</span></span> +<span id="cb2-843"><a href="#cb2-843" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 12 60 2.5</span></span> +<span id="cb2-844"><a href="#cb2-844" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 13 20 20.0</span></span> +<span id="cb2-845"><a href="#cb2-845" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 70 80 5.0</span></span> +<span id="cb2-846"><a href="#cb2-846" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 71 60 20.0</span></span> +<span id="cb2-847"><a href="#cb2-847" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 73 60 10.0</span></span> +<span id="cb2-848"><a href="#cb2-848" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block</span></span> +<span id="cb2-849"><a href="#cb2-849" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0 60 20.0 10.0 1</span></span> +<span id="cb2-850"><a href="#cb2-850" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 10 40 20.0 0.0 1</span></span> +<span id="cb2-851"><a href="#cb2-851" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 10 80 2.5 0.0 1</span></span> +<span id="cb2-852"><a href="#cb2-852" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 10 20 20.0 2.5 1</span></span> +<span id="cb2-853"><a href="#cb2-853" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 10 80 10.0 0.0 1</span></span> +<span id="cb2-854"><a href="#cb2-854" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0 40 20.0 10.0 1</span></span> +<span id="cb2-855"><a href="#cb2-855" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-856"><a href="#cb2-856" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -1.150 -1.800 0.6645192</span></span> +<span id="cb2-857"><a href="#cb2-857" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.575 -1.800 -0.8450051</span></span> +<span id="cb2-858"><a href="#cb2-858" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -1.400 -0.975 0.1125148</span></span> +<span id="cb2-859"><a href="#cb2-859" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -0.950 -1.550 1.0543183</span></span> +<span id="cb2-860"><a href="#cb2-860" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -1.800 -1.500 1.1168013</span></span> +<span id="cb2-861"><a href="#cb2-861" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -1.300 -1.600 -0.1311416</span></span> +<span id="cb2-862"><a href="#cb2-862" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-863"><a href="#cb2-863" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2.3304233 -0.4854808 0.5304233 2</span></span> +<span id="cb2-864"><a href="#cb2-864" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.2022020 -1.4200051 -1.5977980 1</span></span> +<span id="cb2-865"><a href="#cb2-865" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.1148274 -1.2874852 -1.0898274 2</span></span> +<span id="cb2-866"><a href="#cb2-866" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 -1.3880265 0.1043183 -2.9380265 1</span></span> +<span id="cb2-867"><a href="#cb2-867" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.1356148 -0.6831987 -1.3643852 1</span></span> +<span id="cb2-868"><a href="#cb2-868" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.9455601 -1.4311416 -0.6544399 2</span></span> +<span id="cb2-869"><a href="#cb2-869" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-870"><a href="#cb2-870" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-871"><a href="#cb2-871" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-872"><a href="#cb2-872" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-873"><a href="#cb2-873" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-874"><a href="#cb2-874" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-875"><a href="#cb2-875" aria-hidden="true" tabindex="-1"></a><span class="co">#> -3200.0 -2932.5 1142.5 </span></span> +<span id="cb2-876"><a href="#cb2-876" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-877"><a href="#cb2-877" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 965.989359</span></span> +<span id="cb2-878"><a href="#cb2-878" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 962.943975</span></span> +<span id="cb2-879"><a href="#cb2-879" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 962.790350</span></span> +<span id="cb2-880"><a href="#cb2-880" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 915.909913</span></span> +<span id="cb2-881"><a href="#cb2-881" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 915.781694</span></span> +<span id="cb2-882"><a href="#cb2-882" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 915.780836</span></span> +<span id="cb2-883"><a href="#cb2-883" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 915.780833</span></span> +<span id="cb2-884"><a href="#cb2-884" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 7 value 915.780833</span></span> +<span id="cb2-885"><a href="#cb2-885" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 915.780833 </span></span> +<span id="cb2-886"><a href="#cb2-886" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-887"><a href="#cb2-887" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-888"><a href="#cb2-888" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-889"><a href="#cb2-889" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-890"><a href="#cb2-890" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-891"><a href="#cb2-891" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-892"><a href="#cb2-892" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-893"><a href="#cb2-893" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.00</span></span> +<span id="cb2-894"><a href="#cb2-894" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00</span></span> +<span id="cb2-895"><a href="#cb2-895" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-896"><a href="#cb2-896" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-897"><a href="#cb2-897" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.01 0.02 0.00 0.03 0.03 0.01</span></span> +<span id="cb2-898"><a href="#cb2-898" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-899"><a href="#cb2-899" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-900"><a href="#cb2-900" aria-hidden="true" tabindex="-1"></a><span class="co">#> TRUE </span></span> +<span id="cb2-901"><a href="#cb2-901" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-902"><a href="#cb2-902" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used in simulation, ie the true utility: </span></span> +<span id="cb2-903"><a href="#cb2-903" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-904"><a href="#cb2-904" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1</span></span> +<span id="cb2-905"><a href="#cb2-905" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v1</span></span> +<span id="cb2-906"><a href="#cb2-906" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3</span></span> +<span id="cb2-907"><a href="#cb2-907" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-908"><a href="#cb2-908" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u1$v2</span></span> +<span id="cb2-909"><a href="#cb2-909" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3</span></span> +<span id="cb2-910"><a href="#cb2-910" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-911"><a href="#cb2-911" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-912"><a href="#cb2-912" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2</span></span> +<span id="cb2-913"><a href="#cb2-913" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v1</span></span> +<span id="cb2-914"><a href="#cb2-914" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.1 ~ bpreis * alt1.x1</span></span> +<span id="cb2-915"><a href="#cb2-915" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-916"><a href="#cb2-916" aria-hidden="true" tabindex="-1"></a><span class="co">#> $u2$v2</span></span> +<span id="cb2-917"><a href="#cb2-917" aria-hidden="true" tabindex="-1"></a><span class="co">#> V.2 ~ bpreis * alt2.x1</span></span> +<span id="cb2-918"><a href="#cb2-918" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-919"><a href="#cb2-919" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-920"><a href="#cb2-920" aria-hidden="true" tabindex="-1"></a><span class="co">#> Utility function used for Logit estimation with mixl: </span></span> +<span id="cb2-921"><a href="#cb2-921" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-922"><a href="#cb2-922" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;"</span></span> +<span id="cb2-923"><a href="#cb2-923" aria-hidden="true" tabindex="-1"></a><span class="co">#> New names:</span></span> +<span id="cb2-924"><a href="#cb2-924" aria-hidden="true" tabindex="-1"></a><span class="co">#> • `Choice situation` -></span></span> +<span id="cb2-925"><a href="#cb2-925" aria-hidden="true" tabindex="-1"></a><span class="co">#> `Choice.situation`</span></span> +<span id="cb2-926"><a href="#cb2-926" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-927"><a href="#cb2-927" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-928"><a href="#cb2-928" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-929"><a href="#cb2-929" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-930"><a href="#cb2-930" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-931"><a href="#cb2-931" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-932"><a href="#cb2-932" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-933"><a href="#cb2-933" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-934"><a href="#cb2-934" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-935"><a href="#cb2-935" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-936"><a href="#cb2-936" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-937"><a href="#cb2-937" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-938"><a href="#cb2-938" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1</span></span> +<span id="cb2-939"><a href="#cb2-939" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 1 1 80</span></span> +<span id="cb2-940"><a href="#cb2-940" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 2 1 60</span></span> +<span id="cb2-941"><a href="#cb2-941" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 3 1 60</span></span> +<span id="cb2-942"><a href="#cb2-942" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 4 1 20</span></span> +<span id="cb2-943"><a href="#cb2-943" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 5 1 40</span></span> +<span id="cb2-944"><a href="#cb2-944" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 6 1 60</span></span> +<span id="cb2-945"><a href="#cb2-945" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3</span></span> +<span id="cb2-946"><a href="#cb2-946" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 20 2.5 20.0 10 5</span></span> +<span id="cb2-947"><a href="#cb2-947" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 40 5.0 10.0 5 10</span></span> +<span id="cb2-948"><a href="#cb2-948" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 20 20.0 20.0 0 10</span></span> +<span id="cb2-949"><a href="#cb2-949" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 80 20.0 2.5 0 10</span></span> +<span id="cb2-950"><a href="#cb2-950" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 80 10.0 5.0 10 5</span></span> +<span id="cb2-951"><a href="#cb2-951" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 80 5.0 2.5 0 0</span></span> +<span id="cb2-952"><a href="#cb2-952" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-953"><a href="#cb2-953" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.500 0.53504757</span></span> +<span id="cb2-954"><a href="#cb2-954" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.850 -0.900 -0.93293876</span></span> +<span id="cb2-955"><a href="#cb2-955" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -2.000 -1.400 -1.97083982</span></span> +<span id="cb2-956"><a href="#cb2-956" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.600 -0.775 -0.09847358</span></span> +<span id="cb2-957"><a href="#cb2-957" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.900 -1.050 -0.91059496</span></span> +<span id="cb2-958"><a href="#cb2-958" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.950 -0.975 -0.27261150</span></span> +<span id="cb2-959"><a href="#cb2-959" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2 CHOICE</span></span> +<span id="cb2-960"><a href="#cb2-960" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.9131705 -0.2399524 -0.5868295 1</span></span> +<span id="cb2-961"><a href="#cb2-961" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 -1.5528907 -1.7829388 -2.4528907 1</span></span> +<span id="cb2-962"><a href="#cb2-962" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.2159494 -3.9708398 -1.6159494 2</span></span> +<span id="cb2-963"><a href="#cb2-963" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.1685500 -1.6984736 -0.6064500 2</span></span> +<span id="cb2-964"><a href="#cb2-964" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1.6256604 -1.8105950 0.5756604 2</span></span> +<span id="cb2-965"><a href="#cb2-965" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1.5055143 -1.2226115 0.5305143 2</span></span> +<span id="cb2-966"><a href="#cb2-966" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-967"><a href="#cb2-967" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-968"><a href="#cb2-968" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 1 </span></span> +<span id="cb2-969"><a href="#cb2-969" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-970"><a href="#cb2-970" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-971"><a href="#cb2-971" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-972"><a href="#cb2-972" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-973"><a href="#cb2-973" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-974"><a href="#cb2-974" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-975"><a href="#cb2-975" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-976"><a href="#cb2-976" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-977"><a href="#cb2-977" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-978"><a href="#cb2-978" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-979"><a href="#cb2-979" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-980"><a href="#cb2-980" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1</span></span> +<span id="cb2-981"><a href="#cb2-981" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 1 1 80</span></span> +<span id="cb2-982"><a href="#cb2-982" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 2 1 60</span></span> +<span id="cb2-983"><a href="#cb2-983" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 3 1 60</span></span> +<span id="cb2-984"><a href="#cb2-984" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 4 1 20</span></span> +<span id="cb2-985"><a href="#cb2-985" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 5 1 40</span></span> +<span id="cb2-986"><a href="#cb2-986" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 6 1 60</span></span> +<span id="cb2-987"><a href="#cb2-987" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3</span></span> +<span id="cb2-988"><a href="#cb2-988" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 20 2.5 20.0 10 5</span></span> +<span id="cb2-989"><a href="#cb2-989" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 40 5.0 10.0 5 10</span></span> +<span id="cb2-990"><a href="#cb2-990" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 20 20.0 20.0 0 10</span></span> +<span id="cb2-991"><a href="#cb2-991" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 80 20.0 2.5 0 10</span></span> +<span id="cb2-992"><a href="#cb2-992" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 80 10.0 5.0 10 5</span></span> +<span id="cb2-993"><a href="#cb2-993" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 80 5.0 2.5 0 0</span></span> +<span id="cb2-994"><a href="#cb2-994" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-995"><a href="#cb2-995" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.500 -0.2361754</span></span> +<span id="cb2-996"><a href="#cb2-996" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.850 -0.900 1.2985628</span></span> +<span id="cb2-997"><a href="#cb2-997" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -2.000 -1.400 2.6517108</span></span> +<span id="cb2-998"><a href="#cb2-998" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.600 -0.775 -0.3215271</span></span> +<span id="cb2-999"><a href="#cb2-999" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.900 -1.050 -1.1880836</span></span> +<span id="cb2-1000"><a href="#cb2-1000" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.950 -0.975 0.9386790</span></span> +<span id="cb2-1001"><a href="#cb2-1001" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-1002"><a href="#cb2-1002" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 -0.2249671 -1.01117540 -1.72496708</span></span> +<span id="cb2-1003"><a href="#cb2-1003" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.4231642 0.44856278 -0.47683584</span></span> +<span id="cb2-1004"><a href="#cb2-1004" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.4632492 0.65171082 -0.93675077</span></span> +<span id="cb2-1005"><a href="#cb2-1005" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.6960098 -1.92152712 -0.07899021</span></span> +<span id="cb2-1006"><a href="#cb2-1006" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1.0360301 -2.08808358 -0.01396992</span></span> +<span id="cb2-1007"><a href="#cb2-1007" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.1024565 -0.01132103 -1.07745654</span></span> +<span id="cb2-1008"><a href="#cb2-1008" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-1009"><a href="#cb2-1009" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-1010"><a href="#cb2-1010" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-1011"><a href="#cb2-1011" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-1012"><a href="#cb2-1012" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-1013"><a href="#cb2-1013" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 2</span></span> +<span id="cb2-1014"><a href="#cb2-1014" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1</span></span> +<span id="cb2-1015"><a href="#cb2-1015" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1016"><a href="#cb2-1016" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1017"><a href="#cb2-1017" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-1018"><a href="#cb2-1018" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-1019"><a href="#cb2-1019" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-1020"><a href="#cb2-1020" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-1021"><a href="#cb2-1021" aria-hidden="true" tabindex="-1"></a><span class="co">#> -140.0 -935.0 332.5 </span></span> +<span id="cb2-1022"><a href="#cb2-1022" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-1023"><a href="#cb2-1023" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 978.973745</span></span> +<span id="cb2-1024"><a href="#cb2-1024" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 978.139237</span></span> +<span id="cb2-1025"><a href="#cb2-1025" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 978.053388</span></span> +<span id="cb2-1026"><a href="#cb2-1026" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 974.539684</span></span> +<span id="cb2-1027"><a href="#cb2-1027" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 974.530921</span></span> +<span id="cb2-1028"><a href="#cb2-1028" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 974.530913</span></span> +<span id="cb2-1029"><a href="#cb2-1029" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 974.530913</span></span> +<span id="cb2-1030"><a href="#cb2-1030" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 974.530913 </span></span> +<span id="cb2-1031"><a href="#cb2-1031" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-1032"><a href="#cb2-1032" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is Run number 2 </span></span> +<span id="cb2-1033"><a href="#cb2-1033" aria-hidden="true" tabindex="-1"></a><span class="co">#> does sou_gis exist: FALSE </span></span> +<span id="cb2-1034"><a href="#cb2-1034" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1035"><a href="#cb2-1035" aria-hidden="true" tabindex="-1"></a><span class="co">#> dataset final_set exists: FALSE </span></span> +<span id="cb2-1036"><a href="#cb2-1036" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1037"><a href="#cb2-1037" aria-hidden="true" tabindex="-1"></a><span class="co">#> decisiongroups exists: TRUE</span></span> +<span id="cb2-1038"><a href="#cb2-1038" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 2 </span></span> +<span id="cb2-1039"><a href="#cb2-1039" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1007 433 </span></span> +<span id="cb2-1040"><a href="#cb2-1040" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1041"><a href="#cb2-1041" aria-hidden="true" tabindex="-1"></a><span class="co">#> data has been made </span></span> +<span id="cb2-1042"><a href="#cb2-1042" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1043"><a href="#cb2-1043" aria-hidden="true" tabindex="-1"></a><span class="co">#> First few observations </span></span> +<span id="cb2-1044"><a href="#cb2-1044" aria-hidden="true" tabindex="-1"></a><span class="co">#> ID Choice_situation Block alt1_x1</span></span> +<span id="cb2-1045"><a href="#cb2-1045" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 1 1 80</span></span> +<span id="cb2-1046"><a href="#cb2-1046" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 2 1 60</span></span> +<span id="cb2-1047"><a href="#cb2-1047" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 3 1 60</span></span> +<span id="cb2-1048"><a href="#cb2-1048" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 4 1 20</span></span> +<span id="cb2-1049"><a href="#cb2-1049" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 5 1 40</span></span> +<span id="cb2-1050"><a href="#cb2-1050" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 6 1 60</span></span> +<span id="cb2-1051"><a href="#cb2-1051" aria-hidden="true" tabindex="-1"></a><span class="co">#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3</span></span> +<span id="cb2-1052"><a href="#cb2-1052" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 20 2.5 20.0 10 5</span></span> +<span id="cb2-1053"><a href="#cb2-1053" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 40 5.0 10.0 5 10</span></span> +<span id="cb2-1054"><a href="#cb2-1054" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 20 20.0 20.0 0 10</span></span> +<span id="cb2-1055"><a href="#cb2-1055" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 80 20.0 2.5 0 10</span></span> +<span id="cb2-1056"><a href="#cb2-1056" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 80 10.0 5.0 10 5</span></span> +<span id="cb2-1057"><a href="#cb2-1057" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 80 5.0 2.5 0 0</span></span> +<span id="cb2-1058"><a href="#cb2-1058" aria-hidden="true" tabindex="-1"></a><span class="co">#> group V_1 V_2 e_1</span></span> +<span id="cb2-1059"><a href="#cb2-1059" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1 -0.775 -1.500 0.2982044</span></span> +<span id="cb2-1060"><a href="#cb2-1060" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1 -0.850 -0.900 3.4745400</span></span> +<span id="cb2-1061"><a href="#cb2-1061" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1 -2.000 -1.400 3.5031943</span></span> +<span id="cb2-1062"><a href="#cb2-1062" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 1 -1.600 -0.775 0.8386792</span></span> +<span id="cb2-1063"><a href="#cb2-1063" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1 -0.900 -1.050 1.8279937</span></span> +<span id="cb2-1064"><a href="#cb2-1064" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 1 -0.950 -0.975 -1.1295965</span></span> +<span id="cb2-1065"><a href="#cb2-1065" aria-hidden="true" tabindex="-1"></a><span class="co">#> e_2 U_1 U_2</span></span> +<span id="cb2-1066"><a href="#cb2-1066" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.85521723 -0.4767956 -0.6447828</span></span> +<span id="cb2-1067"><a href="#cb2-1067" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 2.20601106 2.6245400 1.3060111</span></span> +<span id="cb2-1068"><a href="#cb2-1068" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 -0.03275998 1.5031943 -1.4327600</span></span> +<span id="cb2-1069"><a href="#cb2-1069" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.87875516 -0.7613208 0.1037552</span></span> +<span id="cb2-1070"><a href="#cb2-1070" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 -0.45114524 0.9279937 -1.5011452</span></span> +<span id="cb2-1071"><a href="#cb2-1071" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 -0.63521469 -2.0795965 -1.6102147</span></span> +<span id="cb2-1072"><a href="#cb2-1072" aria-hidden="true" tabindex="-1"></a><span class="co">#> CHOICE</span></span> +<span id="cb2-1073"><a href="#cb2-1073" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 1</span></span> +<span id="cb2-1074"><a href="#cb2-1074" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 1</span></span> +<span id="cb2-1075"><a href="#cb2-1075" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 1</span></span> +<span id="cb2-1076"><a href="#cb2-1076" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 2</span></span> +<span id="cb2-1077"><a href="#cb2-1077" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 1</span></span> +<span id="cb2-1078"><a href="#cb2-1078" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 2</span></span> +<span id="cb2-1079"><a href="#cb2-1079" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1080"><a href="#cb2-1080" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1081"><a href="#cb2-1081" aria-hidden="true" tabindex="-1"></a><span class="co">#> This is the utility functions </span></span> +<span id="cb2-1082"><a href="#cb2-1082" aria-hidden="true" tabindex="-1"></a><span class="co">#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 </span></span> +<span id="cb2-1083"><a href="#cb2-1083" aria-hidden="true" tabindex="-1"></a><span class="co">#> Initial gradient value:</span></span> +<span id="cb2-1084"><a href="#cb2-1084" aria-hidden="true" tabindex="-1"></a><span class="co">#> bpreis blade bwarte </span></span> +<span id="cb2-1085"><a href="#cb2-1085" aria-hidden="true" tabindex="-1"></a><span class="co">#> -660.0 -925.0 442.5 </span></span> +<span id="cb2-1086"><a href="#cb2-1086" aria-hidden="true" tabindex="-1"></a><span class="co">#> initial value 998.131940 </span></span> +<span id="cb2-1087"><a href="#cb2-1087" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 2 value 990.452175</span></span> +<span id="cb2-1088"><a href="#cb2-1088" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 3 value 972.395315</span></span> +<span id="cb2-1089"><a href="#cb2-1089" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 4 value 972.382101</span></span> +<span id="cb2-1090"><a href="#cb2-1090" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 5 value 968.290249</span></span> +<span id="cb2-1091"><a href="#cb2-1091" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 968.286828</span></span> +<span id="cb2-1092"><a href="#cb2-1092" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 968.286823</span></span> +<span id="cb2-1093"><a href="#cb2-1093" aria-hidden="true" tabindex="-1"></a><span class="co">#> iter 6 value 968.286823</span></span> +<span id="cb2-1094"><a href="#cb2-1094" aria-hidden="true" tabindex="-1"></a><span class="co">#> final value 968.286823 </span></span> +<span id="cb2-1095"><a href="#cb2-1095" aria-hidden="true" tabindex="-1"></a><span class="co">#> converged</span></span> +<span id="cb2-1096"><a href="#cb2-1096" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1097"><a href="#cb2-1097" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1098"><a href="#cb2-1098" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-1099"><a href="#cb2-1099" aria-hidden="true" tabindex="-1"></a><span class="co">#> \ vars n mean sd min max range se</span></span> +<span id="cb2-1100"><a href="#cb2-1100" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-1101"><a href="#cb2-1101" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00</span></span> +<span id="cb2-1102"><a href="#cb2-1102" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00</span></span> +<span id="cb2-1103"><a href="#cb2-1103" aria-hidden="true" tabindex="-1"></a><span class="co">#> est_bwarte 3 2 0.01 0.01 0.01 0.02 0.01 0.00</span></span> +<span id="cb2-1104"><a href="#cb2-1104" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-1105"><a href="#cb2-1105" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00</span></span> +<span id="cb2-1106"><a href="#cb2-1106" aria-hidden="true" tabindex="-1"></a><span class="co">#> rob_pval0_bwarte 6 2 0.20 0.13 0.10 0.29 0.19 0.09</span></span> +<span id="cb2-1107"><a href="#cb2-1107" aria-hidden="true" tabindex="-1"></a><span class="co">#> ================ ==== === ===== ==== ===== ===== ===== ====</span></span> +<span id="cb2-1108"><a href="#cb2-1108" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1109"><a href="#cb2-1109" aria-hidden="true" tabindex="-1"></a><span class="co">#> FALSE </span></span> +<span id="cb2-1110"><a href="#cb2-1110" aria-hidden="true" tabindex="-1"></a><span class="co">#> 100 </span></span> +<span id="cb2-1111"><a href="#cb2-1111" aria-hidden="true" tabindex="-1"></a><span class="co">#> 34.002 sec elapsed</span></span> +<span id="cb2-1112"><a href="#cb2-1112" aria-hidden="true" tabindex="-1"></a><span class="co">#> $tic</span></span> +<span id="cb2-1113"><a href="#cb2-1113" aria-hidden="true" tabindex="-1"></a><span class="co">#> elapsed </span></span> +<span id="cb2-1114"><a href="#cb2-1114" aria-hidden="true" tabindex="-1"></a><span class="co">#> 672.76 </span></span> +<span id="cb2-1115"><a href="#cb2-1115" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1116"><a href="#cb2-1116" aria-hidden="true" tabindex="-1"></a><span class="co">#> $toc</span></span> +<span id="cb2-1117"><a href="#cb2-1117" aria-hidden="true" tabindex="-1"></a><span class="co">#> elapsed </span></span> +<span id="cb2-1118"><a href="#cb2-1118" aria-hidden="true" tabindex="-1"></a><span class="co">#> 706.762 </span></span> +<span id="cb2-1119"><a href="#cb2-1119" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1120"><a href="#cb2-1120" aria-hidden="true" tabindex="-1"></a><span class="co">#> $msg</span></span> +<span id="cb2-1121"><a href="#cb2-1121" aria-hidden="true" tabindex="-1"></a><span class="co">#> logical(0)</span></span> +<span id="cb2-1122"><a href="#cb2-1122" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb2-1123"><a href="#cb2-1123" aria-hidden="true" tabindex="-1"></a><span class="co">#> $callback_msg</span></span> +<span id="cb2-1124"><a href="#cb2-1124" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] "34.002 sec elapsed"</span></span></code></pre></div> +<p><img src="" width="100%" /><img src="" width="100%" /><img src="" width="100%" /></p> + +</body> +</html> diff --git a/README.md b/README.md index c60ae4a..42e8da0 100644 --- a/README.md +++ b/README.md @@ -46,6 +46,1130 @@ remotes::install_gitlab(repo = "dj44vuri/simulateDCE" , host = "https://git.idiv This is a basic example which shows you how to solve a common problem: ``` r -library(simulateDCE) -## basic example code + library(simulateDCE) +library(rlang) + +print("lests") +#> [1] "lests" + +#set.seed(22233) + +# Designpath indicates the folder where all designs that should be simulated are stored. Can be either ngd files (for NGENE) or Robjects for spdesign) +designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE") + +# on your computer, it would be something like +# designpath <- "c:/myfancyDCE/Designs" + + +# number of respondents +resps =120 + +# number of simulations to run (about 200 is minimum if you want to be serious -- but it takes some time. always test your code with 2 simulations, and if it runs smoothly, go for more.) +nosim= 2 + +# If you want to use different groups of respondents, use this. The following line means that you have one group of 70% size and one group of 30% size +decisiongroups=c(0,0.7,1) + +# set the values of the parameters you want to use in the simulation +bpreis = -0.01 +blade = -0.07 +bwarte = 0.02 + +# If you want to do some manipulations in the design before you simulate, add a list called manipulations. Here, we devide some attributes by 10 + +manipulations = list(alt1.x2= expr(alt1.x2/10), + alt1.x3= expr(alt1.x3/10), + alt2.x2= expr(alt2.x2/10), + alt2.x3= expr(alt2.x3/10) +) + + +#place your utility functions here. We have two utility functions and two sets of utility functions. This is because we assume that 70% act according to the utility u1 and 30% act to the utility u2 (that is, they only decide according to the price and ignore the other attributes) +u<-list( u1 = + + list( + v1 =V.1~ bpreis * alt1.x1 + blade*alt1.x2 + bwarte*alt1.x3 , + v2 =V.2~ bpreis * alt2.x1 + blade*alt2.x2 + bwarte*alt2.x3 + ) + + , + u2 = list( v1 =V.1~ bpreis * alt1.x1 , + v2 =V.2~ bpreis * alt2.x1) + +) + +# specify the designtype "ngene" or "spdesign" +destype="ngene" + + +#lets go +sedrive <- simulateDCE::sim_all() +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 7 80 2.5 +#> 2 1 19 20 2.5 +#> 3 1 30 20 10.0 +#> 4 1 32 40 20.0 +#> 5 1 39 40 20.0 +#> 6 1 48 60 5.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 10.0 60 20.0 10 1 +#> 2 5.0 60 2.5 0 1 +#> 3 5.0 80 5.0 10 1 +#> 4 2.5 80 2.5 0 1 +#> 5 0.0 80 10.0 10 1 +#> 6 2.5 20 5.0 10 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.800 2.8927045 +#> 2 1 -0.275 -0.775 2.1129458 +#> 3 1 -0.800 -0.950 -0.3070059 +#> 4 1 -1.750 -0.975 0.2125815 +#> 5 1 -1.800 -1.300 0.5101632 +#> 6 1 -0.900 -0.350 -0.9494807 +#> e_2 U_1 U_2 CHOICE +#> 1 0.09958433 2.117705 -1.700416 1 +#> 2 3.47451776 1.837946 2.699518 2 +#> 3 -0.28860974 -1.107006 -1.238610 1 +#> 4 3.65240491 -1.537418 2.677405 2 +#> 5 -0.14448942 -1.289837 -1.444489 1 +#> 6 -1.04296995 -1.849481 -1.392970 2 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 7 80 2.5 +#> 2 1 19 20 2.5 +#> 3 1 30 20 10.0 +#> 4 1 32 40 20.0 +#> 5 1 39 40 20.0 +#> 6 1 48 60 5.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 10.0 60 20.0 10 1 +#> 2 5.0 60 2.5 0 1 +#> 3 5.0 80 5.0 10 1 +#> 4 2.5 80 2.5 0 1 +#> 5 0.0 80 10.0 10 1 +#> 6 2.5 20 5.0 10 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.800 -0.06362638 +#> 2 1 -0.275 -0.775 -0.81571577 +#> 3 1 -0.800 -0.950 -1.09388352 +#> 4 1 -1.750 -0.975 0.28996875 +#> 5 1 -1.800 -1.300 1.03059224 +#> 6 1 -0.900 -0.350 -1.10504379 +#> e_2 U_1 U_2 CHOICE +#> 1 0.1958595 -0.8386264 -1.6041405 1 +#> 2 0.1028995 -1.0907158 -0.6721005 2 +#> 3 0.7165451 -1.8938835 -0.2334549 2 +#> 4 1.4748351 -1.4600313 0.4998351 2 +#> 5 4.5718398 -0.7694078 3.2718398 2 +#> 6 0.8766732 -2.0050438 0.5266732 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -860.0 -1147.5 532.5 +#> initial value 998.131940 +#> iter 2 value 988.178813 +#> iter 3 value 959.683236 +#> iter 4 value 959.648380 +#> iter 5 value 955.999179 +#> iter 6 value 955.979330 +#> iter 7 value 955.979295 +#> iter 7 value 955.979295 +#> iter 7 value 955.979295 +#> final value 955.979295 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 7 80 2.5 +#> 2 1 19 20 2.5 +#> 3 1 30 20 10.0 +#> 4 1 32 40 20.0 +#> 5 1 39 40 20.0 +#> 6 1 48 60 5.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 10.0 60 20.0 10 1 +#> 2 5.0 60 2.5 0 1 +#> 3 5.0 80 5.0 10 1 +#> 4 2.5 80 2.5 0 1 +#> 5 0.0 80 10.0 10 1 +#> 6 2.5 20 5.0 10 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.800 -0.8816771 +#> 2 1 -0.275 -0.775 0.9004269 +#> 3 1 -0.800 -0.950 -0.3108731 +#> 4 1 -1.750 -0.975 -0.7695269 +#> 5 1 -1.800 -1.300 2.8853455 +#> 6 1 -0.900 -0.350 -0.1098324 +#> e_2 U_1 U_2 +#> 1 0.6516580 -1.6566771 -1.14834197 +#> 2 0.4584193 0.6254269 -0.31658066 +#> 3 1.2184928 -1.1108731 0.26849278 +#> 4 -0.1660211 -2.5195269 -1.14102109 +#> 5 -0.5943992 1.0853455 -1.89439922 +#> 6 0.3193140 -1.0098324 -0.03068595 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 2 +#> 4 2 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> 120 -655 295 +#> initial value 998.131940 +#> iter 2 value 994.305298 +#> iter 3 value 990.053293 +#> iter 4 value 989.940656 +#> iter 5 value 987.629292 +#> iter 6 value 987.628992 +#> iter 6 value 987.628991 +#> iter 6 value 987.628991 +#> final value 987.628991 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.01 -0.01 0.00 0.01 0.00 +#> est_blade 2 2 -0.04 0.02 -0.06 -0.02 0.03 0.02 +#> est_bwarte 3 2 0.02 0.00 0.02 0.03 0.01 0.00 +#> rob_pval0_bpreis 4 2 0.04 0.06 0.00 0.09 0.09 0.04 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.04 0.03 0.02 0.06 0.04 0.02 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE TRUE +#> 50 50 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 12 60 2.5 +#> 2 1 16 20 10.0 +#> 3 1 17 20 20.0 +#> 4 1 25 60 5.0 +#> 5 1 29 20 5.0 +#> 6 1 32 40 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 20.0 10 1 +#> 2 5.0 40 5.0 0 1 +#> 3 0.0 80 10.0 10 1 +#> 4 10.0 20 20.0 5 1 +#> 5 10.0 80 5.0 0 1 +#> 6 2.5 80 2.5 5 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.400 1.20580231 +#> 2 1 -0.800 -0.750 -0.72752412 +#> 3 1 -1.600 -1.300 -0.05762304 +#> 4 1 -0.750 -1.500 -0.83547157 +#> 5 1 -0.350 -1.150 3.85444600 +#> 6 1 -1.050 -0.875 1.64701776 +#> e_2 U_1 U_2 +#> 1 -0.28691332 0.4308023 -1.6869133 +#> 2 0.06648158 -1.5275241 -0.6835184 +#> 3 1.68916541 -1.6576230 0.3891654 +#> 4 0.40357792 -1.5854716 -1.0964221 +#> 5 0.13880669 3.5044460 -1.0111933 +#> 6 1.09745093 0.5970178 0.2224509 +#> CHOICE +#> 1 1 +#> 2 2 +#> 3 2 +#> 4 2 +#> 5 1 +#> 6 1 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 12 60 2.5 +#> 2 1 16 20 10.0 +#> 3 1 17 20 20.0 +#> 4 1 25 60 5.0 +#> 5 1 29 20 5.0 +#> 6 1 32 40 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 20.0 10 1 +#> 2 5.0 40 5.0 0 1 +#> 3 0.0 80 10.0 10 1 +#> 4 10.0 20 20.0 5 1 +#> 5 10.0 80 5.0 0 1 +#> 6 2.5 80 2.5 5 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.400 -0.09932726 +#> 2 1 -0.800 -0.750 2.18018219 +#> 3 1 -1.600 -1.300 1.30134429 +#> 4 1 -0.750 -1.500 1.55197796 +#> 5 1 -0.350 -1.150 0.07874983 +#> 6 1 -1.050 -0.875 -1.06565108 +#> e_2 U_1 U_2 +#> 1 2.2497903 -0.8743273 0.84979034 +#> 2 0.3329742 1.3801822 -0.41702578 +#> 3 0.9046182 -0.2986557 -0.39538182 +#> 4 -1.2414809 0.8019780 -2.74148090 +#> 5 -0.8624243 -0.2712502 -2.01242427 +#> 6 0.9398788 -2.1156511 0.06487882 +#> CHOICE +#> 1 2 +#> 2 1 +#> 3 1 +#> 4 1 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -340 -1095 305 +#> initial value 998.131940 +#> iter 2 value 984.073383 +#> iter 3 value 978.081615 +#> iter 4 value 977.767304 +#> iter 5 value 971.033395 +#> iter 6 value 971.027390 +#> iter 6 value 971.027385 +#> iter 6 value 971.027385 +#> final value 971.027385 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 12 60 2.5 +#> 2 1 16 20 10.0 +#> 3 1 17 20 20.0 +#> 4 1 25 60 5.0 +#> 5 1 29 20 5.0 +#> 6 1 32 40 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 20.0 10 1 +#> 2 5.0 40 5.0 0 1 +#> 3 0.0 80 10.0 10 1 +#> 4 10.0 20 20.0 5 1 +#> 5 10.0 80 5.0 0 1 +#> 6 2.5 80 2.5 5 1 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.400 0.44334136 +#> 2 1 -0.800 -0.750 -0.43185157 +#> 3 1 -1.600 -1.300 -0.09584172 +#> 4 1 -0.750 -1.500 2.74658736 +#> 5 1 -0.350 -1.150 -0.51575280 +#> 6 1 -1.050 -0.875 -0.33088933 +#> e_2 U_1 U_2 CHOICE +#> 1 0.3975165 -0.3316586 -1.0024835 1 +#> 2 1.4211569 -1.2318516 0.6711569 2 +#> 3 1.0034880 -1.6958417 -0.2965120 2 +#> 4 0.8780181 1.9965874 -0.6219819 1 +#> 5 0.9818505 -0.8657528 -0.1681495 2 +#> 6 1.7042698 -1.3808893 0.8292698 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -280 -905 345 +#> initial value 998.131940 +#> iter 2 value 988.003109 +#> iter 3 value 983.732741 +#> iter 4 value 983.724196 +#> iter 5 value 979.048736 +#> iter 6 value 979.044949 +#> iter 6 value 979.044947 +#> iter 6 value 979.044947 +#> final value 979.044947 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.04 0.01 -0.05 -0.04 0.01 0.01 +#> est_bwarte 3 2 0.01 0.01 0.00 0.01 0.01 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.50 0.41 0.21 0.79 0.58 0.29 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE +#> 100 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 3 80 5.0 +#> 2 1 5 60 2.5 +#> 3 1 10 80 2.5 +#> 4 1 34 80 2.5 +#> 5 1 37 40 5.0 +#> 6 1 39 20 20.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 5.0 10.0 1 +#> 2 5.0 20 20.0 5.0 1 +#> 3 2.5 20 20.0 0.0 1 +#> 4 5.0 60 5.0 5.0 1 +#> 5 10.0 60 5.0 2.5 1 +#> 6 2.5 60 2.5 2.5 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -0.350 -0.32663211 +#> 2 1 -0.675 -1.500 -0.04162689 +#> 3 1 -0.925 -1.600 -0.52492188 +#> 4 1 -0.875 -0.850 -1.14189023 +#> 5 1 -0.550 -0.900 0.19650068 +#> 6 1 -1.550 -0.725 2.74825383 +#> e_2 U_1 U_2 CHOICE +#> 1 0.2288010 -1.4766321 -0.1211990 2 +#> 2 1.0875948 -0.7166269 -0.4124052 2 +#> 3 0.1472598 -1.4499219 -1.4527402 1 +#> 4 0.5765191 -2.0168902 -0.2734809 2 +#> 5 -0.5803934 -0.3534993 -1.4803934 1 +#> 6 -0.8761884 1.1982538 -1.6011884 1 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 3 80 5.0 +#> 2 1 5 60 2.5 +#> 3 1 10 80 2.5 +#> 4 1 34 80 2.5 +#> 5 1 37 40 5.0 +#> 6 1 39 20 20.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 5.0 10.0 1 +#> 2 5.0 20 20.0 5.0 1 +#> 3 2.5 20 20.0 0.0 1 +#> 4 5.0 60 5.0 5.0 1 +#> 5 10.0 60 5.0 2.5 1 +#> 6 2.5 60 2.5 2.5 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -0.350 0.9214793 +#> 2 1 -0.675 -1.500 -0.7937151 +#> 3 1 -0.925 -1.600 0.5612728 +#> 4 1 -0.875 -0.850 2.9230889 +#> 5 1 -0.550 -0.900 0.1761764 +#> 6 1 -1.550 -0.725 1.0340286 +#> e_2 U_1 U_2 +#> 1 0.09295071 -0.2285207 -0.25704929 +#> 2 -0.18278050 -1.4687151 -1.68278050 +#> 3 -0.24595450 -0.3637272 -1.84595450 +#> 4 -0.74954312 2.0480889 -1.59954312 +#> 5 -0.52864852 -0.3738236 -1.42864852 +#> 6 0.69916199 -0.5159714 -0.02583801 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 1 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -2640.0 -1060.0 662.5 +#> initial value 998.131940 +#> iter 2 value 987.031183 +#> iter 3 value 957.685378 +#> iter 4 value 957.680370 +#> iter 5 value 954.925156 +#> iter 6 value 945.725076 +#> iter 7 value 945.695285 +#> iter 8 value 945.695175 +#> iter 8 value 945.695175 +#> final value 945.695175 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 3 80 5.0 +#> 2 1 5 60 2.5 +#> 3 1 10 80 2.5 +#> 4 1 34 80 2.5 +#> 5 1 37 40 5.0 +#> 6 1 39 20 20.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0.0 20 5.0 10.0 1 +#> 2 5.0 20 20.0 5.0 1 +#> 3 2.5 20 20.0 0.0 1 +#> 4 5.0 60 5.0 5.0 1 +#> 5 10.0 60 5.0 2.5 1 +#> 6 2.5 60 2.5 2.5 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -0.350 -0.8218428 +#> 2 1 -0.675 -1.500 0.4133131 +#> 3 1 -0.925 -1.600 0.4824588 +#> 4 1 -0.875 -0.850 -1.2658097 +#> 5 1 -0.550 -0.900 -0.6930574 +#> 6 1 -1.550 -0.725 -0.6815915 +#> e_2 U_1 U_2 CHOICE +#> 1 -0.6493651 -1.9718428 -0.9993651 2 +#> 2 0.8461510 -0.2616869 -0.6538490 1 +#> 3 0.3849732 -0.4425412 -1.2150268 1 +#> 4 -0.2971578 -2.1408097 -1.1471578 2 +#> 5 -0.8024491 -1.2430574 -1.7024491 1 +#> 6 -0.4752339 -2.2315915 -1.2002339 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -1320.0 -1027.5 537.5 +#> initial value 998.131940 +#> iter 2 value 992.731937 +#> iter 3 value 967.306984 +#> iter 4 value 967.287995 +#> iter 5 value 964.318376 +#> iter 6 value 964.313823 +#> iter 6 value 964.313820 +#> iter 6 value 964.313820 +#> final value 964.313820 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.05 0.01 -0.06 -0.05 0.01 0.01 +#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.06 0.01 0.06 0.07 0.01 0.01 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE +#> 100 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> • `` -> `...10` +#> Warning: One or more parsing issues, call +#> `problems()` on your data frame for +#> details, e.g.: +#> dat <- vroom(...) +#> problems(dat) +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 9 80 5.0 +#> 2 1 12 60 2.5 +#> 3 1 13 20 20.0 +#> 4 1 70 80 5.0 +#> 5 1 71 60 20.0 +#> 6 1 73 60 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0 60 20.0 10.0 1 +#> 2 10 40 20.0 0.0 1 +#> 3 10 80 2.5 0.0 1 +#> 4 10 20 20.0 2.5 1 +#> 5 10 80 10.0 0.0 1 +#> 6 0 40 20.0 10.0 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -1.800 0.4772651 +#> 2 1 -0.575 -1.800 -1.0611813 +#> 3 1 -1.400 -0.975 -0.4549814 +#> 4 1 -0.950 -1.550 1.0741179 +#> 5 1 -1.800 -1.500 0.6850764 +#> 6 1 -1.300 -1.600 2.1581413 +#> e_2 U_1 U_2 +#> 1 -0.58862455 -0.6727349 -2.3886245 +#> 2 1.67391615 -1.6361813 -0.1260839 +#> 3 0.08433351 -1.8549814 -0.8906665 +#> 4 0.16471135 0.1241179 -1.3852887 +#> 5 -0.80503749 -1.1149236 -2.3050375 +#> 6 -0.78193942 0.8581413 -2.3819394 +#> CHOICE +#> 1 1 +#> 2 2 +#> 3 2 +#> 4 1 +#> 5 1 +#> 6 1 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 9 80 5.0 +#> 2 1 12 60 2.5 +#> 3 1 13 20 20.0 +#> 4 1 70 80 5.0 +#> 5 1 71 60 20.0 +#> 6 1 73 60 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0 60 20.0 10.0 1 +#> 2 10 40 20.0 0.0 1 +#> 3 10 80 2.5 0.0 1 +#> 4 10 20 20.0 2.5 1 +#> 5 10 80 10.0 0.0 1 +#> 6 0 40 20.0 10.0 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -1.800 -0.284096565 +#> 2 1 -0.575 -1.800 -0.020855208 +#> 3 1 -1.400 -0.975 2.808193631 +#> 4 1 -0.950 -1.550 1.512635398 +#> 5 1 -1.800 -1.500 -0.869856696 +#> 6 1 -1.300 -1.600 0.001496538 +#> e_2 U_1 U_2 CHOICE +#> 1 3.7852439 -1.4340966 1.9852439 2 +#> 2 2.5441347 -0.5958552 0.7441347 2 +#> 3 -0.1408644 1.4081936 -1.1158644 1 +#> 4 -0.2739250 0.5626354 -1.8239250 1 +#> 5 -0.2920285 -2.6698567 -1.7920285 2 +#> 6 0.9243727 -1.2985035 -0.6756273 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -2400 -3680 1320 +#> initial value 998.131940 +#> iter 2 value 956.785003 +#> iter 3 value 912.039295 +#> iter 4 value 911.870417 +#> iter 5 value 885.881709 +#> iter 6 value 885.187568 +#> iter 7 value 885.171492 +#> iter 8 value 885.171476 +#> iter 8 value 885.171476 +#> final value 885.171476 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation alt1_x1 alt1_x2 +#> 1 1 9 80 5.0 +#> 2 1 12 60 2.5 +#> 3 1 13 20 20.0 +#> 4 1 70 80 5.0 +#> 5 1 71 60 20.0 +#> 6 1 73 60 10.0 +#> alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block +#> 1 0 60 20.0 10.0 1 +#> 2 10 40 20.0 0.0 1 +#> 3 10 80 2.5 0.0 1 +#> 4 10 20 20.0 2.5 1 +#> 5 10 80 10.0 0.0 1 +#> 6 0 40 20.0 10.0 1 +#> group V_1 V_2 e_1 +#> 1 1 -1.150 -1.800 0.6645192 +#> 2 1 -0.575 -1.800 -0.8450051 +#> 3 1 -1.400 -0.975 0.1125148 +#> 4 1 -0.950 -1.550 1.0543183 +#> 5 1 -1.800 -1.500 1.1168013 +#> 6 1 -1.300 -1.600 -0.1311416 +#> e_2 U_1 U_2 CHOICE +#> 1 2.3304233 -0.4854808 0.5304233 2 +#> 2 0.2022020 -1.4200051 -1.5977980 1 +#> 3 -0.1148274 -1.2874852 -1.0898274 2 +#> 4 -1.3880265 0.1043183 -2.9380265 1 +#> 5 0.1356148 -0.6831987 -1.3643852 1 +#> 6 0.9455601 -1.4311416 -0.6544399 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -3200.0 -2932.5 1142.5 +#> initial value 998.131940 +#> iter 2 value 965.989359 +#> iter 3 value 962.943975 +#> iter 4 value 962.790350 +#> iter 5 value 915.909913 +#> iter 6 value 915.781694 +#> iter 7 value 915.780836 +#> iter 7 value 915.780833 +#> iter 7 value 915.780833 +#> final value 915.780833 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.05 0.01 -0.05 -0.04 0.01 0.00 +#> est_bwarte 3 2 0.02 0.00 0.02 0.02 0.00 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.01 0.02 0.00 0.03 0.03 0.01 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> TRUE +#> 100 +#> Utility function used in simulation, ie the true utility: +#> +#> $u1 +#> $u1$v1 +#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3 +#> +#> $u1$v2 +#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3 +#> +#> +#> $u2 +#> $u2$v1 +#> V.1 ~ bpreis * alt1.x1 +#> +#> $u2$v2 +#> V.2 ~ bpreis * alt2.x1 +#> +#> +#> Utility function used for Logit estimation with mixl: +#> +#> [1] "U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;" +#> New names: +#> • `Choice situation` -> +#> `Choice.situation` +#> +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation Block alt1_x1 +#> 1 1 1 1 80 +#> 2 1 2 1 60 +#> 3 1 3 1 60 +#> 4 1 4 1 20 +#> 5 1 5 1 40 +#> 6 1 6 1 60 +#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 +#> 1 20 2.5 20.0 10 5 +#> 2 40 5.0 10.0 5 10 +#> 3 20 20.0 20.0 0 10 +#> 4 80 20.0 2.5 0 10 +#> 5 80 10.0 5.0 10 5 +#> 6 80 5.0 2.5 0 0 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.500 0.53504757 +#> 2 1 -0.850 -0.900 -0.93293876 +#> 3 1 -2.000 -1.400 -1.97083982 +#> 4 1 -1.600 -0.775 -0.09847358 +#> 5 1 -0.900 -1.050 -0.91059496 +#> 6 1 -0.950 -0.975 -0.27261150 +#> e_2 U_1 U_2 CHOICE +#> 1 0.9131705 -0.2399524 -0.5868295 1 +#> 2 -1.5528907 -1.7829388 -2.4528907 1 +#> 3 -0.2159494 -3.9708398 -1.6159494 2 +#> 4 0.1685500 -1.6984736 -0.6064500 2 +#> 5 1.6256604 -1.8105950 0.5756604 2 +#> 6 1.5055143 -1.2226115 0.5305143 2 +#> +#> +#> This is Run number 1 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation Block alt1_x1 +#> 1 1 1 1 80 +#> 2 1 2 1 60 +#> 3 1 3 1 60 +#> 4 1 4 1 20 +#> 5 1 5 1 40 +#> 6 1 6 1 60 +#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 +#> 1 20 2.5 20.0 10 5 +#> 2 40 5.0 10.0 5 10 +#> 3 20 20.0 20.0 0 10 +#> 4 80 20.0 2.5 0 10 +#> 5 80 10.0 5.0 10 5 +#> 6 80 5.0 2.5 0 0 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.500 -0.2361754 +#> 2 1 -0.850 -0.900 1.2985628 +#> 3 1 -2.000 -1.400 2.6517108 +#> 4 1 -1.600 -0.775 -0.3215271 +#> 5 1 -0.900 -1.050 -1.1880836 +#> 6 1 -0.950 -0.975 0.9386790 +#> e_2 U_1 U_2 +#> 1 -0.2249671 -1.01117540 -1.72496708 +#> 2 0.4231642 0.44856278 -0.47683584 +#> 3 0.4632492 0.65171082 -0.93675077 +#> 4 0.6960098 -1.92152712 -0.07899021 +#> 5 1.0360301 -2.08808358 -0.01396992 +#> 6 -0.1024565 -0.01132103 -1.07745654 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 2 +#> 5 2 +#> 6 1 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -140.0 -935.0 332.5 +#> initial value 998.131940 +#> iter 2 value 978.973745 +#> iter 3 value 978.139237 +#> iter 4 value 978.053388 +#> iter 5 value 974.539684 +#> iter 6 value 974.530921 +#> iter 6 value 974.530913 +#> iter 6 value 974.530913 +#> final value 974.530913 +#> converged +#> This is Run number 2 +#> does sou_gis exist: FALSE +#> +#> dataset final_set exists: FALSE +#> +#> decisiongroups exists: TRUE +#> 1 2 +#> 1007 433 +#> +#> data has been made +#> +#> First few observations +#> ID Choice_situation Block alt1_x1 +#> 1 1 1 1 80 +#> 2 1 2 1 60 +#> 3 1 3 1 60 +#> 4 1 4 1 20 +#> 5 1 5 1 40 +#> 6 1 6 1 60 +#> alt2_x1 alt1_x2 alt2_x2 alt1_x3 alt2_x3 +#> 1 20 2.5 20.0 10 5 +#> 2 40 5.0 10.0 5 10 +#> 3 20 20.0 20.0 0 10 +#> 4 80 20.0 2.5 0 10 +#> 5 80 10.0 5.0 10 5 +#> 6 80 5.0 2.5 0 0 +#> group V_1 V_2 e_1 +#> 1 1 -0.775 -1.500 0.2982044 +#> 2 1 -0.850 -0.900 3.4745400 +#> 3 1 -2.000 -1.400 3.5031943 +#> 4 1 -1.600 -0.775 0.8386792 +#> 5 1 -0.900 -1.050 1.8279937 +#> 6 1 -0.950 -0.975 -1.1295965 +#> e_2 U_1 U_2 +#> 1 0.85521723 -0.4767956 -0.6447828 +#> 2 2.20601106 2.6245400 1.3060111 +#> 3 -0.03275998 1.5031943 -1.4327600 +#> 4 0.87875516 -0.7613208 0.1037552 +#> 5 -0.45114524 0.9279937 -1.5011452 +#> 6 -0.63521469 -2.0795965 -1.6102147 +#> CHOICE +#> 1 1 +#> 2 1 +#> 3 1 +#> 4 2 +#> 5 1 +#> 6 2 +#> +#> +#> This is the utility functions +#> U_1 = @bpreis *$alt1_x1 + @blade *$alt1_x2 + @bwarte *$alt1_x3 ;U_2 = @bpreis *$alt2_x1 + @blade *$alt2_x2 + @bwarte *$alt2_x3 ;Initial function value: -998.1319 +#> Initial gradient value: +#> bpreis blade bwarte +#> -660.0 -925.0 442.5 +#> initial value 998.131940 +#> iter 2 value 990.452175 +#> iter 3 value 972.395315 +#> iter 4 value 972.382101 +#> iter 5 value 968.290249 +#> iter 6 value 968.286828 +#> iter 6 value 968.286823 +#> iter 6 value 968.286823 +#> final value 968.286823 +#> converged +#> +#> +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> \ vars n mean sd min max range se +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> est_bpreis 1 2 -0.01 0.00 -0.01 -0.01 0.00 0.00 +#> est_blade 2 2 -0.05 0.00 -0.05 -0.05 0.00 0.00 +#> est_bwarte 3 2 0.01 0.01 0.01 0.02 0.01 0.00 +#> rob_pval0_bpreis 4 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_blade 5 2 0.00 0.00 0.00 0.00 0.00 0.00 +#> rob_pval0_bwarte 6 2 0.20 0.13 0.10 0.29 0.19 0.09 +#> ================ ==== === ===== ==== ===== ===== ===== ==== +#> +#> FALSE +#> 100 +#> 34.002 sec elapsed +#> $tic +#> elapsed +#> 672.76 +#> +#> $toc +#> elapsed +#> 706.762 +#> +#> $msg +#> logical(0) +#> +#> $callback_msg +#> [1] "34.002 sec elapsed" ``` + +<img src="man/figures/README-example-1.png" width="100%" /><img src="man/figures/README-example-2.png" width="100%" /><img src="man/figures/README-example-3.png" width="100%" /> diff --git a/man/figures/README-example-1.png b/man/figures/README-example-1.png new file mode 100644 index 0000000000000000000000000000000000000000..8bbce51e5c2145789e69a78d4c36cd9dc3023f76 GIT binary patch literal 36469 zcmeAS@N?(olHy`uVBq!ia0y~yU|PVy!1#cJiGhLP>pPER1_lPs0*}aI1_r*vAk26? ze?<xdg93x6i(^Q|oHuu?V?s***?;)H^K9#GHIJC4uU!Jup1pmY*1D~K&%#RQaP8}7 zwwj*&6tqio_v)*cCf#<LcJtk{te4MP>vV4|i|%&IoSE4)OZDNTwip&yff=V~&b%-0 zzAQ0M!Pr24=Jn70a_xto@m`P_ECb^68#4h9B>U1ImHGcqtRG<;V)$jrb{;^^^# zfq@}bK*)xH!9l!*g`a`p0xMK%(R${L<-dMaP4!AOkf@REu-zJ!yD>t7r|0bPr9mq# z`Yylzx{vRO-0XgD5!XPGQmeV^nK!C?PSQEO=Il;U7RRMQFH5YhF$ud~OxifZXIWp} z!Uqo?^wn`D+&nw$!Plz2QESr-3^TSyO+I-fAtA?3Z>rbP&o<4C8-MO#aTIW!c<_Kr zpovuP+zA`=I-=Hw$%$uk&U<XJ`Q{zY`w9~u{FRyYf{}q?mx4+K14Dxz2d5kZ!vb!n zCUypf7fll$fTR}8E)}tL*!}d$6A>{np^M%6`)+Jb_m6L9X1Jgj(9FL7^V8|^&z^#S zsfo!CD=~(Kz9tm^;|UsUQi&_0K3IEtdRoox>(~;tc6~A<!wU_M4;Msp?(F#Z<KyG{ zzpvwO2UT2M6)G#s&(LuG?i$XxNh<T6t9pJaRrqGnmuzg1w)m07x!Q#1=jK-b{d)cX zm*w^!_neknI$7Pn?$5{Li!_R4p07P{qbA1XNLs=oja@(Gp9nW82uxJ*6ze{Eed87d z4yV=i-x%iYjuhVWDNwKL%+d3OGMgJWN`|g(l(i^$kYE4%_U7|;)vwoX-=!5C9$x<T z*4A!u{bNUuR%#ot$xol;c$3FR#C7w{H?JL{0)+Nxbmgd3#Je-b$`{WU$-Q#rii&4Y zaPZ{y%o~@7t@c$D21nMEn5T9dCQTAj($d%G=jJXBefH_;X_t~mM>;z?IM%Zqd-gbJ zRV@$OvCn(_mK)FX*~hnpb!*hxu+_6?&5H2;Al7{}$4r{1t*>t3fddCXsY5c_H;bX~ z+<bd~m#tg3=AF87^{U{-na1f>nraLT&lC?bzpnf9(LHP3;@yi>eq6eA=^Q5~Lqn~{ zhXcE|U3oC|zR`^`UWNzS9v=>DId;r#>AQE!*z!%Jre0ZhCXbzg!KsP;SZGLy276xC zhp%71o^ni1PEJ3<!cbuB(8RthQu}H6x|qUHx0emmw=k|a$jlI-c#!$>lx^jni%Taz zSRc37%f-=FY2pJ$hBXr&G-i68<Ll}un*3nuwciImY*YKOe12Wki3y6%Z9F>*9yV=% z#KMqp_Ux_;ygxYi#`(KAKHMI+^HI@+xtG}GE4<Gi+nk!a^Z8Qm>2*IIvMU)$^~P}t zGc;JP09mN^t0B);N=hnb>PEE+lZ!BS%vsCHS-g4O@~u2VHVh4-LN*4znTx{N+qKx& zo%+zUf{W*nlQ{!Jn8$|$CaUSHo1O1oIrp_{?~1VQtlonO3Ay`)85rUno7k7VEU|K2 zI_*l7xoJi7K?RSjz_m-CN!c?nC>&(I{H1E|ifbHNTTiA;O1+sW*?dr8MaZNm=ZLjp z3=1TMYz)?}T<IB-%{p~f%yp3A3xc|5F&wHhW?(oA3X$u-uSa`-SmdRgWdbToF7R;5 z%~*E%rOVc^kn9yxrS^EeY<3s6WoTg1zR7rb)~s1BTaVT9#!03u|8j8qQa1a-M@Rns z{Vg0A5iujYnUx`d1MI~*@jHAAcE>ee-?Ej>KKq)^dp1sn0}3V=nJ<@E&0TSkV^UW~ zjBZ-_UjDeXs$UK=GnhC-{1~{l@IL!`pUJ^&Hy85DF*r1`@cUeTS+eL=mHeLBYE^+t zrv)^#Gi(3}@7{O8ceQDS=i9n<HVh5>L4jmyYT7BaR%564J*&BX0jpU9mHG~gy=P$H zQmIIo<+ofoG|TbsDHF@UAmQU5n>twd85V$&P;C4Qx2wOL%w1GEKxM>rQ2Lp*y{Xjv zgx||%b)~o<P}!;h3M#hd#_1t4`X8EJq{;0uI^-vy3M$H2!!|K5ljLD@oYLVDvih#? z<X~;nij!BTZQ8bK)v75sO9BG}C#h7L#xXF2EnwsKnVcFqK}AU@MC$wHCmkLFs^ME} zqP?f<$r`1A(xG0=jt6%$7#VIfvhcq#n(33ad8YVOmi0xm_MA=Id@&;g5-tb0IOT3E z-Ljo~QCEk{)MJ^#dnbLJn)pq^m7gJ@m4*LJ&?eLSci7)=>5Q|i+{>oFh>f42Kvu|R zgZIk0pBH(!G~Jf^^VP26WTmkkLxa3i6MI=~{-Wt2r|RckJ2!QWe%ySucC{*ohSw7w zG{&Aat?2Bi5I_05iZ^bin)<fPSuzX__8<P){LtU`BkA_G-0Ax9@9yp{ud1r5sIU;6 zYghZL*Zkg!)vKjVv#u=ew>$Ou5AR%-|5t2I_^Dhs{qdSJZcp54aDqB?`sL<Tt6u5X z|Mae^`gQ;Rzwh&GtMl&cnAqW?cKO%W*Wx-68!|61d-Uj0Q&W?)6=&V+UkcWqk`B*n zrdmB+VibNaRFZ+g{>f98|7Xqb^T=3ih~Hl))tmO|$;tb*-(>|w#l*h7xS0IlK%-Qz znyKm62M3$YON9Ph`}$<<nda$tR4eY~LiDTs5>$5Mku-9#)YH^_d3U$DU}$LQ(PPK7 z)RU8w^<#IHIID~D^78I3e;?MDzyI&ImKGLAfh|#M%O8KAb7}bja7E}SP%*DubjBxx z(5SU4o{N^4nO?P=7IJEZX_V(Am#N3Dq-1@~<!V|WlVKti-g>hpW|4-_<oeh}8d)Y% zkfM8oonH6RN3SEICa9cD+8FVlkI|}Qy6_&i#esZwf4^KlJKKDH%+5(2uU@}iEAJV# zcH6pj@7nydq@<*_<=k8(bAFa-_J;=tWsbA5uvD1WoiCI*{@JGaf62_+7?&qn2DhK+ zuDrS|TkZIy>!&lARXl}4wI-kRl(ar?|Nl?0zpbmw-s<mVp)<}NcjaMUmJ-Zn_@mZi zVbIDNS*DW0d;iTN<KySgof{h)`?uZxkD{JlUq@3@la{vj)ca<prmU>2cQ1Ily12O1 z)$RLw{MD;h6DA1U&S&W1;N~`->GSm~w85cmVG$wFa_d&q^8IU9u2fWN&dJKj*&=ZL z%9SN^HkSVUl&W;;bWw8h;@0PLr)?CLmR@ZlVrputx%-?&(&s`}7M6^yx5DlxJm==& zx$?3^ZSu+MjawFkt!{2^){ozJCW<#M^X-ck#)Y<3UtYYJ&M>WVC;z<+leCl+7gyK4 zpH69em8mb9XInjO>Qv3+;`(uKZf<_gJC|ku)g*?w-GZOaE`FhUsB9wxgV~-r5A6T{ zDP9})`^DmZE#LKB*6(&K-m~Y=ot?#Ln=9|{tNnhb_&i*v<vU&Xi^(ga7#d#hx#RNx z@Av!jtxB^lE%7|nuc)Z_e$VGV1rF`-b!X0<yY~9);Wl1xPfx`~+vc<EzdC2n)VYu5 z<g>0$`TI<tQR&%1W(JKta~{aoe!1u_Uwh?ajgym8Sy|a`|EBt^bqBkj>|)E`eQU15 z$_<lb85)>gA7R{`Gy6sC*MqmOJ*d1`sVmQLfM4+-Gf0p%FvnSb&u1eBhB^*Txf`js zUEZ%M%QKPcd|dJHSJhWg4GAjCV$XVC-E~{<T84>M@e_{SCm9)TI5e@Bo!oThqs{Tp zPs%n+?yKZAP1UWs7G}!G@PX4Ud^(GQQuDzDA@@5yCa7$_nPW8b%``?csop)lym6L~ z>jW?8@Bg!D(W0h~V?C0>5)wBQ7cw*akP@=laC%$WI+gs$X|lq5jJWz|wLd<&>5bjN z=TDxzxxasYN1u%4rPbl<`#NM84m`i$!vAK|+PT`HmB$TBHtF21;S`uVjgjGlv&V-6 zdbe-woU})F_rqNFo0_c~qjVV<6b~|=&dGkhZqoLP8Bgke2`O0WGBZ4A2Nheo*&ohL z-hMGdB**QdHA3{)gQc&V-`ttv$ScPHE<~?xDqE+dv^Oq4+-+Lw?#2pG4bZ~EuVXC1 zQ}*|@+T@cPdrH^Y=yN?;GmRf=^d_C#I?k_axMI3@eroanX>bASkm}uY<&=m;<g~YJ zk3dz1fRN3GGkMCAMbjSevK{tsegmqyGTN4AHOBTWejz*ig|FIVg{-N`;oT2!R6d_u zzDGubfuTB}nZ0alOxv}}&%2X(?-eS@K}+b9o7OzZDY9i<cQnZ&V-Y(;MjH$Nn@w{c zpYztczG(aH95zllhK30b8dG!E9Q>@i{L;csD1VcVcJ}oNzqh`KHoKUtY7K5sP1_pL zcI~K}QN#;2h69=^6$#UIPTSP)Wn1slQ9eiQdeK&Eof2k9m2o=7C^GxQkwO`Li}`Bb zgN1FcEn;Wb!3RoOCQ?)9tQBxMX;^uBlTLz&Ekgq{$f#U-8^Mo@Uet-$9_N-huY8c1 zL15Y{)@d_+)LxrdDm|Ke^+B$%jo`<o8(B^Nf8YQA@2vTKfs3m`S66*`@o;YiBZEW} z$Y-*O{w_@#miK+vxi*zw^3Q*Mppp6a_xI|H)aO+&amq35(lWWoyxT`@a<06M{>|&> zbj7+)rfm8vbYSa3HhzW&{GddzP5Y*x;QN5)>8Ur9Hr_D1Xf4~p4v)m*wW<|aard89 zNnUxt$k4&TDHoBpJ61=Kb5ZT5ee)jVp87DUW9th>2C#(n@ws!ZKA0-sDlOv*H9atG z^UWNy;=JW2O|L(QR;kD_V`gwLe{W*h_jt|!RDs!z8zn_|a`<Fsio2Zr6`eY3PHv*= zLGDZbsTF}nGktPvmdhO9saaWUt9Sp=te;jB#Af`RlJL3E@p|!QwI2%>C<KZ$H#LEJ zaPyv9_9Yt_n8{Dq=vpTio}8>KxblkB)K|ZPKA&nU+SWQXeyfJE*IK*!jXQ7JD<~WY z^)!>8uE25TU+G7i{EZPcvL4(v=Y<0U0tB)fIhztTMy#pd!XW!3%@@>~R#a4kl+bYz z5i?GvB!TP+FDTfcz~RTddi82$rO8JZU4K2*SVsRviPh~x;p^j6m4qj5<@s2XoV@sV zc~<W8{EUo(&`D>HiwX!lcvbi_EFocm-}2<#ip5cDr>U&mw{PB7mh~4i&ZKRAe61sH zdDv>}U#bnM=Gjf{dgo7y>@efmB<!;Cs)?|?eEo6Rasj)43=6!So7mknD|a0gu?U=! zx;Ix+{qhr;WtS|g{{4KuS5kw4VX{G&oWxTLr+bCERZrb-8_iJwB|cDTuzA+(7rECK z<sbGc%gtQG&hUZV<HG@s<+UGjXR`OV<}rXGbH>v(WqJEMd_ODf7TbLimQ5o4vYxM- z^&<Mq<z(F|1_mXSiiEJ@Pk9&F^RNGTXK`Yk?&24W41XAfYz$6C%J2ECR(0D5lnVnC z4l*yE(>G!J>bchErXJU*VqjnuvN2etTl?YMwr<f2F8mA*9v=?qsDFMSJL|seewGED zkXCI^(JheC_iRqQJ2vY@`1-h7Q1wy&|8Ht)>b)Kbh6dG$ZaImoclO__68_uEw@F)9 zS64?z<+kk$28LZSR~|G5`ei@wYkp%f@A;4U|9UC~Yd<hBxOjXxu;#Vt53%fv)-%=8 zqmQchKue0AAgxC+r?<Y)73<FZXC~FV?e!HQwwsLLcDI`*XI#e4*fn4GZ0(8Vm79H* zfdN!Q1o~xvxN^rlUpLwMP+v!dql2(5xWwH&=i5Qyi3bxl%$t}xGykT`dy7kQ3<vBL z4>B*7alfc-TCv-%qFt>DoT(-}XpG#XBYgbhAAi$|g9|(FWtedB)qVh#nJp~*XLjA& zf3EPF@g9|+?B+KXjuSxHv?OW{14GUsud)Lgk<)UmAFQlAYSr#o=67m_k6K{K&+WEI z9ggy3HiiUtP@J6Ps7&|$@~!qm(reDTYilCo`a~HTY%><IyUp}b+b#I1DaD@uUW$>W zO2uz|Mh1p|oSbqJPfG-)vu5t$Woy3cRc3QO`1HhYP#M+JM#s0mh!<B8-I}Os4H}_v zXkt&B>7(|Wu_QO*q+jGuzSUQmKz*;pGQS^8mA`Ftf)6yB!6_$kbz0yTwaK0{W&Q_C zIx2wrfeHtiH~Xkfj%_NBIe9L@z+zpBJE#%{3D40<dTii(?q<{%P>6tHPbYHP&TCm8 z&XrAeZenLp00o0idh?q(W*1lIoYpXYeI{-5Y-@896Ag1tPR_t*XPFsFY=4w6yID%7 zT>q73?6rE|Z>c|rTDgCJdwY9({{2grg7n#V7!HW2R3uDEmfv&9CEq||P5K3Peuf8L z?xq*z?P@AsTv#}%<nQ6~pP!zlpPv`nr|vUjL%~BQC9B$BU!?Q*1cry3XI)w0E?*mx zsZ&}d^k>3k*PM#R$CbMs%f5ME?TR?b$I!5%IqO4eYO1BB<+j?TQ>RY7y)F0jSrDjw zv+;Pxi4>!?@%!rzHnGk&%hl4;)6>u>C>8oM`7x+Ea6OqgVeZ|!51=p+D0OM7f4Ow} zysB3#j~#P+EjicE-R0oHgOgM|C#i5SVQbQ_^J}V~lsdEc#-~sL*WZq1LEVmJxi6d9 z8_Kx(`2M}G|6lDq{l(X+zQ<hL+}0W@1xJ7TemQUVTSw4$zTMrbWuW%TyqZrZXU&?$ z$joN*@rdx<U8Sp6t?KIS4dps=>{#5clFp7f^Fm&f>^g7v+sCr6zyJNs&FberXKlUp z`eSv+V+%9pWHYV4$8*@y%x1d=>RRzE*&d;D?b9ZmZmp@glAdc9Uc0wu>wWj7K|8fT z<0|`PHcQU%T3TdZx$v`QY)jVGTS*&#SWOdi3EUE)BXj(x)dW8!jzgcGo<4l|aII{| z{g*wNMOAz43=In(9%@~<aN*6HH)osWM(r$0t*zY~wmOt6W9zM5yR4Los)7QeqjwiQ z^?F+I?#|AaFJHQd$jIE`{CHo(QD99o|BOS=9xGjM<Xp5OXzPjv+>>TKugtEDoE9q8 zn=9Gt=It^`WoPB)Yx*pWjg5I-cT4(DZ-4X8f1|R7#)<2SKdb{qHgDQgBim~Ks)yzN z{`&u+tHU&p3#<E`IdMW^(SijFPMz|4ni3p5`BVRem!7T_6+ia>`>Oxc!ouRmsj1qI zj*i#Y#lCL&k?&DZu;FG-UPi`;QiX3fYGN828*R>Czkc2NpV#usky{RW{qGai?<y@V z4PO@%SZ5;Do5r0UeN5rBOGtEdw(jE-w@%c5eH9vh^hQmLRIl6Oi&w5)`(-6i9kn)W z{q@aZ&EYFU8XFt8Zr!@(>VvCUTW{uUdz<r0;qI=|&wteJ*Z=?f=xF!;ACJ1{|9z8Q z|KqUyn&+=yy_#3~Y$m_`pAFl#eVbSP?&gldWFH?M!M8Uzt1Bx%-u-^x>zkXOPg3=s zSM^GBZ`}He8Gdst3XjW{hlGdg$L#oUppkiR)z@Ed^Xsj1Z*9rGzK)fR&1({fadmb0 zeCu*OEv;8er^n4Q%boT7;P0L1JU*QI@w4vlFTsf#U0!durJtX7&9DU0A6dS7GMA&k zqQ#5X+J}XQN9%~0v3qZpl-L|NvD@+eCY|D@gz3f=fhH0>*FN>7TFg^dT72=vv$Ik5 z@6M)eUY%rq_wgs)?xT;MCI0IA)ShTGGs62r+UA)Dk3S7bPJX=i`@PvSX3UsAJv=sc zZ^g%?*FRQi1}~d&_SyFPb<wM@{(GulU-_Vsoln*(Bs|=__ScuC-qZhmU0-io@Zi8@ ze|y`SA0G}jvq$G!6h1og?(XjT9}nA?E?v6+-`DlI@!20A9j*U)I-ZS3;=`ZM=k32- za28hcxsYKp_gCKTIp;h+OxKJ3_51$+c{69;T<qSzxB7dZgke+1yB&}F=FFK>{QTU} z<Hz6M-v0hx_50FNp+CW^7r#i2G@E@^!j=C*;kNwy_pV%-GJCePkdTv0lY-5U2hA=e zPfkqqxBt6k)haC=ot}<ud3U8`W#`VGEiEsfZz3gM{bu96z194ZMk<DehFV&us<!*v z|NU~LQ#ds>b^D#7(;prluK)3nJ@w4AN1f{P0@(8ZKIE^j_<pzi^r=%--{0N6nZG0Z zWe>~$&-4H9*|h1?&gb)trFzTnRW3L3^%H2BsvVw|p8opluf)S`OP4I!Va56HWZ^<- zB_WrKv-V77ext^Iq0n!>oo&ty1J&Ka7yo|0zg}jJW%02LlUseWC#U{=bhLYO`gu9S zB$uF|OFIf5yY<WcebCH*?AWnaU#ph-1O^7azqdDk=Tot##~&VUzrF8TZ28@#G7;Pj z?N(X`-{0GN``huA!OQ*TT3ub|;{@&_M*B6%7sb42>!=7!U3*ZQz2@}Cp4^)`&rYh( z_wn{tR=RDcz)+yF<<F$GVXLPaFI>2A;>3whpFZuIE@M^l;=)4b-{0Tg-&6Vd)6>)C zZ*Cao-LZHY?zZ@1*}I0jR%twb{5x+Z&b3IG@;J@dMdgOcMQwJ!><{m%&D(jU%`z`7 z@tmy2%Ene@oYbI~exQLdzV7GJQi(SY54TUPkMZ>MoH})C`nfrQ=cZ4c+ACqWXvGQ* zdwY9h<InGQzmMCVclYDt<HviYx0k*Sdwo|(Sa|>cf4@&p*VneM`}uVG+~0YB_&`;= zEAKv6c^lJw!|%b2Iwi~xZ1?|ps&6WF_RGu5{PK2xKt=q)CRRp9Mwct=<M(R@F9Ri# z-{0PzK7W3`ar(Kf+1Dpcnq<)zy|?OX8?UtAe7n8b*Vi>QH7Po`MZEvk9sftk((-5c z{$E!=K0bcG`u*NsX>*~8|JSfz_&MQ0W8f){%H5Oqob@U@wa)lP4%>pqEG#S<#<P$0 z%kM9Gdg{!XGjV&XH1}8ie!Km6kL2crgH4&2mzBQ0_O_YdPJl&GRrTrl`hTCb*Y7F1 z9$UUPV&kKa$K~sv%}ifY{@5b#{5)G1ld3N-uE$lsJt`jmr1IXbZ=4mf-<sLoEY}|7 zUi8G^#JW_;zQ+~wwsPKNFkf$1`|Hj9{r7)8o}w8%rMaP@;d*@i->=u>w`=cDIXOwy zd)ke8fno2I7rlD*3N&%?e&6qPmv}a$o}LDBqiMzMP{zESPsOgKncZ6g^4huOCq4U` z-@FkIc+4tjTEW1^%EtEZ+xGpsdU|milUzeXuX^k6HOaqc6VHBi>cUPr3Dwh^HanIr zik07USHW885i297T!UlO+OqTWZ0Fa0i(DVKSFYy6LC?u*y3yOtTz4!@U2%|kaZ2Q~ zisN<_CvRNX#P<G!YJ>2R*-5<y4E82PPfqCX`*G-c;16z4b5?CKC?DNh#=p<<p!Kx} z7hU)n8d&((WNq!dm)ayA*v!u0(8M0LGiTBE_!q|#736+BU}U(!&VR;e_F2DWCq1?1 z-gPoR=XP=T`h)d9pH3GQ6?HL5J0qc!#?BB68g)PQGR=68v+&-{fnU~s0S!KAe6H%3 zu}q5H%FM8!+p&pVOtZSe`rE<nsS{+?lP1VEl%JVzfB&%K`@+J)|Np-4-z&<0M?j?_ zVdAA@?@Cmy+qb@u{r$l31m6K`FK_SH`mw)`#x~z7|M~oWO>|7mo4XShyq)l%(benI zvpacai`Te<Iv-Y7-r9FpmwwE@RsMF9`M+Nux2Nxw=HDXgc9FSz-Su;Kza6x`>)U6* zFUQc(G2ua@?^(`!CpD^mJC;qF%+jw`#lQfvev|B+$*p-RQ~xShtDpS=YBVVvWS)FS zC4ce76*;Pvwf2#Ho3#&rv=OplU=Xs|a3WQBub1!Hm-iD4EW$o=`hH<BZ`O_8_UD=T zTbbR@L)_fl-rw6hd)BObRj=3D)&8paeAay1e%sn#UoI?kzFo1}xt(w6k|h;}+oV&? zW?#N^$!0%4$hEVUpS;PxN!UeH@a5O4sa~q5H$B+UBbzuuwjuu1$&))PJ}wGdUHkd0 zdHK6LGiS`W@h)0bU48$rSF7WC-nvEVOtY>2c4MBQ1drC#$^F*f1De^zV&|(pzrnsf zD6p9KUWSPk-@@>9PP}prwbS+E=NTkARaE@=`~Cj^$NlzN>c+;#j~_kSRsMe7q)9=6 zfrk0__V~^=)7&4mA;Hnlk591n%SHE-Cr^I-`0?}e^VeU0bur1mx98WdUlWzx*TwAI zv|>fZw>LMvc<r>cwXLjn#qY1PE_<_K-@3a`-4++#+fykhC^&KA#G5y7x|BRSGxN)r zlBFM}=|(?#{Ft3bVnfNxOYQP?Gdj4qxr2j(mif#S5*D63X;RUnBb?bM_tpMBcI3#K zh>cD^Id1K%t-imncJboH&(F@je&ND{S5e0qmif+JcKvlbzkJ=B8yh=?)%7Abr5tME zd|PqI<HLbPuT3l3&!$aLtD5WQzD~Gi_2&oXxwk@MKtM)b{{7kp#s_XspFPuy-L+-U z9ve-~mmiPIt1sG|etzGNN8PNftfHc#w$<P6?5X_x<KtudKOdZxHbv-Ee}6aErm`qB z^y-<J#@qAn#{~r?na!TA7whFR+dQ9-gTtciO+;E+T2N3>US3{OQc_*rzcyZJK3S`h zFE1|E{{E(^|El8Wy4c<4=GjI^MO8gG&<JY!&5Q^P3Ys)=V&RVu51X2pZfku#*vy`O zW(KH@+Q`hl@6V^xE+wz7tTfHO_T>3<dHcFQ&HQ#21rHnw3qM}=x8Ga-{@$fam)hFe z#N#RsUftTq_~hBMRaajryY~qM*45P|B`q@jC*8!tuT!*h(p;5^zP$Ge`((B*?6fm5 zFwg;kp64IG^FJ{Dez*Mo48vrXz?kiMckBOsmXDlP|84X9snez%J9_l$wQEH(;o;%m zyW{^nn(S|9DAnuUC)3&0)z#g7`t)gUPft%jKQWfXkB^R8m%l41{r~-5b^gUgt{*>s zT)1%I>FN66epYdEa&mF8v9Tc`QzlHfaN~fqx&~}5z>SREj907Q@0~tvnwY4lsGOW# z`Ma3cKNl=mAZeUdAY-0*sAYBddZCN&?(TkmZmzVnw6vh$$8*;2U0hwCK7G1$>C&(7 z@5fJC61qBU@Be?l*R3lRW)LiWf3No8q1Gnn`qbzL%zP17_Dq`V%o`UJ{8_53YH!@i z3%3s{SU1c*l)L@zGMSc^78W+PYgeuaT)ee4J2^R7-G5%q!$Yh}T-@B=et!SnY(D?# z)2C%VGo4&gQ&Zdd<>gE=E-Y|tmaBfV@y3ma@bBx_tl6^dQY62OzPxSKmoqbsFJHQ( zq^xXgWR&whAS_HwRCK9KG=GPO=WUmiv%6DMQ?Gfj@ypGbF(V=_F3-03cJB76)2Hv= zb<LN-MMPHiZd>|G8Md2@-7#y8*Y~Un7TR+#L0~T5ro%QB4YM039qN4X=H}+!-rk1~ zAKu=U`}@`E^?vhgB*nz0O`QrJ{SS(I`Ty_xdhNe21O)|+)6N7~J(iZ1-v9SobolrF zo}NDs+vTS`Ucdielx4x5J$v@p*xJ^<y|q={Z_W&>(yXkkRbTl81qDxCyX2B$tDtl) zv20zg=hBmkMn<3h{QP`s=B7=XPMq)vzi!25Q1Kz*b-rz8h6}G;#FI^(aaWZNE@tB| z_-s}1z`@b6@np)a4T*=ZtPHN4w|?C^K7M|FPR^C<*4^8b+I>mVJnznqwb9$9c-odM zQBjhzulutucDLU=n@j_VX}ZzhZe_3Ex$FNF&0w><J3k)x+nbq~<lNmAYWcF_=e4!b z;yMupKR-R)vBSbqU|sC)w7t$*S+DwJtyisDwJv7or*F6OcUS69R`>sR-2Pu+U|?Wy z@Z@>(;-aIi3m+YsYh6BV%9InE=FFUFnR!Vi{JIsd!?e`Yz51(_-TSUwzrOwDNi*jr zcCnpv*!BNS0WH<Il$6gt`z*s95jEdgU(OhxcX4%{YhCUqX$wlHQ@yV4um2ypInDOx zlgYQY=i8UPxglGAN3m<sB|CqY!oosnvz!@rwN*YoXO4D@Z{D;i=5GC$7Z>~O|NZC? zRDQST^SO4psuNeAc8lp6N$}ME`r_&3<>l?Yc`oDpIdk^Z{QPvVnce=w0p^t}S28j( zu8YgQu^~}AY>k9v(UZ5^@7txFnUQ&UnW~CPN@{AathJe)UEHK4rrFna?7C*i;3(kM zFE@A2oSf)4?{>e})6&Yiy?Ae5uo&y^mm%Td?JX@=u3r6VB~YE1n5Z`SrQ81WQYJHb z$e88Uty{~U+yDJ?d1df&yIrrlqpMVJ%v=BSetEvH{Jhz-tIykh|MMz*zg1+UdGTer z-Pzym_a7<wwz`>}ze-4AcE7fQg2U>oTCr1oIKi__YfR^?xcchBg9o!_NnNvhY9iHp zGbe1{^0F0jwpA4s?S{$6R;<7J_FTof+UeT6Pgd?resiFa`F_pkvx3TQ6&3TPLn9(~ zRDXY0`ubX=&NR#7XFby9els=8H#^ANY&cOW{MWzv%^j1AuLGOeUkIf{{`+)VUq61I zP0f!F=jy*6IdbIKv15YDZW6u6rc9Y)S^TV|j%S_&D2iiVxNUje%wMu++HogyhFI6Q zxO<nDdjJ3P+}^s+_chBTm9_Ev_kE7P9t~=Nth>JGf2OMS-Z*`h^71`mwI3K_k6i)x zAYQ%J$P1H5Vb>|zEN>&I*&Qs!!zKtC<&1Fv<&2`ulC!1u987p{d+VgTyWj6y-SeyR zQK$N@^72b;3=Cn%yZ6uk`^fw4?r%^2d;L71@ctNc?scywe=o0D#_8wY+}yk|%e+Kw zI``cU-K-Cd=a!u;T&wzHZ}s<gpgEssXJ$6D@IP=XD%x~0W6zy?rx*YJ(%aejG0mYs zIm+|H=JfObp4<Q5S@reRL}mALGmX`Cb>B{l&U-oM#DV!cvlczCm?!S?+UAEq`fv45 zO#NzA4C^nv{@UByJMWI;O)0LLMN?V+-zh$C`~6Pwa{u{t-|v=#0!Ke`Q_7ng8;hTv znQ4+aDQxxIIRXdyH6>>idwg(FSrKC2yQqBM1>R|^SU>b_PCq|ye?i%a2|K>U{yY1! zDAiu{L#Nr-gX*fPYooX49qkf*eQj;^)2ZR#-rN+Hk+I3WwdLyS@bB;L?q2L%qGe(d zB69S?g@E~cc1brWe6Ts6kZ{IMukW!8bFf)52M3RcOxSGkP^qUvk<+f;V(4{Cu3sCK zYc%uDp2&?mpW0hk+z2%^lNUe#*-w7@dCn#UPoeDBCpEe&+FM$FSP4|yoR8L-HhXE` zmHqYSw`K=N>p%CoHveDo9}A&9=eNvzpdY(yOZxeF-|tnwf81}+$ITtRA>rVcmzSlb zq^_-xuYbSy`@au|`QP3?cFs9`eOzksTEjId<<3*4zLDAgSeySs!W7HNH{XTt(YSj3 zdi>t1(B+pSEADM%ypW@~_~MIY_Y&6L*Zy7@)pqvy(lsf^6Q*`No%-h0t5*@fpA`zP zO<_0R8Yc9o_WRxMH`C|4y1DtywfbuR|L6I;<@a;%-h8(2_d9N0Ufc3_G57b?THE=3 z&{vz>`MC1jO*5}1udkPFD#R~8d1IEz!0^F&t;&ys&FrATn*ZPH|3BZ+6_AkdKs>(Y z;cB(27q?O(%VZLl3#d#r>H@VE%^nB~s&j18iPjODuT#s)aG)bhY?o#6voj|qD(Bj3 zWM^kD_n+_Q(xkv6Z+B<%+APMHiK#aWh4wg22w`hJm|zg0Bet9~?q}M8sA59~2le7O z&s}A2Z!Pnk-H~yBUu~K8$9dM}=MLBIVu(sLnmLDWq55nV|FhNSZv>{DpY5Y|F;U8v z!9Y)0Ir;Xs+~t0Ae?7PV|MO9|{<Eh~Rn^q0KK@JFTzPFxq;>hbFOO_RkN3$&@2U9s ze13hN?T269cQl^QZ}9c?eZT+zzM>r4fDbnRFL}R>xyrGi_m1hs)mN^u=<iy0@bsoN zVb-4i84hfkGiOe>xPI2wTjuv`il3jGd++Q!mz0eW-`-?yJig^%LV#s-;9~BAdk5s? z<o>-}KELkQ%jM2(JU_QA^|$+(^6$^jxiYFhq$i(zvZH72qOVeW6egSvsC0k$@L?es zOxip(k8we94RQ-QobB3~+2-r_?W=ooVxo5VIvp*oS+>>R%<tDYyF_oxd3k$#zK_qD zE>Z0%_qM;iz5V;!+vZkQRrmH(^78V!ghWKlm^8^K_0*IZGiFSgGDTS3PhjH3j5+4{ zaV{<{DJdysWoClDv(0?hUk7#NZ){8!R`-k9lyb6#Q&^^3R7{Ld+U(7|>UW(T9TL`M zZ~p(T|Nnm7?su>5?%uxj)%=+=CB?<B@2&nmWy+MUE-rc7Ltz&FA6i>m#r5M<7VZE0 zHox^;N#2A9<+m=e`@1xCZ+&qxSN@Oo`aPenhR4@_y&Ar8<HooyafUn}qT9!hRt7J> zwkC4&{Q32NethJ&`|;pFBlFRtM?oV@_x4tMdwWYuNySw>WPLi1onLN_Ve+w7ZgDm~ znIE4{>kD5*Z%3P&n4mX&AMLCCEz>P{@#13l_=<<Emo8lbHHzy0JeIfr|L61c_`1l- zwOHExo6pZ%9DPps&)o8RKTm0|*I@T61$o>@ZSrfis;LJP0`|SPjy>6zoww-y1rEjo z!j+Yknwpv?Po8X2(23h~!*}@)!p+pk-xHggn$ph9I9Pb6g;RLSQ>8<P53gRmy1T1O zNJvOZTAG=eIrsgYz181axy8Af9&Cwte{ZjQuau~OfI-cV50=HxR)nlFOg=WpzJ6Xu z9cnZE_=8!JT+in(w3_P|xsUBMN3;Kq`D*DGu4)HAyvwu6xrsd?GBWb!!^7?Dyi!a4 zyjW(rcFmfc7Z(<u`uN~rbLWe-+wX0fw*T$6+ow*So|>%sRCr?P&#f01yPuz9X{@X3 zyZ*X<%#MP$x3+F8@9XO;3tkhwJ?~ULt7E`4o=ve=bKl<Dx^w4FLqo$R1%us^vp-Ai ziCP=xrm*_ztK{Q-p&=nFuD;^8|MOw`{y$HDeSKZKsYLdNXyi0Y@%pqyQMa#Lxf0V{ ze#u3@V}=_0fn6OP9g@arHK0+M`oCWnI=6!cRCa1+zJ2oV$z*@Ke?K0dIB`P0{!gG~ za9Eg_q~uB&YrWdQxVU-q=GFcC^YicT@B2TWvv%*7+xmBH>8$O)lltz}e!shZ->+9s zPEMX*|L^CMlap`%S!Nxrz4=Cb<<qJ2|NnUo8V#)f_vg$^<FjeSVPV(a*Z=?R*U9^5 z`pJ|>uFsVpsN^~%Cnp!n@7b(YwQs6p8N-9($H)8cZ_U1ba<V!v+u=>Ar{k*Mnue>Y z`_KE+U;k(EqD70AEmO0#-MejD*`p(!*5&VXG&LutS{fS{Us~e1Zr$BorLUV<x%J}r z$%u=qa~#^5eZ9kDTI%kjdUM5!7w_6-Wn*KbqOxSyuBy}1biJAvEmn5#`%!lDQ<zXq zSy@?F*tHf;;d}M}|1Mdw<oo^l`pe6FZ*R+eJ?FuJ{GF01%P+B+nV7_^KWKelPt5lV z!<z2y?%Nv@4}W=iIXNjwFK*9_sZ*b>da@z$aM+p%!=fiAZs+f>Ju}1b@-km<504Y4 zPDxpp<<!*dQSr>awx+Q3?IPE19yaIscD0ixO}cdHQczG3i=%{XRY_6Nrr$~Ln&(@W zuk%{^>i+)!Ya%y;W`f?{-Y#!lc4p&^yXE&|Lqe|Hn*73H&hK0aCMG5>F0M8n$xjcO z`PJ0b*GF%E_vPhf=Qf_qtgKgC1m><<w=S*NS|G=)*m=s?w5;sxx99XDH$B;Z+~0oF zTjAs0e7UFolzpGQe*eE;Ya%y`J(<hV-M3x4;Ngw*_y4Mr932lfFf!kgm6+Y{eKTj- zvSr7vH{M9D+&pvEEU6r`%X!JidJHAb@BehF=UeQ$H)`QAF>ewjF4(QT^5FOP_w#4Z z{{8p+{r9)G=fAnJ(Phf~`T4Rl7%n*as7+pNSK%pr;lhOlHAh84zf~U%`m9lPZ4xho zgL<~=!S%7b%l`iQ`uEq@-LKc}cI%V*dEEZr$Cb<HRed_CZmn+dA$pSz_qyMp?nKbb za8@>Jv5eA%(hLms7fvPJUAc1Q{rdm4g@qe8Jw5Z`;bHrKKOTquR%ftzk|wg(OWMUH zG&EG^{OT=?eXOAQMu)X(6-r$l9R^aprw)}B78bgM1O+w4CM|T{8TrEP5}QC^YU<J@ zyejF^hmy=K85pumLBrj@AGXVv#k_0V>ZpC;=#I!2Zd@EHi%y;LDxEO-Tcy&YsO&}Y zd#k>R$JaQ5YNLY<LJZ&c{a$CJob3Pl>71X>N_MK0e$KPGP_|a(NBaEQZwJ}s{~VV8 zS8!T)dx@U|!xOWEt7i%C(K0xa$+(pNo-gmdEn7lv`a90dW@lLU<@NRVudc2Ro%(jq z9{2tqxAS(NT`hQ!H$(Mc{GN)!v$IV9{`&fQP6mU>JF#6CS%fa$+;r+dbd{BEgIX0s ze&Fh>jEsJ6ySB`Adz`Y0yQD8nsAhfK-hF?+MX!H<g8RWdozrt(B+ZI(P!Ke|5>mSR z>`w=Qr?VSZZ(Yi;;H}?0o60|DR?ay1)`v0l{=Ch4BK&jLPi6W4=kxjH%a_-Gzgu2@ zw{&{c-^-g8fW|D?+1cuRr=`X{-ov)OXO6k#m#p;SCo6b;zc5@V+phL~_ODm3zQz8Y zUn;%6?qhHH<Hl{-st1=ZT`Cyp=GJz%GNgZj^G?|m@g*`Ab6Nbs^Uznan%tGx=NruQ z*|S=$%9o)~CQ@gekj=Mdc7_FE;hU5f-MV#a|Np=5&)fgE5fl{_U6{l&_kb_&yvLQE zYZc2)D^w~N8m?u15Z8;5urAB-_4Q3nefsL^YS5T;{O&T)(0D-D9>y06n{>SOglq&o zZ#gVp=Xv!`Sbn=WXq|S{>VyBEneUf0$q0yyoT<^}GG+Gc+l$@%m(Q=;6`aKUKh<pZ z)ZDvsxn9WmxvX*!=ajqrgds0VQc`kn_4mB2tg6>*xBvR`^7C19-D5B2+SOLQxUevH z&((#_?KQhM?7Eo~c5LHMFKy0!3l=1toTTdXdDVl97cXXCTVq-9z~ML~D3>a|yRu*l ztILx*5!<W}4CagH%$YM;-5=5Jn&)%L&(E*!>(%hR61RIn18v{7M6hfS{>HKGs#g;~ zFYngq<<}AnSlF%qC$N4Hi=0*|KKrad;HM|;Z0D<N(mtG@`)}J-yB|}gOmUa1d@|8p zj+3)+pO_p&NmIYwFAYmeOFKJIb#Q9aq|eXJu3o=h-m>V)sj1rCU0rGC=dHc+VDqL; zixw~b{q^<s<l}td)1`ZlRepX3T7&84mX@9_3|f1C>GI{NhoZOTboTel8zdaKwA5R^ z?nk1MmX3~(r{_$gR4*SNA1|*{ox<vCRDXYaD=jR%Iq4|ZQpJMb-`>{#{?^;qH_tpj z&e^$nb+#<?471!>aqH#nYJO}?KCb3BXGhA(Nu0uJC6Ac%bPx8++y5)y|9kExQ+2_) zmc?l&C#g<W^L_Q>z=8EAH@(SHwN?^RxjI91rs71ybM<EnW%PGsE}Cy&|L@n=*Vos_ z-(T#`f8Lq3p=`yfRkJLMpM86K+uO_QOxov5OT9ZYK0iCl$jErSPxkbgGa%=lJ?rb^ zbLRZ{`x_DuFLZA2le68Gf8Q>A`ukg3U%$DzdFj%n?0hm2TeGH4>J(K~Rh5*KZ0DEP z)6m$kHb~y4qTpDMBq&u{6g)Vszu(7Yx!>HV&1t@Mb^ks-K5qZxK{GQupNP1){ogN_ ztG~a~)z!_-$f$VODjpO2TEZbOZ(Y<{yP_u?f={16S65Sudi-8yt;!Gkzc2k=L<9vD zPk&mw{obr8Q>M(Bvt|y<3yVCri`!ZCyD}EBCq%}@#d&#o6%}n#;OG|Dzqhk^`RYmU z_kO>($hG^?<Hyd<&Y(rquReYF@Zr^~SBn-cYH4XXcI?=J0}i*Xmn>cC>gw9s-hO_r z_4O({4ULRrJ(4oVeP<Xve06oT%a-cz?{*eHKX&Yxn~Tey&*!WI0|P57D>E}Q|Nj0y zT_yACs!&kpVs-Xi76+HRyUXKu6fAtOD{+(ZmQRvWQc|<#&#!-SVxn>Sxt6xJdv(7- zQU4ay&90pF06f2w3LiV1@F_VbXU*zKQ>RW{?A9C9_xSPS*jT%&FE3^qr!QN&^ySxI zt=!`4Vs~Hrwsnp1{zZ!x?fd=C`e_7W^w6=UnVny4(e`^)r=@P^ZoiurTY3FslsTio zM1Qk&IhWI4e0X@conQXm#f1zJGkw(jGHNHXg;zKp(WqjW=IY{dW`?1%x_Wzu6m(Qj zRasdXG?DxC$Lsa`%StOND=Vw2e%;!d?LWuDu=LfHD_25pUthIiML^$Lc9$cCbCN@@ zG0m^})Oj(Zr>DoJ{@<RWWoy>x7#Upx4M1ze3yRp>|Hr?jtoZw+^z-v#H>aI_b8~ZW zP|&k8Gbc}+7#I_CCv#$>{pTHQpz(%fz4G>T*Vo0W`_D6x;5j`_xBBhY>oHU37^R*% z)+=5A=i~9Vwzjp=+js4%d3|jyx0ue3nx926F>@3+uCI&Td{5ETwDfqNY-ng`__~<N z-*30ybuq2{^rZgJV|h_gQBzaXmoHy#-MUp+-S5uM;&e~XPMy;;XU@!PTVM$q_1k<i zC;H8aiOOHUe$B1%k}I0|V7gxHtQj+Q<lf%a*4AcM`zvO5S?=v^xy)=l5!-SipS!UA zJ9C)jJm)*Mn~V+Tj~+dmdt*c5uP-kR4GqQh<IbEqRTNr8=ICCY*#TLzoEu%D+HQR^ zAfNP08mHablF7-*85tRwe7vu>zkj+)=Gj@M>(-U>I0&>{T<or{u6|o=_wRSRySuvb z9(YzZY>v?BOTS<7xcAGKFQBQzS*E9NZAjP{QTFc6&ku+BK{H3(;(Bl9{D@h(ZXF*d z=gQTqKj%vH9XfQ#M=f}Htz)(|Yyj|Drc~I)ix-vWpOE-<;nBCdWsi3-ey*Rnt*X>| z`vIje`EUn^hOpIZSFZe6s_>18nYq+THamXRm8{Z&f&yRP-pl@$@|QA9(l+lDUglD5 z=bv(BhT(HvUgLW|YJcm6mred$c{x8Z@!`9>yRWZ}PTv^u?95E#ygL@D%VMTK-@~>) z_4Kr-r>CEvXM20w?S{uYW*Vp4{eH7KdRxxRH6IT6SKf0uAGL{*A>Px+CnqOI#xUu~ z1V!gXixxdQGxPE54y(@3=PwAW`~7)WzQ6d_>gxA<%m4oRy7u1p4-XGJxATRvNeW$j zd3iY~n0D>j6}Z^V_ScKWr@psso6oX8X=4OvVOVQk)KP9FGba{?Ru#`&&*<3x&tFzv zez~jk^|LSGcXyR$XJr-DU*5E7)0{anuhrL_Oo`fG_qU0a+YB<%6cAA0tbXvmMm=al z6GO$J-(Me3kE?pQa``;aO8t47Iy!GIE<S#sk=azrH!JJa!DjaS7b-ubRn3z@Z9@MY ze|Tc|R&Bk^C^cO_zO4Ru`uy5y9n1XZ=h+5_hNi}9D43ajyR_8Xyd)^mXy%&B!c!+k z${a8Kw8|m(NLs=fH&-)lSB)u(flVq~cQ?0*t42<X-FyG$=5%dtH#ys?E#>d;tz+69 zDJRZt(U-iz+?Uf+faMz7%}D0Yr3$%0U+@06J98rQ{#JXr|7txk>nwR?&sH|gw<uH+ zym?M}OVG-YQ~9^o?b{c(`l{CPsI_5|bMAbb+~qx8&v%|pq~$#8@^zb98&=n`%nx1} zvXAc|XPW%<%LlGVt#w<Rd7syHYS;71@b}lPOjJxvuADXAxl?ZX`K`a}!`!*Kxj&b3 zm~Z^?<40E)*Wr`$x5_J9L^5KX_^jrCX35`vcy2p%r^MrB%a$!zut3^sB?mY6=`&|S zK*i_O^-OE~*k05yGBT!ZzM02uC${0|4ihQf^PjiLTDg=wJteASR2;MWxnSX*1(#pO z_=auScF)|zWQW$_XODwchG<Pa_0l~5e$eWxZi_GGIr7h+tm3)&V$ANc-mOx5K>G`q z3Rg|Ex&PDH#>PhN*wJ-<xyiA=c&*}p@3y?X4z%>>VG(5M(R1FpAsHsKe!t&;|5tKp zDQK%-nM6ug*lN?+XL;B_tJYSA$Q-}PT4sB{xMsIKqvgEoufMLlx89Url7}rk^+rvM z*J8cq#?D0<1`-l7H&$HC_)=vH+WNWU+)VcOl}+|lUtWmEi@U1vW!-;j`g|X^efhb= z5)1BHDIdIFcwE-f((?Jax!wK!_qXTY-~0VuH7FHUB#P|SFr1OYkmnY7(m8$4uGO{I z|EU+>yt?@RS5Sj~?!*VIjuAVHQp?J=#jTe&%bBsMDdDz%)Bc@yU2#XEzA!Mny&lL} z_x;`7ZT4y^Dk<sdx2I<Q_WYn72U!Vx;Jl&vW>$xlHPs=_(>Gk;W%yyOQjyRnE@U(7 z1>=GDiU*mC*QtZ{@%@<J)6;WrZ?(Cp>E5r`qHBMB`T1;ieolS$uP-kbI=6587}m}w zo0P6F{br7zxA*HO;%|E#%NWd;>}0$Dk9C7Vm)rxjsgoxce|+S+HthGa+4=A8>@+qs z+<14p7pws}JD9C`p|1AqNFA}=tZBC@7ODp{vp=g?%!b-fdjB);Cc}k1`PwgmMMXt5 zHGls6{5<ul?6b48!{g)ai=LdAsvRySDtdOFZS=~6>8Yu%?(W}TU(Y|@C%aD1T&nl; zv$NeD9UVPAA#PdoEsNbEKTqk{mUB}`Ufw?8K*Lh+=~}Z7ii?RYTe8Gwrje?enwqNW z(<7b2>->Z+etUZx)IyY%wave`r>%`m$*SzljU%1H({&<^5)ZX(V=>OXWwJNUzUD{4 zZf<K4Asd6^+O;3@X1xdw3W79mD^*lfmfY26WSB>0D{s{srH5ZW#qKVfYg@f-%a$(( z8ktvztqr=gVbPK$D$2@_KRi6l%F4R!>WgM}{&O=7A0KMvW@hKB`T2Bu>|7l^J<vet z_jh-rqoQtIxbWc+x4wqz=g*&og@wPry?uRJLQ!$?)vT`*mECjn-@It=Vc|dX(TP{i z_X|S~mWkrfPkX=Li{6qESW{Dzk@4cw)6=oBsMEwZBqSs<s@u10*|K8AiVq(?>@0pB zb)KD-_3RA8=EplYh1FvAR$aY%a?hSUTefWZ_xHE=q%B!jSAD-<AFp{6Hhfm#eDFrx zi>2u=g?>F~w7mDC8ML;1+0?01W$kJzE-ZN6{UGYQU};EXq-E9>ji(lNcK5D6UF_aJ z&$2izDr#2T`uH6M4{vSF&W%64>$z`8$d&T@waaC+EoVo)d-J?v)1Ezdr0(TzzZ(`8 zw@$|0-F>^V#BFYCDNxKwbKm8VaOFR+2{M%R<jE6(z~tn|+wa%CUX_xP@`T?$=Ki^N zc$!?B-kIguE_n8L`df>6u$ER#SXkO!yW_iDi=vw(Z7Mc=ZJWDoyV0x{jh1J<uWsA_ zm&^AHLyt7J=~OMt)KgP>rOp5Sc-+s+%NxBtue20>GBw9M*2mZP?#5*I(9o+>wZlQ} zSZUr;%%Q8b`^1+YJh3Tf`{PFwmEB`<GhT{%d^j-YwP}U_tQUs-at*oIraq_2*j9ac z+;4A}bfm-j{hrSY+vSQ%f4ZmbzYJRofHuaIlYT&5U0pwZU(JUH2l;J2IAmpIIXE2P zZJjk?!i1?)P0QZg`0=B{bJDdnk(Xap7xK8ln?-S;b%^4kqIUxf%v+Lkm5-XOg12}| z6}~}QJneOw+48U!&(^J5x2c!EyYusiu)odEla-|b*6usys~-2?-}~L%yti&GeD~a} zSyJ)rN%{r`0n0CMyq2{n477PJJ1Z;V_ms;SCUZB(u6Zu(c)UllI4-Pu$LyHG!j0{T z6)QGuDER*F?(1u7H%I6cKRY97o;SxRc-?7dc^iY}J3H@9b}VDcKFP*VqiSflapT6q zBOQWniw#v(Q_sz@+}F2avcf^;;#urBx9;bk=PYc?U@}=H^Y5>(`}z*CgVt_+tdZNJ z;59>youQ7;v?8HT=d_G|f!rCDhpgqdkIu6y^?G?s&Map}*y`Nxs~H$JfOaM;pWdYY z`byAeCv&mxqc3f)pE+~p@9*!z7bhyaSABi;^dvW9N##}5bh~p^+iI`>tN8Od;k_HP zITNScjARojR(|0<3PKZgPM_)uVYpzo{a#h}jh)5Q?S3z)ou1v9RR7KReH%+|I}86A z!<jyF*kwOlne)I`O<2gLK^?R*^u~=BCuP^X-skw-xrzPRiA`@#a#&~0OKLAHW03px zX7l-d|31BLxy`oa{ipw-fAm*WC%k^TAQ=<_DUsh&gltUpi@RqQG0c;mW>E7x|Mt!c zXE)bJ*L`?X4_*bf>?C6`MBPo3i`AM+3=OmSg=`Gmr==deECsHV?t?0&9yjIZy@6jc z7O^wbw?P~#=RaAP!}klrgZmR6G+MeX22JArxv(+$_`mo6|DAvL<mKh%?R>JgrcGWa zV^wmZ?0dxjMo<ZNOry%=BJ+XLlP6EE-}h_P`o$j@K{ep>&kroOFMa`<F|Gd!o+t^; z$yuYmo{3@J4YXBF3Eyw8S+nNFix+i&f4#l2@$lc1D5Doud+%kKoSSW~ucV}8WMpJ* zJ-g%F9Lve`=B*RCw<*=TrshurBl9%9*i~=1;v*u^CyGjbSijft_;5hx{PL5Uu|L+$ zdZDbO^au<#oRe)>kFB4cQ$KtD{QZfC+nn3^WNoWT?(eJ3^9u_NJv+y;`1iNBs;a7K zn=4;lTDrUJtyT56oXpIZjm+#}Yok(sUtNe?k5qqqvvHn%#fJwylE!*5I}8dQ9GD(o zxAXD+T6M=J_Gc9fJLML?V7xJH`t<43rd``#U++07Y;Dxnf4|?~{`U>NcDOs|4903B z9)AAy>(=RMX?b~gWaQ-V@bGNen;R7s6%rCsQSsx>&f>Mtk>^_0#qGWI@%=t<ZnE0d zDaTN=ZqJ@Ox7^DhYjAG=+qP+wk)2(f<u*AB+sLr6vL7EFIySTMN}0UacwDZ#w^tT@ zflq!k(gL5K^Bi58(sSF_91PleK<0e*2PU?gj2m=~AZup|BO_<too6y};zavDADWB) ze7zpO+fq_c&@lN}&zw0jN?AEMf4<$$KYjZ2<;$0^uZyjIbfj}-@bYELmPO@D3kn7X z1}+3GBRcVN-=$cFtPcldBBxC~`sDW6U9oGXD={(X&$cLhbZ)M-x0hE+<he6v=9pwo zdYix8XXd8D$H(OB|7={iF!A-ZwRwJhSi0QX^6u_RIM{T0y8iK_M>(4c-rh2Oof{k+ zT>j=pU}$LR(^FHo-><t}+v46QvvU3V@2_UR%K;~;><_1$DnKJMVNOm?VPV&9Y)pRq z__3;I)aJC_xB2e<a({n3?(df{e00wGea(x7?RVz%V9r8p&A6!4eDK0@|M^RnEZMTf z<hJC8lP6D}o~|!%Q}KbB-)6$BSyBQ557Z9re!p+`iWMhrzuz5P2s-t{aEp6sX{m>Y zM{F$U{1tIAu{5KZ5`XR;fA*M*k57zc;kIqpzNKVky_)(UT0J!{?|bfR?bG)p=5Hx| zeXa2Ev90g<a_rVMG%&0Uiw+Kc{Mz9SD;wLZ602+b0#~9hS22^|k^SprTlM9`2fpNE zJriGr$i0J39^4DUx;*82=t6$E8Oo<ODXg^F$^5=-mJGv><(R8cepoH)YXy}*QoZx? z#I?Oz9LpFkOj7ZDeSQ7+QjxjO(|kW1Ja}-C1{*v3Z}6&xVwvOMo$`Sqvhvf9CQS^< z+8TBD-R+`A$0s+V(>@n+HXV2qKV5-i&DNIBHvXVpKWkW**=YO!JH&YFQJU|E>+52< z`S`ZU%AM@Ea3Nqa<N%s=3l=EsPF&}bVj!`_=DjEX(wvO~fwi@JFK^$IetsTk>eS`S z3FZEl)>g~C%(MHwS6{WV(-Ske&93ixX>0cN2=5Pbud(;P7pQxe=KJB){)lV;?nZ5t zl$aej(K*3wv7v*2ZD-g_wR8iCIrpC2Ex&(vf4#k+?+gP)6O%2yfg76-9?&@p+FyCi zpOcL_*+472>vUKAjeXl{uh)IO8~AFL@tJ%+@K(n&2?iW;ev==w_C1eW9l&&_WLNq7 zx>F^u<~HfR-RHbMZtorm$nxU8=bs;Rc8I(1Y-0X!VO{LoISTAL2b|0g$Sl72qLoFz zYwm^PoD2taKn3;13=tLo+tXM)TPr^>JU9<2`zMOqMuE2iI0@S_{4fTo(>X22w@Fzk zP6V`u8d7IS_3n9+*(46ykNm%lg+FH^XyaYQVzz!3eug?;PPrS4Qd0AK7EK3jU;M}O z`9Y(uSCjaj3oh@A<Z3D^Dq><}1U=>Ub1^V%o&b{DdYjv{!t<%t!Tq03Y0KS{VQ8q$ zSj4_fWA){Vd7w4Y41Z*VY&IN?_WiQwHE11keFF=B&Orrh28Q(xP3+rZ)*nm;9V(Fy zGVD70P0x9Hq1p+m)(ju=Jw6-|OPw%Rp~`AMvuOpxhhmUGzVBpV713?otl%0jCsWS# z{m;B2P>r}B<eAKQ?4Th!hJJ;E%+XV_wm<k-_kn5INydiy!$DgQi0PkeE)Q+~|5*Ni z#hV+3N>yL4hUf478pa>b!O-CA@!`O<*PL;m_H^ER>Q%PffBwHGll?nZtXz5Wa5y7F zg4nDVjk;&K?}9dQ9#96k<-O@eklTNls#GL+7xUh`tXAcC$i$N2LpI1LKZz7}$W~-s zx5X15v-W-eqA$!T2Mv!5ld64^Hi?@h89r2l%!-_5n?GM&DQ?P{w9PkjzWoVfU@%u! zsYvKPnDC*-xFYM_QFm=yh99~hp^F(`YK$wKn%Eikw@-c3pu0(@+RnYNgXKDB-Hi>2 zSzBjyFflXR)+;hFm?<7)j_z?=y#3dMldetmpH8aV?zd-PcznTyKgUq2cV0f5|5@u( z$%fVpAEH67SbXut&$JINOU`U{mbYQ}vDPnZQT)D|pEozBPkqcOtfmvQV?u}De7nEL zr1P&_z1k~f`s$*){L{*NS3N(--^*Gg9+IVW>Gjun_qiAzq+Rjk+_z~{(d})yQoU^* zQ|9Cv&Ahfg{{NL=|F5sFzc1haJJ!+hVD0z2&%dNRcj4$Ukl<P5_4a2iC|%lLm;9Pc z)b_u4LkXU^SIzFcatwc>(yu(w*3#;DaZ-K$nw2Xh4H6Cr``cVx8@+wis#P~`L@ag4 z$$7KXdwR!-m!2QAtM<ly@Z*hhU2%}PLH>0Q%lhlDg@uJd69iIHv*ym-n|XQJRPFF< z*RN-9jamvCHw0~nUal@08XCGe?QBqA`q^1q6Am)<J<i+tbedns|F!}d^{z!;Pg|{4 zlpFru(Q(4ep!?{eOBqZ|Og4Lp13WYYS6+SfZEv=jyttvvj7yBi7reW>`?nPf!~GX{ zx77s)1WZ^xnQLvBb?PaRr$4^k&cFV$L~Cl-LC*m2{y_r?(5&&&phB7S+Y{DZe)*$8 z;QaT_jUQ|TO-)QRY+c@R^c*~{+O<fd>ut5Wtk)!!$Z5J_-Rqe%9R*mXdM&;FT9W5X z(#DcQZk*SC3H?}(vP*4}ieTXRdA8hKTvM1JqeaVCPwsl~;K7$KC9nIhUcK6+U}9oY z;`GPdWs(ZGRK8aglYV~Q*>mUqeYxy!Ds^^6;9@b|s4Kh6-<RF*eO|fyz^qxbb_ksO z{A5*jj>;lc?`aV_)1Ewe!pbeyBW1ek?ext*uZs!@D0C?`H$v*Q$tRzH&bC^8Rcq?1 zg$o<ELiUpvtJgHUG<`3gYk1<_rKR38XU+@_4Ncoz`TpKsWw#!MMOY5*=wChgK;QQJ zb=6;9Tx69O_1R%u8Z!U4-Jk3Gs^9PZez*Mo*GJwjzE&N4%-44+pSxVgN7Q0re8iz6 z*6Q=EzwQUEDgAuLculGTLqp$XNz)&owHH&TPCak?ea^)U(A0~3^&3MaA(q6ar>5S# zd9!LSC@X4eYOeERQZ~!K_vei9`7?XIPuI8I7PtDE(8c%iaohi#T|Q-M{90udn-l{H zCe?nno1wMkpYF!{_q-A-um9A%zoy{Z+wJ%NRiECqzjnvV^60SFCA;R#nbXQG{_Od4 z;fu%R>t)2npHJPu$PjVa^Ya7HQjpSDA-gAYa&q3hc{A6N)9(Az>G7aND07XUP5iq5 zU$>D_Uk8(E<ND?MPZs~#lzO`A`#al`7XjzvJ=R}uuLx+)U$ypUy?1?O_Kn=^>F+du zJ&&K7=hydGtfxL^^)<cQUqXU{f}EWX|IdHF@A0A?*Vq{5zch}1sSxBE5)ddNn7!sk zb*Jh^SKr;UKB*e+44gb8ZBljd;$<^3l5#pVzuoI~>pdnE@`g)Gp)_*a^qVu^_d7Zz zG^W1%VE6ss2_x&LcMETnpPL!HB}&(cgX;@JgB#DWPG(W#nLg)jKKtyx@J-(Kt7l-@ z^aP1-`_rdw=gqV)e|P86Ub#DIn{Re#O?mKrzjgct$+-G|?yZ-&6+`xHyeIs3xxc(c z@ySW5Y|RT_6*4h6*s^oVg}ecsOmynZzd!NXnwLCp&RRBO{j>VTCoh7cG1PwA)vVI$ z1+!oOHotGRt@_**|G%||1r8a^(YP2;dGZT?)1Kz_F*}34S}-y!nAgn0uLYVj4P6~( zYhM(X@;NMZt+3pMNB@uQ-<Ei|&3n3D=*NPx-FNr8m6=Wccw%{eS)b$;?Ycc%SkylV z-F+J|EB4nFbyil^P#z%$hFA6;9~Lml*L-N)eyIB2i|ME0-@Z&d-}a+z-`8u=p*C}F zE8qOPv#vFC^~|q7++Dp5=IGqL`eWmaefzTRYqfGPFz_;}R0Pb+zP|45t*x(HH~v>o z){=<oQ+iqNANl3?`~BgCY>eNZHJfLDK9~E$X5;ssv^w1`u_Ts<TO?yoA2_kf1!M#h z$cU$>r~j`0VSn+xXLy+0OoLsq5x@KGeyw;EdOBhAO_#uuWV4<2*ViAYIKE@ydXe~! z=@TDJHJbW`De59KgOs7ihXp>FnVGk@<<7Q#6M1WE+FOaXy+(-#cNRbIYExdLlbNHx zXOe0~w_o+g=U17l&wmMF|D!B-r?N@E=*x>h^ClLC1~x_^8;#4`@7JB4a7Os=^4<GR zKG?BvZS!rN_<eWwDtmFxTa(hX|Ho(Zrn6>M7ybyHKCN|7{O8Bx^4ijh3=AeB6CN}c zi*=_yKGr+=mrvm7tLySx6K@nNKl}UbcK*qeC-Y=NW|b}r>U~o&`{^P7)m6v+KYZfQ zk@Rs@{h=McE@n@~#a>X{{%dC8pL2UtYIoS`xt1Aaspc}bljqEDzkh0~_Fan=CbiW| zcb$yA{d={geR;~GJ(u#QhBnPNt@u{|?BDyvH~)Y9{^9?>-|z2s2t(raz|PXw*Gl`} zMf%<UzUhL9vGT{2y3yO7JbM;acKeV}O{&|b-5)Mre|!52XQo{2ueF=JKGa%&sV_Rv zBiZTi`||&jYipywR@J6HW?^Xf#V=%2@aWdo?C0m_&wmy5_~)f%ymJ(}G7h)#PQ4pY z#rD2RwDwkfeaihEHf#Q0_Pf9KgXEtn`}`wxujxi_3o-L!U|8{A;UKfRS?;YR(^j{a z%09gJY+u&?iFe)B#_ry>>F<RlLVI5KzWMhnb?f|ckLTZ-=j@9Pv;U!_Shw)*?Qbp1 z$`~5lIE8F9I-mcHum4+`vfWVU?5@3&XLfGBeCZOOoK3{awOUtw&n-E*v$DedQS#=3 zIR(3%T2(7rE-bMNJ~!XK{`0f5UPn0@7{1D@R0Leg-~V^o+_`^$Bu`$wX|mqh$G6+I zMQ={?UAj$6=iu&ZC*EE9_H{?c*Y}anid(p%FDkdRmC7!BAhQ3@C-0??prN7ha(a9n z=V$)@?9i(x@6MMoc>Lnx;*~2`uFDU)(RHuYt!$A(%&lE!3omnQ-E^k$X{_eK(-Jo~ z{1Dv#?^pKAz}Jin3mltS`2QWuFnM=#b9&ADPSt0%<%fUV6Skandq?5o*Ryxr<G1_T zugv=LJKMK;k>{+|O?j}?;_{_S=jK>GuA0NZ5b)oziT(eE^7nC@Z`v$7zGKyUualbY z-zB~u=C}8FS`==R<r-fo`giHt?Ah!t+j6gNo>N-TRHAzDd(L(11I7ujudUT%<78mq zWm2j5z#qLmub1<EK<wwWzS0J^*4DSbE-UN*bufIwgWk%>?fvhiZ)CguyvnmK<f3v* z0gwDdgDlYKhFU*6LjxPHkj;;1N5_L3laC+!vZn3PZk27R&%Zr1e0_a=dEwtfLN%_O z|2}==wKydA+HB>Ys|HOa8$TtK^cPC?K0DGWtal6=D<8IlcImzSHj#7j>caWKzkRKX zo}6fA=Z}fJnYKC6!f!%|<?D{7g38;!T5e2yYO;Rv1C^Is0_IJsG=KRn-n0DwrkiUo zO*%KR&~e|v0B?SV3?GGq&HHn2Z(AFD`kdpwgI9N)FWjrPLFDzL6=iCZJC{g?<Q=Vk zHFNQ;FIO7(YR`Mzr}0?w&!esRYWwb)fBd>Hb7$ryA)do-YCZRMm#+_LWnf_FWl*UI z(6G1vf231bd3R{~M_I)slUBNw%l|&iZ@=SH%k89%6V|NxQ>vHy)9%9l)ZN$iYTuFe zo7AMR<HrBol<k30YsIo&GBWhCsZ<1HyuY{C=6t`0MCjY<d1eJ}X=%^))&ACsxtz3d zf=}h)=aR+7`Tw_>Z~X2PUiI-IORGT9#+Nb2JNyprQ@p)BzdSV+lA)TNtjpeX<lfx5 z(?4MA`^c=U?PYIoaa}i=eOBf4)Xj&M=Dz0Wd2zY6OZ)gyPobT29vJdS&od~xzpr*( z`736IhF?5FHVzz$E6b`}4xNy?_5aL~<#oT`Zoj=ffBODeH*=Pq(mTk_XP0^U``z6= zftq__Ei;x1**ImS9MX7c+1mY@nZco!jZ;pcWkN`i?7gkag#O%^Cw#@|Yx(`!@PAoP z?VI=4=JeZXCwtuAsV66*t~LF^Qm&r4*5$i)*fB6%NuTh5(TU^jt*zQ>dz?GsGkD+5 zPu_9z@4OpZGAAEQ&`96<Y5u|a_qS|HjaVM`uuxBK%O=$dp2KaWvK!OS%Sn7>W4OTK z(8TVs{<^$%SxyD7$$IU)v`4{ei&y?RdHrmf@kxt%w)v&Dnr{!SO#C~)^lyhnWT#u% zq=&KYSthfBm;3G9$H~BO#ec#BMyrYs3$A9#-Ya$Kl~cW9ue0&<gZzCzm(6*Yd^XMa zsFnV~`L};8o$kI_t}r>qeo=^P{7Sdt*r?;btABxZ$A9%@U|3Ms#KM2!++6F$PK%;V zx>vkpwl)6q^U9SgvAfHrZf!c6RCuc^ZvND|zXzr%);^!K#5?$?w^p=kzrZ2Gnv6dm z?(Qx>{AMFVLmQt^O>nx|Y<_vWnBudqySzJIiQV7zdQ<9Ym%x%;AY-Cj|3CjF%5#$E zo$>CV_SHGc)+ax#Q{KF3(}HPo3>PjqHs!zKlefz;o1L9hBfUIM=J%<mr>FDFSUmU= zyZL6!u8DIE&5bipe|P?MZtCePQ?0@x&p(*%Q~&?KrN!*i<amp&y|h<cwR`(1_G3%g z8B9u2V%Zs9-RP6GR+{a;jV~|Qy8X4h^@8A(JC~Mvv-8PxJXU?LuPeqKx{Brh@$&gW z5|&1VajE^GVWPDa4&9r~G&M9TK0I*rNjQFWb-27$$%z~@<(3qq$jxbIqqbyRT<F~X z?(XjPmX;8+Np2^zw$8Jy{`TkRXVAe!KRzV-`SG3qY|;1o#}5`(R##WoqsNbzzr57C zO#5R9D?>o9!a?)Qu+^Xw7K_<zgJ-kXCSRH@d{1_B?(J<GlaEiUIGtlQ`F~Eza$j%H zTc7^^IQakhqX%Y36D9f*cW8%xsoMMR)6>(}*T<hfecG9Wbz>uFjBGkTH@5>vCbv)J z&Xv{Q=EU!<GId%}`udu(d*2+J%A$gT(sQRS2i$o3t(l$w->1|1L3jC&2R?jgr?@aq zQBjV^IZEdn)7*!@dN2R}_SR_jTcepd4-Pa=R`Y#zeSQ4P-<Avxy-h6lm&n@H+(<CE z67_e_lJehnp!)Xx-tTREva3S0y7!0fntf;Ef8CH%Hg`4lc^7PI(tKE4ROC0`uJ-jc zT^?se#d(IZQLJpMJhkeMua0hRww+)7Pd@n8ljpO~&E5U~_Qu(#r~iMy|Nr0oq@+iG zetzCv^72t!4sT!F`uNRhXIF);HZnGj-twXHQKuj0-9ypazo~P~S(Z8PdG~go5{s7C z*Ejpk-&g(Nz{j_@x3{;o+5P|XIe58WE0Zn5RyLuU$=kB8uM<0~bgOOK>ZgzQ8Nc28 zZ~a%$U<GK2`J&b)g&S|bJzD$X{l9(xuWh{hf7VaY<63vD10sVDDYukZfev0+AHQF3 za$sSsQ`GiPi)ZftFT+;yrtHZH`Tw)7FaNQ`Y~H+0jm)=sWNsWw*zoT5>_4B+r?>IR z-rAmj-?dw8YySOvdpV?8R$u+~^?H2$zn{;mY7aIr=BoM0NQlY?{8M9T+@5=TP44Zq z&FSBNyiU5+Z~t#+!oh6qur)uv@BeR`cgG_985a{nNT9Rt2btr7EC&mp`uYT^FR40F zB@yxRa_ZKo@9*#1XCIL1T9jouqfGbKev5bi|9yX2f2>#f`sQ?hO@qZ3HM*3vgFQaZ z*gA{({r)TKO3yRe&M&Z*f1sku;nd0hqQK(Z9LwTQPdu9(?(S-JcQsY+n6&k{^P{R< zyUGXG*3Q|M%k2IB+U3c!Y?i)$Jo(Z0x4!>=y?)Hh#xujN_SfzF{cqpKzI@Ix)oGH- zs;{fFpP!oxTDaZJ{=L1wW2Wuy^n?YIm-SinO;(8vd)}e<@nP(v!})hl#ch1_V)J>s z-FbI+iE4*!$qasc)~?GhJhJhsXxAbZM+J^W>zEmPW1M|I*qrZP6v5vvBI>&F9$T2w zDrR=R7bUwU-gUd~Isg6i<NK>V{Q0*sc=<fbVmH0%$}LL*b2w)SvN#rexGi?3;05pJ z|L?OkE57$N2`{;ur~i+!xVRX!*?#U^QPHb9dU{h5J(mA|FDJWtk|v+b4k^*lxWLj6 z6JGpdj>^AP^6vIk>GC%>K0a)h_nTvJac@AZ;?kC=-Mfs8jpOTnKDDj>cBGUu_SeNV z9USp36E3f2JznT2aO!`0SI38+Z#HwP```Qd<Z-iY)t8732?x3L_XI5V^xLIBWuJD| zJB_>ve&M!%rZM#TIQxFMw7txB&dp$vqrW60Uam09zb7MiVNq_z?xMD7t1T@Kh426K zcY*n@UJ1iT%jeg9`taex>#rP&bCN1{=f1yv{=Rkbo8IT<KPy<dn||Lv7u2Nxt3g~p z&Zg?iiWom$`Fr=y$9D<{xjZ*F7jfi!F{9weg`3ak*RT2Widn`zc-awNnH$gS=gZ8o zE`N7zZM6O0FTwKi^4pX3+CxMGt;4T_BJ-GZzCudv>$i!`?C#1fr*`^rGzqXAoN9fv zrDX%Jbo!b<uYT-)uV-2D;lZh?+RV&zuS^W#UTJkUZ~OJ_Ec$cTRsGOql#<N2e#<3N zXBue5>>IOPe90W&cz;%Yyk>3wjz`Ag!;6cH#kyG)Q}j;!F1^>1U0q+9_v`uGWVX<c z0v4X0@r%u7=N|8qZReBi%6Ms;=HsrpdwRY{%=<Gwv7e^$g!4Ulz52(C$A;e1c<d`b zff_0NvQ{BSPrRPsw|usB`Mb^M?QU;ee4pR`+@wv_rjIOMEuH?mep}9=v$LoF`t}wy z%JJ&1J%a-i=e|y>k{1&WCP-XPj=9@*(bDMM1@--v0`r8`{bWqDM4U42@BYlaE;jbV z9sa+&{MY{a$Jw>%_S>I7e@dI>>?nSIExA^y`fHYFkY4P!yNj$Uv_jhXV$1&)Fbgj> z%b6o7r8e6r_0*%I-O@>dZx6L{*Z%%?cYFT#+1%{)J4&W3PoKH@dstvi&5d1OFCRWE zI$7O6ZeLAht#%6Y1rCAy{eR11k3Zm>eDa7v&(*B8uN}OSBEv*nXP*tb-Z&-XQHgHs zE|HlVuB+_}Y*$ol@tE`_@VCvs8&CWu7Vha(KXc_pqQ0&9>(v*YT@B8<vgF>Tms_8o zo9leSEG1+2v$M7_cLG-3t(`Et^2eK2&&iKs@}H_tzue639xSpk>*}@S<9%OWUIv}a zC0VN};u<KT%DX>U7&MXh<+A_p9}`Z8`@FfdRH&HUyY$>t-%B#?{8BQxMp65JBn5kU zc_k$!eYKmU?l~!O#;l^2WHZ=W0PEPi$x<rU4lOpExn|kB^A61nsy~*UNHCDGsVK<l z|5z&Pp(t~h{RrP2`!`P+7dBUw&plyu_1oH%Vh&47OF6kOCjw>n?BOb}esJjI)!+58 zd;f>eUAgDvOF<{+-Cxd~HI3QxV?hx6(ZZZxJuT<$>upTGR{j6?SK38%%f*a2w$<N2 z>+%;KUKF-=o|Mp|NbBRO95w&AYsGb?Hr4*VW|({|!(`SiOFaf(MwK7SGS1Jl73)q7 z`R?VjH;Q{n7Jt*KZH)nPHWdrZr8K)FjF#x0{&#m?$?cbi|KI)ew|;xg{QL`3_qXpj zQC24x*UlHVXxcuH<2M#;eZ8!;^(1KX(9QJuSD$OWxV=4}U&<uo|3BOA`%=3S9F=^p zm)*X-@bE3&XuF5MzIq>S<K12VzfM<Pw&56;P)+cc*X#Em+x8}g`}5(jt}iT&3ueB$ zF|*?Nxw-88?@muOnslV_(A~T*5@u^oC%5z8-*EfxO5d-aCh5l;7G7H7Ctvg7Uyr2m zl02rbXXn{g3keJJwyntz^OZDOk{jD9C@uZxt9dX_+na^X?P}`k*Fz;3Ow=Ykm_6ss zn>UY-_xHb!jDPjK`$mo#&*7z(ajTs~TBXhNQc_ddSgTj<6?ymcnUeCZZx>(dF88}v znqS;>;J@km^VRQrZK}QmBqcpMJKKD<kk3~kmWO}8-=A-o?B>(+e%AZ>Jw0Dm->x`x zXwUvg)6jJVJyNEx&df9}mF5BUT7Iade|~mW;*i^S4a<w(b2s12ahb}lCC+kuYxZ>$ zDc^`4+t;sWQumxEzADICPE_WikwMD&ds<U9e}B#2`|I{fv*>#Z9GlDD+z6Z+8!F!G zW}JCx$<x!*&sMFveSCgTsFwG+OVR2zwW8YLetevPJ~Ip!I+mNVEU;@}x&P$Pm&^XO z*5AH|UN0<MYcl(6*irTmeC+e*)PyeA&bWBU{ndTf01>B-^-+p-B~Je@FMpS{H8iW| z?xNQ7<=M+hUx|FU66~)VwPi(K^@Z3y6@>>H80+U*fBmSQoPPdY<KwRxDHTg6#qLXT z^6B~i<>lq_cXuMMKV-Pj;MkNOwJv7oq&ahJHhy2Si|<IMmRiNU?dt04(!FgR)AnhV zCRR?-komQ?YwMR<*7k}I54Ns)!=k7%{j#^c)aN(Fd-wl*_BwE}+tTIB!wcKrMeeQo z`r+Z>$aBB`e!pDxB_mMXa7usbO8<Yx+p52Buq=KC@@A<l9|Nzb%8zAF+vV#%gjDhN zNe5kTv`E~1^G;r3`u5xFV|FH)%~n#b746zz-W05|s;KGv=MS$0?`B><cRKWDC(Gdr zTQXzAYyMSuow^EI-*9{T`d7b8=7NTTil0g6?=ejAm>s%$*)BURhqsG09_{_^&LeT5 z>ffKA+1J;teO<tiF+t&=xnkJr($CM%KCbp#ure!iW!%|2dIxXkY|{?cyPb3GL|C2C zPy25U6Rrj{xpVZsHT>}G>>FwGO{;dudoK4on0?(h|7MVB?yW7?<Eqz|xg}W^K606F zSKB9NyCLP|hwJwxju?EcmE&qUAim$U<VZ&uXqVvi`1)8-n166+%6BSzdu!>%jAh^E zhh1;9NZ%TDHzOr|YZU0b?9bc6*8Z_r_hirZt3gff9ACR%zFHcRf4^>J*Kf^7PgVct z+-#}*{5$8yhIRS(_obhow|1TF^fa^CptB7=K0aPu)tP<WSAK>>Xz}q?aTa~L6}1;y zI5%>O>-~AN`TQ#@83ri{j}N{lZf(uBc0cCY8uIy$;?<+QLVJ!T?W_5@N#oPRwSOe8 zc~0CCHSeHui^e3GyKDb9{tZ9-EK9mY;_!thCkwOp)lX9RqU_dF@%QWX(p_9^_X-bR zT<l)`_0`t2v)hZGe~Z{zR8+feS~=I@3*P$Q>pz`b_kREXf9>*h5g^}Bxbi(~S62D= zcXzeJ*Lkeh?3#2kMdtX)6r-tLOM_P0*ht;DKL7Q)*xhBnzPwC5UmJM6amvZG&4p7d z%My%cPMSQqFs7sD%i@gZ$uk}=nJl!Y=V6EuYn90ZoBZ;KwR_G!dr)~WuiS#AaXYs~ zBX{3^b$eBhJ^ribW%K35?tk~DW8&MXUfX_5{<o^5<HO&)vy-LG=lp%Qd#iQXn}{6+ z4<Gm2$LTt6TE1k-p3mp3cbC8K>&*Oju>Eq>mK75vbFz;YpZ}f~`RTI1z3EIJ?`b-P zwOI@dvo@(sf50ziv!meQp-uNxIS!pZefs!ubp?e3=g;dK7;LEg{OsVtg9{ffJb3V6 z$<*r1>kFr9hgWIXxR<Xlzk454y0xB8zmZ|0q8_j6dBx~b|Dsbq?G~<zEjecG7Za|& zT+6oiXu^iRJX<rviXAs|e*bltb#&6BUp1c>uKHk_?YBO%SW3}FV8?Rx=PxzCe+{kp zed6!m5XQ41jg7AkIPlxsr!Ex|aC~rinL3Yz#MY#r8^z-)9<E-$uj=jA>utQ!YIo~* zDC+9w{`~Y*+AJqv<qLChJ~^{BwaOkHo9DecXYfQkevQdYAJE>6+v@BM%NCzh{V~%x zJ?(410|)1x!)Zp{O&OP^-==k6&DbU)p~G6WIV}Cm)qCg9?yvee=V8D+Lx1gD4*{3Y z&(10<DJdx{M{mu#x~uf{iWM4LqhgoOKNe~=H}CPW-pjwvro5~&oYxs_HoI3L*6V}S z+;_LOW}EbG@A;y7a#H-4MGCWY_Z-dH9`QzOwd}(qFE48@_Y>uFb-%!(nw}x)Ty<jV z*$n?arHn}_9&?m9W*zaAQ7`B@;Mpb8atL(qO4D7%u16iG`$VPfx~hK}?p%Lqm2ouJ znPoADnR`D*6)pRCLU;B-rM3Q-Q#?A-JywKQ>?rRpm_Kb|oui|i=r>b-o{;(-C0F9> zm#+Qu>d2bN%}Pp2Y3JwJ*8Tb6byW+ruj=e9Q|q!f2@y5FzWg{D{3vA;TTOV>p)2Z- zQjLDu|BuW!kqTcE;TWhoJBERwE4zqu-m=WFr4!;#@6qx*zvt?*(<k&iPG4G<niX_8 zIQWwOn|om!wAee9oHR5vG_0(4<=)<AXlN*FRl>o?x9;YPyIT_vvu!?UlYQaMF1{r` zeC^H8D<`e}@lV;_{{OMw*D~&|E<c1++5{d|9?aP^)2D3n%`~H%Yp)$LOevV85XrSz zW2gGt>)R~Xrev}@?=YLp)%S45k8)AlB+Zt9>+kl~TW+wkwoHC-sc@<JM#(j8XP9EE z_UY;Ff3WYFSJu1t=|Q<{+D;v*E2rt!MsNR?FZ@(q_NtD~o!x6{?r%)KaB97J{GJ~V z+I#Ew{d~6ne%0%>|Nj0~S5y1;=BBZZ&Y72LYLj37`T5zsPv+*{>T)lyuKoLqzRk%? zK3=wFT|39uQ!_ToT1x)Cw>$c4)nCvQ!>)pZ3>Q*Nce2DssyJ7-vRAgUi^gXdN1Bw& zKe@AOda?1>Utgy@zCUl%3my(def{-6e*8E$*V^6Pz5Lyso40T8?pySaefQmeXU*^T zys}d}v3=gXdW9ArHDRZYB<&d*X6owCzrBs-VtxF4{h8Co61`@VPo{1D$f4MhDB>Q- z<@R*7N@Uj)jX6gIohr>!w@eCY4?Db{wJovvcW>P9&*7}!O<xJD7kYn*>)7h0^TSWq z^9W{~xb*b?$%}VRp4&aM^g+m}XJ^F)os1-9MMVXKFYk%{ePG6nXG@I>b8-rDatgwx z)&1Z1WU;&co<E=B0$t?f<Z^Fq;pF8_m0(jm@)@)t+sn%<D{Ix^hXE^Z$k{6WGtG~2 za;n%XHFMo9UO5@v>6f|h-?2<Q)WR!mW-=wpgds~lY<~Ji9rwJvbzV!0)?fX2{APVf zwGC@#<jnB=^!UA#OTYRZTPhv4S5Q$zOzhfH@9BPXtxDhCGPSbW6&2;TGx72=-_Os^ zT7P?aa>atG>vi)IC3p_&h<TTleY>?a`*!b~Ra^yi;z=84yuV*RVfJiifgOhxl~j~? z7F*1kbXmkb*l1RY<`bRunS8PjJ+iwSr~ZCp(Z+q$`$PYYoNGVx{rKNV-z#pkZf1=v zoi-<1((<I_&2ZyQ>r-y<h{+s}+VY{Zm-n57w1~8{PVa{3rm*Z^uh(ypzP|a=C9Y4O zdRVO{H;Y^Jefltg)g;)}<;S*sc?rpv;q8@k!6P$rSy!64#pU*Vdo}ICg=wHprGrDm z<x+{ZK&`2jm6c!LM)##gItncLIWc=mzdv(cB<CtVp&HZV$S{$XcJp^>F}pq*ymb3@ zG<#?HyKX*5z3Jue?pWG^z&`KkdR(oGo+WAc3AD_!t!687ynX+!?%Cr}>qS(5T)A>3 zzV4@L*`u6ui$7?4inul(TyXt$iPhe?^^@81k9#x)ZrU<uSqhKp;<;&Ggtn;r2`$?b zcGx;ZYr`hc2=VE6^4s41FMQ<hfBJ98)LZGCixjegi#O{nO;xk4_;H;%xKHkIK)2Yw z!a~KuSf}LV=BJ+~^`F=5TBPB%>g|f~Ec=7XEqQm()ct%KZ+Y(Zarye3ySqwXiYgp* zZpwe8a4_6>TB>WH&OEPNx6g;Y%`fT4dGD{#eSC>`_CXf`my(i_>+Z8mv%`u%=G@+v zdv1<p^!<BR&9}wZ`hB>*F821;?C|9)&(F@?6Sw~I%M!L`M*)_W#4SC-9zDk=9133c z;el2)$K9L7eeK^D9X}qLwYo@X&&8CAhi4@pI^Qm-w%oYs;1uWS>(1_}(0_dBZ~OE2 zGe7aLG`hR8A35HB^mzNWY;g|(izb$MFE_V?-ui!6X$$Q8|L?b)ZPk<taUmO(A8Mco z(w_UETUgfV+}rBR=aY@~;=FekgwCJYEx^Uc*Vo@aeNye~Yin0;RJ;GM;LEG4r>B3q z{p*`vTjHzqCVdT!9o66Sf`WpgqNK8}b1Sw8v#gz9=w-Qhf}qUg>C@9U-?Xu@*mlLC zbe(}ptkL})V#cNmgQBNSejw<y|6R=fzYop}*UeeYv0@_ofm>JZe6bHUKDX3vPr?1X zZJHuJ&v#5{S@+Pk%B`*KmqU~Ox&;UR{Ca(Romx6*gJJM;Kiz*~Dit0dd}UOAWQEl= z={tTmP=8xfbS(b*W&N15J8S(*IJjDs-c9tIYgJiQ6{b2vzV64vR`IwSKi}>9aV_?> zf7A0yJ8f-kWo2bsTU%x2!x<(@EgWq^GBb`Z*w_=~wsB3!_q@$Fi;9a~13!G3GSzg7 zZ>!Js{1^Xht{1xTuQBRhaoYcb+UAc-UHw_Va8>3!Ecm{tXyO6xo8gx(|M&5<pFOEs zIauV#hl2S()-Aj%bST-H_42x}94lB$XFL#eD%<_|F#q@WcPE1yjiC8$*X<`JJWxDn zUO3^w>d2)+HHBu)nzk>ij>TU${<mvd;mc)b6Al^ZC@C!pUhcPX<3?HQvYh+-_Fk#E z<?6QBP*HKA^XD7+aX<Wig-_cT@TP3{;lR#?(S|(QR(hV3E^S{Pvi02~IhVjQr%#_g zbEf78c&}-3Q4x#dfr6NauUBS0Th8}o>d&gBbN$cNPPm-&X3C?F&!0aRW_k8fb+Xoq zyUCuOSO3**`a5NvN^~bz!zW=Ir;PUx*Gg|+Be%7xtz5f)d-7@#@5Y}G=YPL+?q2PO z<FcENo!Atz-0$GsU9IXR-27atF7+l{y_(xJeNB9Q+S73Ls;{s9o;AN;QCYe0*Q^J+ zV%$z10xf_3)XaOn^!n49sjlwsyYD`h7pf6v=iE1ICn$xo8oodGw|#ovvcIKYA3mKu zYj@@%X9W%=1qB5IgA1omdoK;r6ya(=yzpw)+OX9}lQcCn9#qDyzkWN%Z1c^W?YDc~ zlp6(&Z=L;^;$8M)l^%;@fJp1(9ba;0C~(YLwzM^f@o3uSnLcWZFKX0&z05W9%yH*; z&)0H&2>ew&S;Tdcic`n)pR?KhUX_^rPfQkcTBMP+HLCgGflW)IbPumGOPTrhq4U{= z%7Mw&8|6g59MoQSh$a8|TkdH#-KOeoYiGRjir$~)_<+Ulf!S)^_hDhT<jXJr+cA6Y z96he2fC=f_^B&&awY{U4H%Yr#J~;N3bCWyAT)VlSu04v)+Is%g)z#MJ?_z{G<5pkw zI&1f}YVW~>32`q<tR|mKF`D_MYVXOEO%Xa(d++6#MXwFp8~47zqQq*hMwivxbG^Z! zeRTEp=J`s{q%~8U^IqO|?|635Dm$}i9kG|*j!L={FO@xH+tXmeHf6PYCEF6i1x&(1 zE-eDCLPl+&r!4Z9o(fj{{{72`AWg}xX`6e_rTofzK5wJp;rZ{(<}TDwQGJ~BG~wD- z$HcW|)fYvRp3Cw%I&j>qh!bFS6v*8ZD>Ct7(#9J(R+CTWY@L~Fw)$*ZeTZ{|p~$0* ziHil?l_h&mOuG8!iSo23)k<q0?XqnXFq(aquiaU1d5V!#^^vzKr?Nj4m%s0nxwY>_ z<<E1>`<L9=-77H5>|-YX*3Y}=a|zoxy*RYg`2XKmbB~Mh<y-EUJNsbhq$v-U^05l7 zzBlP(de*I(yEE(Wm_C)vnAP)E<c_YQ&BEx4j11qqH>QU93)whn*v9^Tw!eJIk|+96 zTQdIr`KdK^)ghMrjS(hNzIAnV7yZ|Ut-hM|`SWLPF0Lilt>&&<uwcO&eVMjJ7H!`q zXs7TTHrnE)Hrdd`H!y4GoFj!xecXh0OnPj<6Mj0CLy`6PMHNjBrsD=Yp+DxdF4LH~ zS!>sclm1SeayypqvpJk?vgBNB5M#)xM{bKR=9qcwFHu#^I#I~;SYp=F%)YdUS>GlX zu8BH&$;A6IkMBm2qX8n$!6u#?P0j`^IbdD%&i0Jw$rF3O8(6D4e^$`eRdtn$^gp*L zk@4TbefvDi-&GaO^H=rx7^IoXvp6Br^7u!-dvDLDK9^PNKANym;*6Md{`J{sSlyBv zFD@~aIMXkuI*CU&Tzk*eeMSCD&p2y-517<1CuGfX@nL}l%RxnsJ%<lkv$Q{WAj{_{ z@RpDL{e!b&(m|WjCZAN~kZ6k#>s)j<<B#>^M2SNNdo=DR@A%^VP)O#u0Z)0Au)~R` z9EzDPmM70zhwH~!H4DtL$l7&Vokj7A=CbVPe4OcFGI?_H=PFOG-lV<V(93L3{Ok{P zxf41*<)ttETloFn%-!{Mb#FGG@B6{NLTFc8sV~QSA@NlKW`_db&dIuW=ke^&;A#5S z+cGXLTI}Ah7rpIFg29s~Pclqqy?OKI&!0bc?!@%EExwr16*uGTGa>7Vo7c2Ey;~Vj zr6n52Rq0|}-+zK*s?V}%r$dWoM(G8gO3~^IKAEaD)92K+sa%s(JOf2yYl7061uGkO zD;x}$I{%ri`Cx{Lmwk7fNa~kIM_DHwuxtz5FsCQ+Ps*G#mz|Fp8MQskn3XIcdH94x z+d}Q{>^=c04yPY9OsnVTNZx+K<mJtuFK_;o+<B{gXZpH3=dNcQ+di-4Lrl;`D~rC3 zB4;m|I0y2$UR3FPEa5vzRqd^S;HFzSN={+3@1FY{b}w(^O&v4o_?#@$mPC`&8@T!c zi|x+tjcDx&K5031PSUAA3YUJoTRQ!*M4y3*Ma$%C+A8XsxtUH2WT`eQswjOFROwn2 z@FPA@#MM!NC9Wh&=ePT#<MMyqCOu<X++6;EC2p_q#Itk${Ap4>KkrY<{|5foRbuiy zmF~Z)-G7x=Y?^&H<E%x!{@XKm52puj%irJfIHIIv^N$}F^gbrOy~R3BZtwoaO*eB~ z%g?)-Ur5`0GsC3n_l#fPQvK)IT-sOr`_XKT)H(Cp+qVb3TpF_N``2%Ig3s0lRjv-5 z$JIJL=;6{3P?UJ3rV5)ed=-v4?q?yxxA@|U>#vt?iFNw;s+{NW6CUN~7Ocn3f=`In z*?IY?J&)*H_LOJw1B+R!dX0THZmD;fQ12q(r19GC)>P$szE_5?Iy=wb)-{`bGs`&o zt(bQHV-T_VbJ@LP)-q+?3BoMtsT@4VIVT<PWJ=GRG_CT2$jJ*qrc7rIO^yf2#P((e zi3CQaZPVbeIb5+qqEB<pvEu@5T2@^eV)xiN9^Geo+2$bN5+|}`HbdX#r(ztEk{pUM z$Ghg$zTny-qpQv#bG&el!V<0mrsLW+d4m31zxQ~aul;!U`1S4oucn2#e?RB2b@3CQ zjQ3#+_eLwWaLHv{I=^hm|Czh$F8_SL&-!d(Nls2c%=8O8&M6A&*1mqbU|ZSlSg)(D zKX-2tQcakpB&wsG93gqQVpZtcs-Jv*3U&9U7XI6`th(e%wej+;{QS*lcxO#nR=sn! zkJ`#!pN~&;Rlh#^+hfQxd2`RC$(j~sM=m>G)NxRJETXgeiG}6qQxV%-^b|aWI#*~- zeHfZ}arU---*YGApICG8zY|BGj_<}TcY-@(s#nDP{*w0jZ4XavpP1s4m+wy+OnuGW zp4j@G@oA1)*NKGz6ZRau?)+51#ZjQceX5w*>Z=(B9Q}FBT@NhWM3((Mbf(|_)L&Qb zkM6uuyUJe{|Gaf{@@c-GTlhX?KCU@)#cB!Pw;=Xv*Z$W!7A<pD^BbRAde3(HujAtT zIrl6G+PHCUlXWRqXD@G8$BLyX?+YxJw5d&6G)=>GznAxtXHQ){nkE?b%t=knN%WmD zCpDEvIeF$Gah~8^t6BRVcg7}v`#0^={P%i%@n61aKR#|}U&Io9lFOJuYMt72(2>($ zzOMc2ws_-@xAyLrx%z@n?MUO=dFg!k!Hr&h!3A@g9zR(cRI&Hz1KH^N|F5mvs#8&E z8Qj0Tb!tTJx9XcWZ{A{>ruHYaM9eAVEYJP!#EyUyZ)ZyN>DBQ03bsz)yZ)B)f#cGO zDjiKzezQ6ja5OoKusDja9DG=C<Lw?-5tfBdd>NcpXguVXH~5(M>TK=$e^*LRChXh~ zy8mTD-Jievqp~yO#pWFNd)xeb{(YOWH2!-@=Y71YD<0mv+Wp;6$6CvRW$C217Zz5w z^Et{|ndM(rYgnXJxcq5>Mc1ua9=*=pbzZt|-Lv|lbf#UJyFYW%6NxCT%HJm~&N=H= zPuY`dqI=gZc<HS4U3m%LAFPx86P~y0(>?y#`|Jx|tW{s$^Y$ilzDE63h7iZe-X9bd z71#1IYDuc6M=teIQ!U!Wb$88c&Om{(x;=VtKizfpua|idUZ39U%n|vvrYi59v#(v> z;s*?^>&>TEK2>xRs7S5)8P26ReRi)|i%W>xtfPi9>H=D3Z3=Bu-y|q?EmGj(a};3t z_+FYRP=uvX;ly&e|JT#+*A+b5`&ZGwT;ZwTsSb<A$t<28Oa4D<*|K4SUxP{kk2(j_ z;f;$<F}*Z(>X=|8)A-@ljxf(@TwVP9FJxr8t8VpfJLAp2Nq_nM9aGAxuD<7+-Mr|- z27~?%j`J4+Tnjp!7AoYJNuU2*w)<|<#t%07r43smbjo($&Dv^}tK%lL<I1z<rI~#T zLyIJzzf|1&EW_>C1)0MIJcloqgtA!{Obqhd`zz$lj7HsQYkjL;?LYl*d*yHG$?81a z?}PU88ZoTMpB2;e{@&i|`e${q?ty1z_9Q=d&(5E_=gXtX-B#P)1zmqQ<z&j%rO%(G zWpf+w{H!kiXJ_>C+Nq!f#gJ38v>yj$ZPn<Q#>BmP-IsuGt_D2H22Nhvm;PLJHQ(<0 zx9WJEQ?b>_7bY#-GV7r%lfH#aYb+Z}`{9G!Oz#Us!h}BTIjiVV&coO4Ea2+6BBnj` zCEtOQMNG#Hd_-K9&%IW`-tQ&P?!JQg_2q?2&F>$YlxA@Ea_Ta%C4c@k+)sDrD3tm1 z?bzR%6AbmMX4<a}yHGUi)0ER0Tf5XeXDy1DHOY|2brO%Kk;&Nr5%0@iKP=ms+EI0M z(Y@#EQr6!oNqyBm-=)3fjI?c1%z8N<lVJAVkjdU3dix{O?|l2W{bhJi{H$#&(sTar z;ycdiC}L_=yG$)U+hh`p*n`7AD+`aF&OK(s{8m1sm@(j99EalMV<A&n;ukJxcwj!i z`uXAY_ilcD_3emj^PcFCUEG_T1y}-0ELa5p{uNd{!p*0mB-q)cpu{8W+E~u9B4SY) z$GP7k9tJ$hUAFPZ1;R=`dCqa*NVITEus9^pDZGMLsgUWgK%?+78RvIr=e(I6X=z@p zcmKrR57Pw|7q1t;u61T{=!{LFGu%7&TUj_b3P?B#G%1*LIGR4X^>c0A`ujJ%BVTX3 zUs3i`Jb&%&4^JBYU1s~nU0iM;$?!_o;{)&Qzuw!+YB$9heCnR}Z-?{iQ@%68F1rZ6 z^j$Wmsc8<A?E8Wf5k@KjFPEly+59WHQL*~os=jaQc6t=FDLyGmo_A4u4_kke09T&a zuXEh;|DNCGFaL9Y+q%uWUHNmPS7vcC9p`LWu_;}8Qq@1px4#2~Lm0I}8&<i#=TPy@ z`>kOA-7oLn-8)luS3c*vxAoOp4#ioA4$oR0#j^TvbI8KRt_u#S1;(nrS9d?E=KN^* z@1x<r?Lk}Z-|znW^qlPcynDB7t+Jfn&r{x2`ZX{#Q!Ihu6~D&^-l>N1<uz~LE&01V zy4`L6pEpVM?+@(iTOsgXU<;e`zJm)cO24u37uvCW*2ixNscSxWpPi8Hz!4Z{YW+s) z>D$y3Cs$u|_NdwWclw?kUw)rmUH|*jiMzt(yUxCS=N7n6?oh!Q<143)uV`<I*Us!T zyuM=R@{3EJJiUK?&i?hbHF}5hwkfw1$Z&s{$Z8(U!miQ8By#rele2%GoUM84mF_G2 zDlBEj@!98(?6uf?cwum6b^rb9%BQRT|E?-^3YqO#IG6oMSqC3)WBZo{j;qU^uY%4r zjM*8q{PNdVSF^9JiS(Oqv}hG?=<oZVXRi`VuFP6EJEqR<+)vr#lfTVdWbo?aLE|=i zvxRHe4<EgnVQ$%dcAfd`uWFOeWf(>1fP(g_*D+^L?Wa$BJG&DjUaj1HE2sN@$3xRw z=kCm@@~{5Y|Kj1>2+`lC@5$#cz30GTYn-|-T+;dKw7it?Nb$+%*WUe=+oxu|B|75w zMOmg>Vb1)!qVx{#<~v*%D8hU5SCdJu<F0KAix(&?cK9B!{QMQpnunpwCj>IuZDNR@ zIe+_^^WC4nKdZ5^l=r`Oy7_C!Rgd3ZEBlr6pS!BR<(qTj;*9=zzV;u}j~&gnG~4}P zaZqWt^wbN>d}CHmGko~aXxpu(HFrG9Y=7;jRghS<t#fre=e>soXJ#5dKPn!db9L3# z=={B=DJLe_)&8=G-F#BDBJj-4=`)M|-8viWnOU|&UYUV`_q(TyV@P;#%9@;j?-P@M z`37p*#N2T#RjqIo&@J12G;MQ4uG;FWDO;s<#WH)Ux{in%c_}UrDVkN7TNd6vb^o5X zlXSGaZthEKFBY$~%YI#UpJV-kbBgQM#D8V!7kDK5XJRmWnf&dEi%*7`hqr(4;dm$W z==v@G@^YP>Rr4MMt~6HbT4Z>A#rZ2QH-Bx@*{gUw;f$$NF>jkpbI6_P9#?JRvW|J5 zty(3qbyAqN<kY4x?Mx7n@p4hni4|U@*VgAW=_hUbBtEJ5T<l4|UGu8{uA5fQ!P4i> zV%E*YnJ0Q>Pw3}oy0chWe*gMaz3bQYaL}d!>sR5TwLw9X`uqKTe0ZEPj&umN^T}#y zA2d(eb2jgqv~N_iUHIzL*D@{@7X{0w-K$G5oZ-=wb$!$07oNh^$G#=ce3hgBOn@cO zWzS*7j@IU5-pa>5^R?eSc)PNF?(<xm{LQ!D9^E%pV%7tRL+58djR-n6u|(Bc`?Hzd z)9=<D3aPr$VUN=bxs*LCXJ5N{@??>GYkKb4Lry{|N$VFfSMm7mDtq{(Rakuc{Qs|) zbF=tXv{zTRR<E92y@DykNPp%T?_(N~U8~DYZ-lld&Nvjl@I$DH_Sb25bIhMfp8cto zJn!Nn)7e|og7<0eJy4{6J89p-jjz_4O`iPnl4aYJ!X-V*Pi2-)2-I;lFj+Y1vPkP@ z9?fLWNe4uVqz+H;@=KOj7PhJBu;b+&CC4?V2L=fX?ChB$C3i_A@K@TD<P&mpXMKHf zg-0=EvvuCGjP=Vi@|R}4x7ktp<r3@Mg$4%GmND(!%WPxIyvL^YYF6fwX#SmdoEHWZ ztZ7QU%4O+p%;TzQF->Q8CM$#KlDer6zQ4U){`%V5%FoXfTi)H>{T+1W(8r_Vm!hS5 z(;gmbz4ZFXkt2zR+XPtxS5}@?1sw%jS`cq~?2TQZOTX8ZMOPMk3V4e&8}I~gl(Q?c zuMbTqE-l#LF5$Z?%3q_4W2)8;k+;z<txIQdahqR?$=hMFSi0?@#G#LecE-i@9MQaY zDw^vIhq_Jmw}e?!|NUFf*fgR3(-KwPxsNp54km29*MC~k;?ma4@1`pySu=0$(&^Pa zulT3<mLk*f0-s;|O=9%g6yM0FhP^Dc{WZImW%a}rE-H3XeG;DG>wm1+e_-);u5g`w z7h+q}_xun_zy9OC{MH*Ewf{N)I-aNfar@@_|8?6>Tju#YvrD!A3T?Xn`m0QMguzpb zb9<$Ja0%AP*4SJ9o_y?IoS(>S^|b|6CVN&aF5Wj`^7^wo*ZDeq|F_Zk&{iWx&q+u7 z{RCRRWIqhhl2G$K<rg?*i~l5*rSmUww+INW{&_okZP@86n`ST?PFC~f;^NXW)XO|8 z_}o?2qTs=YhljUcy0m2D)vV_`>XQYzTo@bc7*F_%99{G<=}npS`Okdq&a+BFUmbc^ zVBz&Wb^X@js|##*DQf(Q{1d)hziWM1lKNBq!e3!O*^5&1k50YH$JxMjbv?`a0F6zX zHZ8fHwmC8|=S`5l{(AlWe>S}c-#-6f{qMKiL;E+&$jQm^wL7oBe*Hz@od;!;TcwtU zXvy-qJ32b9l{HiZfrW>zzIy%=JQe=*=~cJ#2Cs>ypNe%K?UmXpb=06IXyuv$yC1iX zZ(5_kvDE#oZujkag%3RYI#<VkZ~OP}-^-UTFTL*R;i;FXVq#!mDDeL4^+DFEq~gbi zhj(|EvpU|`o*)1I-rm<%N(>AP3mjL)hkjvk-1G0(>(kS8H%G1g`0-=y?{8~gcQ7z8 zG_b9#Q>|zTm~ECjO*cC1dLRP>0|RgL-&Kp)85kHGwl=WvGcYiiI8AuqIQjFJ%l__e zAOKqV|7a^C!-B+B<>wzTuE=y-9Ju<bQp>C8{kaSbE8GH_K)R(AK}VP}I4HA#F63m$ zXi+%G4B9Oqpi%*HmtYgzY(@r#1~(2N8wLi33mlG6%|0SWcl9j{{Q2|wd|MkEAz|Uy zRukGD9%y8aS_?V~d28i`v$M_b@2izoG%0@<<L`g|mQ9K1T-$0hP0h@6b1X|`Jq{Oq zes=cn@9*bl8n>t3+||e0V8x*NBMWrb-~Iakd)F<_FsS?g_q%QNw=16<LAReJ9Bg9c z7BgA%rcc1j%j?(2<MOYqy4aLeRa4*I+8VZc>pEt}1$hoo_rW}O{=w?VvNAKzNpW#; zAWIiq%&3_6{qyJ5uN|b==K7@@NH8%ogWP^F#pvnt=jPehc#bbrVV<P~Gr)WsD5#ZP zu9Y(IIusRsIyF_h)GBs;+}^aavqBf`T0f`Uf3DTlrQYIQi<ZRy|M9rLSK2(wWL8H< zN9E^dKY#sFYKg0SI(4>rzLz$SwAq`N%jd6K+aDUd>UD`_?B+jn&0X^5th>Z*o_}vo z+1p!>q}Rpok6Rmd_-g1ir{(F(KE}o_SSjqdvtr(S%i^@4ph-7#>fUa>-X~}K>e24Z z%*=lKe>*N_OsPA2>QvRAkH_=x>_{}54LSh5{9dJd)W0Lb{x3?bW}i*le6wQS`lbG% z$;j5~E$5cyYkxcO^Yioik(*p@F~`KF<_7&bW3q2GH^UCswGQwq>hvaMw;qeKH#4-~ z*L}I@uD|ccqLV3FQJ-I3U2SM+xHf8QQe@ec6@lh?cN{n(b;MdG1g%`6(X~jUNg?ZP z@zn{htYZDH>(oEzohZHh^h+n1<4e6cj(_ZxHuriOxMSC;s25)#cCJ{o-l43lte{}S z7b^=33w8D5Q_ID5A{qpw?CWYS&f?_cEG#U%^xC@oor{Z$LW_~Hv7poE=jYF#KHc5b zRrT-ZbLl%5v{gf{zbx97_R~7Q<Bmn_)BH{O_xFL0O5H2;;FVVP!pp{&f2`AESilm` zxHs;6;hZnC9$U=yd;V+p(TzH*12hDj)cxi}Y)(5nMKf5yDQvZ=mDR7e+waG1&ztL` z_WRfC_1UkIuS^4bsHFCD+o9geq36_W&cDC2v-r!4i<j0Hluq4x;pNQCns9N3fTr@K z|Ns8p-k$HyadxJ$`@(>f)Kt&YXVW%MS<*e_e;#Mm-nyHcQg`m$`F_u5zl;nG@Vfo{ zJs;b?y!-I*u(*C)%-i`(#jYFy`Df|5vb~{4LAI&;&*S0Z`t;$$gu2$%tJk#po%eaX zV;6%4pU@s*@KGii6TbX9)XIIlUw(RAdP>TV-@nD<FW<kve@=P#=G$+(#r5;<@B2GD ze_v<fj4c6K$8WC+)ou~+oaD-TLVDUPi&($wCAFV_t?636dd}p6FE1|s`0-;={6lEi zS*+7z=xWyb#Z~g+!o!D$+sohI6J<%fzpr+0_4jGh?(eC*oMSfqYhLDZ|M|}>@~*9k zbiFC7IA!wW%_T1{y?K-4C{XtH*3=0T0v^v_-WCdqsAaEbn~UVlS+~h-W7JwtPtUnl zrCPTvK`HSOG*w8PT$glxef<AdtJkjy%dV*bo!`Ec$2RTE41T*G3R+sHUhbas@$qqQ z{+|L)_iMl3-Ija1>t4{x5NWd<2aepEn^NE3+grAKZ}RcJ;^*h4hUHyY^|WN_*7-$d z`3vq?#QKS=sjAlgd^%lKZVM>aseyuX_bvxvc4)D<pi7Q{ft2ELfm_7dFrLGcCQW)} zCBWby%*rX(Amu1<M0@?7N3UN;UvFe!n57}{f{o$(OrK?L1~xJb3j&*jY#7eXwJbh% z{d)P=S63Sw8?~mcs{jA*`nuT3_YN7nIWyC^nT>arO{I~O$MVazpU;4<r_9<~b)-Wu zGc)tW{LnAf<?niWd#9dEdHC?*{Mv7kvUM5^4wpd}4;p2f%sSdF4mxG)`@6d`$G^V2 zyE|jnhv{)unYXrN#@Bpgb;>w1!_YkMPQ?DYzYCq)L$t0gaBSWZm3z_e-TnRcb$@;w zY-R`DO}6v-yy}-rr~A#fi#4Cm&TwJMfs&03Q#=J)M76_uq|NyhMa0F$#l*Iiy}bo) zQ@Qm>7?!>YX}K`dINfiK#l*RDb$yTQ%e%Yl+1c6o_xAkkRG&AYtmySM-Q9QXs=vMI z=;+w7W5<gZFAf|yu<N%EL&GvAAsdFLFE20e|I+k$$Gf|`K^Lw3+M1DcE&KYqn{U58 z>U~);@BE1q8o#zye}Bix$(eh5o2*fa$Nsv%ZvAqyGBPpV7nvDm8LU{uejt>^@q>;2 z-Y^Z3OWa$dWCa8g^xZ^`x^|0+<{mA)b8@mezpT}jb+Nlmv#)K*xw+}bk%J5j0nQ2s znFHqCulwy=mAEm&Z?2W7tZZyj>$cq6X{o8ATlahW`}=!%>?nB|bdk%wPbP9#N#^-^ zwxC4FEw0BSX_RtzSLs$^8-@j%&019qr#?UG))!)V`2PL=l9xfNuUZv9J0qmMCF^R| znHh$Q-TULV<w*Ko_MWC=D8Z9^dz-G->tu;-1rME;2Ho7Ae}8rOdO7>LKU2fwR(?It z$dFOAfQ8?oGHhMU&WewZjvP7C)YSC&c)z#qORtFib+!Nh{e2EObJgGf{N3H<!YqMb z^6u}e1)bRZ|L^<yxz^>NL%HWyKAQ<zG%04!$grTZsWFeC;N6*-#+;m-Hs{69Ut?gn z5a0mK2MPz7AIKawNK8yDm1SjM*ulB#1*Bo%^#NQ#lGcp)YyW%GJiY5t+x~%?G@h=0 JF6*2UngHH$pydDn literal 0 HcmV?d00001 diff --git a/man/figures/README-example-2.png b/man/figures/README-example-2.png new file mode 100644 index 0000000000000000000000000000000000000000..d28fcd2838b4f0f5c7346e01d6f1af2f5d838e24 GIT binary patch literal 46248 zcmeAS@N?(olHy`uVBq!ia0y~yU|PVy!1#cJiGhLP>pPER1_lPs0*}aI1_r*vAk26? ze?<xdg93x6i(^Q|oHutXYl1^>S$rrio}G68)-vAMj2pKu38k=GFWT0lyy?`XM-Bfr zC_FL{5lL(be8sWeZ*CJ`_hTbI9*rJ{*QcXh12-m!icDOp+pTj{%wu}V$!l9ucK`fa zs35$1*~z_``M+xZf0%sd&eNAmzn!%FKIgN5-gIt81_lO&9R*cZ3?OiUU&w}mfkB`} z;UF^u1A`+6cCJ&ERl~ZOXVaGHJ5Ew@I`Oi^s8+G<Lxs)s)2W+pR#^$ix3;tdh`0uZ z__IG!mg{#9oN_ns{Y!@$mhb!13wOpWzkKq@-{~GITjmRI;NTY8b2TgVmr#w}{6!ky z)I1s;9+X%y7c7=I^sqpNkG=Z812+p(*P<KM|2-#dx&4-}eerVUj}rqlQog>g_we9w z{w^<6BhMcDg@J*=L7<6+pMimaMbYB}Hg3{EjVggDI%220M70H+n%Vj9ZAf(XZ)av; zILIbs^Fq>W_Sy{_1Qbom-rShi$I8IaBv5h@UohYgq!;lop0&%@-PoM&pPc-7fn)Qg z&6}rssXDzl)XM#S&*#3ADYGmJA1!k2wvh32mj=bd1N&LUtNfP#{(b-dyt#A#uCM>A zt)=zq?e_a_9F}v>ot<s2AGztt-SYc;tG;Fx78bfoJKjI|v`D_<K_k0dMZ%E|L0egF zknd*+|2f(%-p(&SZ^DEF&p)T1n^XDoQ))|qr>Ccj%aIQc5C5$B_vPi~ep%~l7u_86 zXP@1cadFX1<MdZ0yXJL0Twnk9^$f#gFE6jCT=DLsKfz%A-fvO;ENl!62Ya8f*e4!h ziE(6642g@g%ebJ>GQn?ocX#(;>Bo;Ay?XV^>K4a~um66(m;d$U!p_Uj?^QhRmE&Bn zW5<tP^LrU)TT)U}E$5z->ttkL_@y>${=v^bYyLdCoxlI?&f@2{wq^@DrEQK>5P0yG zsqsLHQRx=J)hk!dG|QE$+gtGP(3>|oRn0tJii(Oha_5V?Pd}}CzxTV5e2tFYrvKY) z>+kO>T^*poQxNk1*Y*8Ek0;&xaroNG`hRzyo}T`G|Nnms>;eXgii+>z>&&?Ryl30X z!qoWtJ*V_WtBMQR7wu1+%Q4HpxoPRXegCG0$94AiyK{6NeRS(q)Spam@9qelcNxlR z6Fu&D*525VDAwKjO(FVW(N4YTrymv=)GD@dfYRuiu+`6xZQ5kCHtcuCwKp2ATKVzs zuE*EUoi|VJ#EPh>sD1x_y|%aCR+n>Vhk<8AUERMI7Z=~YJNfj}Ad#c@)arJBpYQ7A z>@3U2?iy$-+tJ_RwD9o54L5T@>>0cND^2Y9R?H-}(DLBzx8LT>k?D2&{HR-Bh^5io z&DC}1@e84$p{}m3rCS7rJ6*WN^-A`yUB7<0`H5{Ydg88uZ~ihLeEe~aU%Iz<_w!@U z?R+11?BVQOxhG&=%o+_XtzF;mRWnOoHNRhzyfx~*>@R8Yr(V*AFJG_UpC`Idz5Q_F z_S?*oa=jHc^A10J@nreyryNZiZsxrC+jRQ*=g8XsmNI=;vr-@Zb8dS7IHQj3|KIQT zxmlWAyTx{Hwsv|kuln7}b?f%k{k3upZ0DCh_IJzMJQkB*58LIBsq_ecV3BDmet+SL zu(}_MMZ^1jzy0(kWwY_PbM#7Be0p_t^_$$sObiUKFWhO`U-tIa&(F`(&&+7N@3r(2 zzx|&HDkryQU(dU_>1fv0K5273U0q(qEAQMK7H`_L>E>gj53j4)`fhxCd0(@O>q!!` zs;cT@;bR3Hd`=lR8XlJI{(EVuw}B=f0|Qg@GnV}s7Z<s9i*3C-Z_1P{si(#A&6uLD zTmyl7#vlC5eEa-2M(9kPI+dA?ha-YVTtDv2j1LlZYb6clD0FPvWCSX31SB?8#1vT7 z|Fdz*m=V={f7ua!XO7q%1&RrbCT3>Wu3b|*ruJ~VP~(#N6j1(T7Gq#w_)<9GLG$IM z-qU|9{L}cC?csJq!Hq@}bte4$`h0%98wc;(`ETwSsZ@DXR#qNhVqj>n;}fbW`1N#p z{G-KJRN9Z^b2do`O)mKQ>S_b)htKEjC(9TqnjPGm>agE&!UIMIg#?9z?91cpex^2L zEqFeSaaH5~KcBo6m;+kBJ}&&f``c-Ts|TXD=k0v1B-MM&F!@-Ir17%5j?xSa41ZWS z?JTy=ey~1%zuX1}Ep6?`i?7U!X8S7b5*Xs@%39|g7?KJGzP`Q(7BMk2>|++H5!e*9 zHZ(N!)rxrD8S*#sC)~{8JFv<z!qv6aD(J2jLrZ|d{uBlVhj=zlJC4w>upkjrhp($y z`tP%?nf~usuk_le4~Bvp6;nJ?Q&SUQo)y?t`B}|L!|&$(;>A&>0<5bTW5dJKH%3IM zR!nkUb?8^-)>{lLpsGu#M&MG`Ru)H>_Tv?KQ@WoBH9onvHky%x!Tj=X_hZ{{$w>=J z&j2ZOXySK@T5IMbbdEnacCU$*l9~bUi&d+%t}NqbR1^^w<kqcVVBp~K_~5u=)hexL z*Uy&g=qc$L@Mf$HJFU7?a8pOv?S-uT3=E9SAa8_*e&z1Z+ijZwl3&gBy8ZN-iY~tX zwX0V*&njYI5MY?_pgABkG_>S5r=5fDk5{i=l`(gO9@`nCcc+n`fuSLA!h_}sVXJ%j z`g3>NswpkoxpU{njfM=2M_jfDJM7<3$FcC$tE^?9TF9YzXT*iaJ#NX~-rRmm*FIPh z9U3YsCUz`?Cp0uv_}IT?Z_B1SwF<0SyVjNC<Ig{$+F=SUNy)c=YB4Y{9Ppp;pt;v? zxig3BDdpRBPtL7B+{T-%$IyOw;pLZ$Zc9HESL1x%*79g;CM(myUteF(<Ys1I_+{~8 z5x<#5?JAMCTONFLTXwx}{p!`lR&(E$DGIO%YW5!i1r$S16N`LK0k@r(;MH%+jQ$Fu zUNg_F|M4e~D|Gk#RU%p|^q3hK7#TS2Zd|!`t;pFaRjG3Kd^gQSOp_mk%Bud@P<Nq; zouPrDfki&2#42`)%_N16GW*^s#`hZ5tzE0i;iMV9?RVxB8?LAi(7^2VTi!io`(^w7 zm4`xn%omhe&GpfETo|oCrQ20g0#y4mG_lCnWMyYtzmjw3a6Kt`e!Z!wX<(u(+kz>Y zXVX5vy}ezs7gXD-{74864_}^>-zOuswBypt620l&I~lCrJ9SLZ6m%*rEj_~uN-mB~ z{C1_KrGl5Pg~r{PvdLri*)$WWncNGuZ8KZ7nk7Cy{(KBbnSja<g~ugUU#o2W7QH<r zdQal)daJqX7F!l^DE@iM3~ELh@CwxgTzvi2Z~5ljxnbKGzD&4&^=hf4Lv5|CYv5Ec zFjyhSz%YZs`zo909iw-9y5$USHki%y30rOIbSqK3sY74r150UXsoUbhGcyc17H&*F zE@xXcWnl#a!-DfoVl@FfXFsq$v;N_w0=|QZ>sb4lUt|c`h$)7enV1-efE>vqR1<LU zr)iATy^DM*?Nho%&uo40F}&SxU!p>bQi@jv8$SbsPcw^rh?JC+1&h1l%QaGKg4U(% zV!eM-!@eb;MTcqGNk#^S%L)hCr~dj?)vD6-WWwAx!iuRI7}s8Y$<g#8WrD1eMvM?2 zC}ku_sr*=Q>B5Bzp8svc6oVgi74xtv2%p@kvVC%`$RvZkapwa-ZZh!r;J9?(KD#xS z|5dgG>`>|1X_)u*>(^6$v)^+pH1M?G*~HAiu*|WEU#qvb_o3|hiH8p@;dvH5*YA2M zgOIDYclXt-R1G!;1_lnHnhBXXIUyapvkrPI_qZ*-o0qP^pf6Noac^=b$fkq|51PH4 zot<}VIn5&fu4pF@8?!K|WPbGLE~m|j`4_)_U}Ru$XyVsmYhL(TY>$eJ;kFrb%bOV% zfO30J^U|#5_M17|ZssJ$_AWXe`@+Yj?YJy+EZ^hf_Zjl;@0&Y+e!svZucceuL5+Q( znhytZ9~tP+JE)u{b>YXwy6LfBiZ(VWa5Nt@NIxfY3)B;6a1^ioaG>{-Ui1g9&L#y8 zwOudX*BpMKb+CPcV$ed7Wrvs<7#1rWWaqcZ^V6GFzE67k6R*}FwWtq2=EU}Wa^`6D zJoHe~hJnF=3uK$_j}PmlE^sU?$Yc>d|6p&<LFJYwNvzI?e=ssIB<NJI$qOB-m>|Q~ zuF$~{(_zWtIKxM6lJhB5F20LLzi%_}oDsKv`QPV9_r4P}Qf<HN%D~lmD8XO{^Me8l z70+EUdR31(C7Kj0WcaG<>my`slK%fy=V(%~UM<hqkRS13KTH4d<X=LHii&#ESD)T; zCHtYihT3FLy=m=5&b#l}`$*-PNM-Kd=(c#`@uw$MV{McjK#tFo(7wai($exk#y{VN zv02!Mp)OF;X_Ct7VjjMEd%xSOsI(|>bS<i~5)jCVnD9VXjQjHR2cLh6xZcb$Tc&?R zKyUi%5-U*tSNZ;Ic|eDV{q@)-e~(?ec1`ODS3c7O&Q#u8Y~>70jRzhU7;M=Q$55~{ zrv0#BLwraZN2}B9v(E}Fz+IKLwp(w@zTK;z=#jEDYUYmrOpOhoc2;8cY|$;L1`<z_ zTFtAqR1$f3H@)5?vUhgOnufqH3=9V}JU$$BUVmMCmy}a~tKsAayll<eIpb8!rF!4g zzTjhE*ekE{<H5yVu{{xq8zVB-KfiY4#*L>&)-z((6j;qwo7{O1lq7dJHu1}`H9P8k zTE*Ib`{tJNNw2?Fz2Bdx(DLc?XKrrp{eQnjR~=?xU}%UiJi%9S^7o&v=citOt(xlP zn#|DK+nd-K$J+2XW_OvcQ^uPc8~6Xd`#ysQR9Q5M)m$jp8KX9NWwdU^t?RokzW#cT zf79acmlzlrq8eG`ReaPYAAUHY()>hUr(RX}(WK2c_q<#5UCWPwfx)hsMP8*~+qa^g z=p8CN7h?n7opbsUw<fq-;M1pW4h9B>`HoHeLKX+TU5)a~p0%}bRXSCLH}8*rb!@em z&GaW+l}=LY`4|`$h<bc*WKyqay?%aMrvCS$<q>Pk&p!}!3Ys|O*lK15h74Arnh6JP zMm@W$V1493lzE)k>e9(vdtc=+Ffcrj_W0m<D8odlCFNe}MP;_A4?DOIo=*J3p(v?R z!N8Cpr1C>y;q}+fJ8kMT?w|fETC$!k-$3FBlcD*N*HL9NrXL0s-9OlbY9<&+^?rJ{ z#OK!Oy%qZd^wdNT8H4nLO6x=ei9PS<yK}U9X83)m+I#P}VjTylmN{S$vC7Otf`{$B z`whjG6s5}Z+a4@_5?HkJ&#SAeO^$(TQ{Jc#j*E8dR<x>|N!x5{Zhl$Rp*;G7(Zo9` zMu8%(;h>nc0fiA;^TKH1^94rB3YX2fnDHh}ys2lA#^#$o2o-LNH%9AL+?m^_e*L1; z`s?M{t(7(l`#_d3R5Y>3t9+@d{Vue}qc3Bv`QzG+Q9S&cnn7J$9#9nSvOdQ9-sgIh z`Ps8)!&YBC9kp==54fV?6sj@UQTuz_)vUMI&J^8gTCRQYex&<)>t==z9gLus>Hz_d z4+j~Zzs%#^B>aKJMz4PzOa1aIzTcxis7>yi26FxuCQdtvl5)i=AH8XpuQu!p&Rk}_ z_=RgtAcrIqxNzrC`H@hteM(HZuuX3F&ATg2F3)vj;85%g;DSpx+&(xdZ{0gR@slrW z+1}T#jqp*M;>az>z#suK{7&Y<^34p|y`srqt8C3xLQV)*)q8B-dh<@wuV1g%Z_mB$ z=FP*vzyJzIwjHu}?*7U#+4g{!&3Sv+PDhTLZ?3TgJ6Bfzd_KS4524O&@kDtoj;Eh? zm5TJ9f3SPEpDqKW?qG9U9H{oHtg^Jq{bKodM$j0Cn`09{+ugOI-4Cns{FYCi#<0t} zMUDYd;xbP@dF3wq2M)!Z9`A~FX3SiXW+1W4`Ut3X0V<H0?^m5jO}h1JXX$nckWrx8 ziS4c~TmQu!GJ7v(O!@hXXWk->|Db$$flK8_LW0rEC3odh)E8?Wd|dZ0Z*B1FlMf4i zNP@EUHid)i%=e={aLwBF;%wUH%P+rFPLS1I{D*;o0UQMqy>9cPJ{Y;UbN@SMwRPXN z2a2G98DWKko8?>seSLlHwmkUwXw$#-rOoFr+)e+WA~{LKTtrbsRP<>&C>n1yv7E0; z+kEqB(N6<kzKdI~_402`5_A%3d{Y1a6Q@(gzdt|gKy~K=U5^iI+SNCeZx7Q^Tbyk9 zYxmU`yYIU8pT6&SG=hO4fk~y}n(^$jD}GN+Gl+V1_D<%(?%n@;8lHS|{t4=5G;mIM z5XrCp<DFRZ@h3^G|6{*^i~5f{YUKN-cBVj-DDuqxexy@4`FP*cqMbk9zPh@4eaz0L zc>lRpr7tfn<ygoquD9p&Icv4anU9Wic8lpgDtK_aP5<4u3BRwo>hHc<aQHmKpOq%c zf*v2mL5-O&Nh$}kx87PCz5U&djfdwx$j;9G{^sW4=br_gEGAlmhfC~#zuC;m$*I5p zPf=mv$7X)J6D|gh=jV&<@li34TfUI>eev1|%`FcY85$(NsQ<VgU;lUc{JKq1Yv1W^ z&%f`+;i)2Y{;rpomy(iF8^3&?z%0AkUlWzx6%PJBmSG~qqA2P$w=d6MV|sUH1>5@T zuWRSA=nHy)$ApAm_<zvf^MT1J<K3N|?{rN~O*s~dYKNJanDEG2ed(|Nv)F0jg_k9T zg@qOEJ9g~Ywae=JKfmR|@=XGhJXBOXFUh57?+8|85Kn44nk4w4MKPtLyQuVg#LkF| zSFW`D`F+z@ZF0<-4{tfULsW7Nt_!jpd{_`s^<U75#ZiFe;Hw`G|9w~3cEA2Yw&7Qv zdy}tb`TF_A?J8O6qjq~!>gnC@_w6ow8@2hSjsV98KBmS4n<c};!_AAI`TVJRc&PQ} z&6|uIllHC&TOFgK?0Ko(Ucjq$(jpDM_Qe4|;<(S{nDI|^ef(ViuBy0p-nCG!R;T&v z?|Dy9Ir;cwl@-_ho&VEQH0|cUzn!0;fAG}<$MvEeEc0i~*pYYF>QB|JEt!^<mK=&3 zBVwYXyUn+4+0t<|>HELL#KiwUj@y5DUHA9b#h~+BiWe?is5kv|-ge_!MKu!>6OWdl zu0=H+@n?jUTk`Jgc<BGyasBmf<)icXQ+Ek6#4ox2I{*H@w<T6Lqf6a%#H{C@n>KCQ zJia6DHFo#&wr?&!o6zZ!wEgzS#SUgk@BW=m+1Im|)lpf1Q?7r$zlVndM{7&VgNfyV zfq_Sl9<69!wMy&!S5PDIc(3&Hy6E`$^Cc}Rp1-CkR5S05(--xM)tk;=ub{%D>9k_u zLPayPYtI>^q@`1pcIMa5bEz?07y7us0vr{3)4TWXx93pQoBq1M;>K^*?zi9VO-!a- z{Vx9{s&U55u<-EdvuCfq{8FRq*O$xw>OM0X1a>{2SG{WW>h<ya{Q|E%JlqZ*vvLud zawctazViz~S<&R$b)wmMhX3<&Z{1tOpP}i&&%m%?s>7BC^`B?ozjE!`z8{ae%XZfu z=@9g{{VL+rfiXIw%P^5eb@NRb)i=*?Z>;#X$DZG@;P>tJ%p$+#i=X_m{IhH6(xbME zg%}tZbZ2;d`1$kay!`a@^K7fXy$SoRqN<vEb5rX=hF^S>PnxJ$UEH4hv@X17Z?N{Y z>#cbPlTV7s$-O%dD%7?xbsyh2?`F=og%UPmr=EUv{`pV6V!rsUg9(P#3=9ioRVuD! zXJrX-tHi#)&e&Ri`r>1K_I<ijZog7tU|`5#;hgvNOxos<7u9uByHfr=xxRbplbZQ% z{Q`%&-!d>TED%(wD9g^w+<5z~(8Bk+753W49*K6<XotNPYgh_ub*yh>IiF{-|J0w1 zgQs1J>OZZHThIUWQ;W_1X^WcEKQJ&jSbKbU(-yq=eDj+L_rIp`ur=S=&;Ef$X~8`n z28IiKLN>b}UU~7^$(%!RW_|3Je^<JWTFCH$8XX{qm+cPbxz``~rRe{z7rkza=R3df zG-3hOxfk>Vv~My#yYqI@_s5cZBJzx87Wi7q^Id=am1}<6h0i<wyqS4ksfDj*H^19O zW(J103I{h!`}GF>ce@xYl4>;bNl|>&Enl_CQ6?AKnOSWPdUMCQar~|L$u8l_&%m&y zS+A<hc&3j^yT~UOyZMaQJ3sE6yl3Oai`&Ka%yv;|1hq%O-byo?d4$Q(QNV6K<NCnI zpDnEav)}A&6$1C`wluSx&-3;5{l~M=z5Ml&AJZPxt`mLjsWia}R3&GybI!YaCT;T! z{cq2CDrQFCpVt(vBi4TS;duf3mI*Elph|s#yh=rx@$9p8dcvy(P769!?Y-BY{4wyK zU30r$6$3*814KHhF<$pafS&&W;UCvr>(dph_D6s4_4U=8etQ07Pz19I+3cQqHmy^h z`(m=)`qIlcZgdE63Ag_&F5T$xsKjda?Ad=UIT;ul!W0f}o_#atTe_t6ndeutK3->< zd1Jq0nG<JIl`#W@gSp3tH)&?G|E?76{uz`1%+Ii*-u<HY1bN|)j0_B0xWhIjZ=aWY z@b%X!x#`FGpZ+dbbNZ=~nY5r&j1ddC5%PkKbKc!qvu6GA|G>3z(XPPPha24%2foYx zzvp6-M~sPp;u1*%8K}zGFFMyQU3yetaip&N;_uHq_s*xj5pYszcL5DvFzj+{O5bRG z^ugb}gTMdq+<P8WG|vKD<uOip5P9Z*(uWy7D(17#`YqqQn_Y^BO)BaGOZ$@vU=?u_ z9z?$JYx<tAYTYs+Mx}gbjGa&G_vey->IFS?1P&WlFhn>iO|1F*_4-|_BUxL8SOSBB z4h48DP@eE0l1IFG`Qq-l#+s<UdDFyfoII3Ts*D*}bSJ5Vua8?BqE&4*!H!+Xru$*o z`Wb!cA5JWP`XaNEt^eJ+u-E@985s5kczAfk#l@ABl=!n>dhP)7gKmYD*e=Jr>m|Gc zr`*i>R;*aX^Xe?ah3wefWx1c8oGjW|^W?<D*4EZ{Z`CHhoS8nav%i1($&|~>{r8u? z7Q6TFr270G8OtCI5k3in2k-0uTmLE*udS{9JIAv4(4j-edL%!8JT5QHlDIKKz$r%W z`-6kchue6Cxmugq`Smn3UUbekz2VT5Zn*iTk3dU@{-@72J4El@729(#VS&b}^Q|uo zI~_oc%c_OXo;_oit2pqoL`+O<UHtyKpP!z-+a$O-?d-0apP$&}YYLv65L_AZ>%(Dw zX`VJ|^Sm>2t;;_>IeGNx(bLm(tKaQ>zVH9P>hr>Wv(45nUHbI%dHeXyX=g9{+rRyJ z@zc}O|36LNKgX&x>&=ag{r3NUyuH1h`Fk;&X2grOqXmW)d=KAmH<{^iPSN6S?!o(! z%co7#t6I3^TF6^an0~pnyFB09+uPBxF+|IiW1`B>7mNFqTKwkO{CvCp{;LwJoiTj^ zxAs<-`}p`cIyOeF-FEw}zwOs63mlt|^+-;hGw01s<Nt5B-=Ak)?zj4CTYG!Iy#2mS zn?ALQ#}(B7I&S~3@ZFuA91FwaDxWUyx4V?JwV92V>kGe3%mUW)Nua#_{k(FE2cM>( z*RI(Q-itN2JC-r9tmPKh>yb9+OD}J^kYE2h`p=_FOTEi>$F2-1+8Lua{q*zC+1c5v zSFH*P4p#S>F=5gqqwH&Ia&K?rmAA98v%6Qj?b4-7j?HYX?d^}ZKR(|7eb2QQ7Z-oz z{?2#6{{lF+-u&mVKGS~m&7Yiu-9Hx9+ie$C6j9^+{p*gP#|MTlPAZ;N`<{NRsOa`l z3tky=_3GP_J+k(7e|~&?9AESC=()Mp;p^k}=HK7vE?3D?pR)ZnXH&uZlMnx_YCZY* z<BR`{zsxcYZkEuUnr6@%@i3eF-f@=myqt3j-!C?PSNmmO;&*QrA+R;h?R<Yf9+$uS zzj~fUA=CPfsgouJMMqb^yrjA(cJ)=i83qftY}vA6g@(EL_kF+L-QH37c&2f>T;-FA zcXyZXK0j^FoSL_{wjMj?_UGGi`Ffr={+B^n!f^A=H~+QFXT+@ekT^lM{lNv(E;%6^ zhP@Zw*Z;4!n{QwK?vAj!U(L6h>E6?H1i4x{7PhpsL~c&A{q<sTJHNc1mR8h;1jpdu zU@tE&M*;o4UoL%nds{zdN5O*wjgKBZGE6?U<NUV^&it7sv()F;d^$7JSib(x$J_b) zdj&q_TxPCvY)UtjivD1yQUPv#6t0x8_hb>;eV4B}jqycpi&J7@p`la8sVSP-*Vmmr zdsfz>K;hquW`4UFCYhHesd_&<Gjnl(2A`~z%cPX3s9Vzcdp<s!o!=*CTXlAp>3N&a zXXgL=qW=9RN7Iidll=vpUcP*pzxV64?Dcz(JuF~ha_s+;QOju449byf`XoF~uM|o8 zxwPx^U8^Gr1{aK4<nG4iUe7W6{Bz%wY3vLJ=^q{(jIa6F`upvg$ju+P7Y6+3umAH{ z{{Ij6)qlg+#q2D4>UCaM5i~@^tr!v?|G)nK_j>u-FM{vbZfwoIexQ-Lko#WV_TAt4 z`T39kX0~_ao_BQCtXVEhhPul?B~F-oF=NWbi}wBR)?H=Z`-OqUe4@vf=l1_C)zz18 z+qP}Znm1ps$DcoS>eb5yO_C}VV#YIlO!zike*N|CuWM_rzdo$;<xJW^dsdYShNjsL z3Lx+9`~7ZrBQv|*uNRAr)6P`<`}w@uYDEGYsHnekMP=Da*7XxwZod7tY?)f;k=yw^ zReSBCMBGnby&L;w%N$;Y3)xGTE&KQ3Fu$#=YdoWF#kNg1bHY|nT_;vELxrcb*s^MG zoV?z`#JN!|0{><)t-i{{z|gC3aP!r>UdCU1CI@#M7I1p^bLG8^oScvgQy!=?WgKK? zh%x<Z1zQWia8}{qW>LTPlC>%A#}8M}e-NuT{bb6brC~Zw9!gULSQt6w7#K2+G^KxF zoMCnJX;G|R`07&OYRlDEy96e6KUGvzteEHN(eeKOEU#7}#gvT^d-mLBYd-j}pyjku z&At_96Mz3X?hG1Vz0s_EiPh%e+uPeCt$h0qKb)X)^3nrAryt=b=HH(`ueCY-{a<xY zBNLM;dqFK%ogY)V4zze&kM)V~aNE&frF%3@z=>;PlXHQTl+>O*oV>ieFWybAz8{en zEtdPMo?~I5=VN)9iGAU#Q?J`QYQN!~*Sr7!T8BRjTaGrd^v_<^qr}m)NMrWdV_#Y` zT6SM<UFg()xbgbL0t=aca{`p6T)BF+vT}QNcDA5XP~(;7-B$1AUKH)r=$gc#!q%+F z@c){R00)cT^2tjNDz|t{+Hy0e?%%&J3JU{Hy!tIKB$TxM_RJms@A-GVJn`sg_g|SW za`N*3Z>G=xDarPMms`jtL%c4@_qs+^%LFHxXMeM{mTR58U~+=*V9^(bFJ7XeqR)2i zYIp1Z^7g}f{eLxIUxijVGu>-uIUiQee)FO+zntQd2_?!0AOB;P65b=hb&BzVHm|h6 z{@kDPHP+vLmjA1K@?87NG3GtTmnEhin0z$pVPWN+2?4wORtTKlEALvre2R?k<SznF z0fu4>3@=zY=dI0HBih~Sd1$Zyhu+@aqK!??7ry;g7W7J3C=F@#ZZn#FHpwpc?`MvM z2ASqUplUH&$VN@j<HH_MSAR<b%lWXh%`?|o7DZH)M}6Ss<>lgB%NeK93Tm8zn$6o5 z?d^_J<TRdrHtw8gPDVz@1kKDnyCM|Y^r{$s^~LTk`}>gJuJ3MkxS!v-1&+;8QBh@Y zZWva4c+f4bUsVU{9BxcLURAm3@$vrUOP5}hh%OHlnL2ak%m0-M2RDZX2MhNWKe=!> zG<#3Z5pxrh3!&O#lQ~q*o;~|!ZWk}Zi^%BhdAi!#!W=B`_kO?k@9*!)lPA~OO?6v* zb6c)-@5a*Ur=R|MGTGl|`;Tot+$t5@7HtgE5!2&zk5jMM8|VMoxMHD*qoXCmuSv&_ z9a|Z^Tx;s7`~SXe-=25(kaTfz@#Dvj4<9;o>C&aFtgKC&Hr=cJ9{cCwBvtQid3U=6 ze!W_~-bAW5YHi$}3d6Vu8rs^YbIg`6TedEC_qHutO8))%xr257^y%Wl!jmUV*pPqU z?t5vpY~J?Un>TGzQdSPtx;jlaTEJ<#UhJuJ=Z;ywzqQqSZ5Y3-Rms&=q5d`>S)5iZ zS)!t=n|p0d<i?E~Gcz-vpPO6!-ZJIHgc~<*m}XzInCsVa;ojcrb{<I~Vd2SBr>1U< zu(H~g%TWC6%*Lp-kB|4;*Z%slCG&FFx){sSS0VE63{)z%8O`)DITr*P<v)D!u4%^Z zD;F*Z=zU$ysxN#}|NWn*pU%bG{VHbMwL6JlrGnvCUsF?4=<2Z0@bKkJme_ngW6ZHo zJAB=qZ@03K9z6=0{|XGWE`K-2DD~9y`SpDQMLT2W*Zq2VW~One)!jXnpTE7k8yy$t z7kFh==xPBc>+*LZT&>If=bt-!*4NWhQ$xeU&reTF>(;*7-ya_z2aVYL_>fq0aa+5* zMZtqpQ?*4!Mcw=5Vz=kXo;wmzSy}1lcdk=dy{o(1cJ`IyeX^%doY+zM`Pqkuhs|?u zwFp?%|NHan>+9~Wu5)uNi(gz=xY)fvZg17sozLg}{&Lx0TT4qv?DXpO`)*y_n9Ho8 zq4D5jg}VPd7Y<QTQB`&I-H+dkd3?x8HJg33rfT<#y}1X?O-&=$hS~3a!PzvS`$^G6 zneWaI{vWciX86?yY7Aal;;E>pC~cni=hJC@S-#^9jLceET8|z-=4E4c6i}P|a$&pN zuV=IK-<176Iaz)2;>C|2Kj!A<zI^GDi4?Erq|?*&@9(d#cYpr>$K(F#y3xzRR;L=> ze06p8$79>twWpr?_3PKAOP7``S@P^z+C+~hm2GFvoO$sgV`<RNf`?Au%Qi;LnK;o= z;K-Gg!M$$EP8#<1^$!oV78VvxoH$Xw?nh!tNl9X2Vp>{SQj*g2)3Mw0?jCGrx3=0g znL)rQF)`75x}K`%rFLr`&UtIkq#5sx{Q{mU%8&Z+!@FU=?vJnn&x(wL%oobPyuUBM ze}dOirHLH>Ki=Gs=o}Ms=gdsw{Cj&k1ty(-D%JaJ_xpX?Iy!Sqv&Eb|R$rZGQJD1P z#6)HHzM5Anmp^*+$jYidH+OB++GFeQ>fe%^H*cO@{=GeC&iG9AnmT#%<4U%*VbZd) zz45!_6<P{zxpD0Lye@2Ysk>3ul@(8(JbCph>-)5Se}9LEhnJV+s52_GBqb&7*)jcX z^U|!y&P6MpJxklwbuc+*lD4SV-pIAz&RK0ux^-=(D~G3R5Q}aF!!MyZhXkF%*TrP! z<%MZYt^W4r=gZ~uPn|mTq^L43PVQfDbM;I6-*1fn$k-Yg87V6>+xO(><^B8le7?2S zey^pg)~q?Q{`@@K?)WXXdv@)zvbL^1+{XL-+}zo=)!)9nynHvkqo-%h%9RJ#-_;jz z+TpZa{k(1A^k%Q6y9yt(-CJ}uD^x4g{rEQCgexlo-}(PtnarnK5w<BpN5u7_HNTvq zh+gl9Wvu<*7j9?m7k}Hx!tZdu@XL#fj~*p0zr3^d_qUsy(~B+U{Q6b3G)Qx**X!4> z%irEg-F{opso&<)iFbE*=bA-(d2xZ;Y3zJ58rs^MZ|0o0|NkdCfA7_cKhw|7`ugp5 z{{3C0r;|3mxwlt3Kd1V~ySuxm>qK6<aYI60-ha}Pbo)nNUS9tG_V)72FTYg%WtXqH zaPquS@v}4a|9{^%H8ths<-K|HCR=mjtu2|qzrWYl*Dtq_*|~G4aoU*|FK(1E7g)%M zxK_R^`}E}GyML`MEa$zpOrLaEX^G(1uU})|we1i49n7;&_fIOTkPSoa@g7Oze_xi{ zySlr_@2`{Xmy6#~keHE?k(Bf(x!-nM($TKH)!*mY)&81S{f?89^B|~3`tbwQQ93`@ z+T6@++p1Ms`ugh^e_p<Px&7xe#=>eo5{5}f9{1bdyZG?*G~LZNbDG)t{X9KSo;mYn z4&(ZZ8DZ<=Y_qPcXqT_6`1R$b)4~mlvwNk@^UlsPUAc1Q;WpmcCYhJ!SQby3H0jf) zPip@2)`YFz8T0Pf*VopdVpPR*+4AMtCQ|3`zT5qN-=#}I@AKZuww!+Y>KbF?bKg@R zh3B7754ZgR%E;ySYk$7x_q$@#An@q(Prd1<|5x4ce`cE}ID?yu%j*8yx7+XE`*G^n z?CR{>-%NkDfmUW+&5t|sYtHl+vA>lJo)qmo{4n7?0~4r;QT2hV^-$X8O1`=@aoF6U zprBygyu?dOJol&t*PZL$C)>CB<j;7+vL7EFf@-}MPT@Z`{^e7rOnLJBdH$Up7oQgC zMr?R6(OvGK@zWbj^A2vlG*`@qIrhuctNTlKMmsw@x9Bvjd-G21QTGB?eufWE3M}gW zd^~>a*s+g~kF)=Kb@JrNvuDo=tNCoW{Wdc*lUq!OqlV{S1Iu}@^6rC|@4D)Duh4(J zYyXmU>-z4MW*K%eaGhdgs9U;WL&4Qmq4|40vc1*i$}iY?=j?2A_J6xd8d=VJSqMH_ znQGEC!Og_XEJ)<)&mCuf{rbhB$;>IIb&QFjF8AA;o14?mzk8{1gNyCvMxo-^FMRFH z>-S#h1Sy-j|NOUGlQ>i^fJUuK8pUk1O-)TF$^;2$E%?60BKP|B>)Il7*BZyi$J^`u zinCvTH7WPzod4!60c(u%PF`8c;dO}lg7(~<Rk{DN*Z(fdxv4KIBRKbUVPoD)rGv|t zEYXSBknr!%&v&T}4*3b-p{}?5OAjp-<XG6&)~4v(R<bENHg@iR-HO$Jzis>f+uA83 z=aI#n2S=SeLoe&v`*SlanCP~6<L$R`p$oG7&pc4vxN&0%8_TZ6-7NO?|Ni{{^W0v4 z@0XygtXEB}+(yR6hY!DuxySNj*~*oj-vrBE<TbsoiAyRjF8223RzClLHK<s*<RbHh z?ufP5o;^#eKUeVkTkftV#=BQto9aIv6$f>0xyAKrzFc(A-}CX<sj1rP{`2-E9Bh&_ zPUB!P`OeS${$d=DT=xXG0**ev<*!rZ=lqkDa^*k&fbm5rsJry|*;K>iN43^}9<{#G zJN|{?S;bc#J5|-x$H#iJudTVcqww+U{Cz)9s?YaOnPge~Y|ocV-py>hNmecwrrpe0 zR@)-$q|w3?=y3?NB=aWw@_JQaPC2)W%ol#EsJZ3dFxdP0@2$z-x9gvu)5vl^d6%4P ze0ccw<l}vrmzTM^xz&9*$nHH&$Fk_j2~e*5`|B&aTm{4Qt?Z0xMl)w*98_+ZVwC!v zQ%*djBWOj&{w*`~&1Rq7Tc7F5z>v_Y7xjVP?#F}j`?br1R;Hbw_xI`a_<QB|Yu`y; z;<x*;z(;L&-QTL`%$pd5&!lbk61e-d?(Xs_?q&B}*Mk<3BqYt66QNOPHCI<xcdpJ4 z9tMU3-mxk_0vEgO{dOz+`@QP?+l;rBCcbEwuWQizC6{P6oBez8D%SeN>lRIxef8?q zA(e+Qle~W~Eu7zSGpCJ(pMl}u>qXuFE-m$5xpL*an|Bio&djwIS9F>5<j2Rye>Fq7 zYtqbSOTJpvKgGTDUeo%uYkQ}-8x>}jH>E#%!oYCh`j-1m`B_<2-|v<SI<@o5=WP{w z|Mm6tepzd=h7%6zvu4dY!sIrsKj74q*s_bp9~tBnRRp~RL2a^abLPykt^PL0zW$&6 z|DWfx*Y6FBh?p^Fj?d$tnq5_IHXi@>{=WZX%Z-<p`|HQ=`}6z#{__0`{tDf_TGy1H znQ2+^L80z#U1Ooeoa^!53qzG1#M_pgRBV~@>BQ~r`R1mkok!o+H(q#I;{2r3Cq^pj z14F~w=<Q*lp`0vDpg{Wn@9&qi@|Fp(X7!DnZ5J*CRIR_{z2*MFbs<{&|9-ojzyEL9 znHh%n|J^dbU$eR5<0A%lPMf>?YH#OlH@@a7-}#PjYW{S;<-w;iUMy1Q@T-|(W#_dv z=*!{gBNHAlzVP1n>y>t|+v2d*;`(tpTcZS>A|oTyHd~sSmcG5Ub?MTjpP!%KU-41N zDdYOOSm!pL&febG&1t;zc5N+xe^1f5?Z}ZMDXFQEI%43J$x%_a)<kYjN>09f>C(Bm z*6jkDZoiF;jGQ=eqSn-`)6;Z07FrfRi&%T@<KyG=?P@`jN!sD-K;v|`L34D+dZo+% z|NZXn<^~#U0}U;>_siL4Tu>;#Y;SIEZf9qwqobp%yLPhu4BORzS>l6&f<i-E1*-o4 z{qB8B_=dv4^><c^o<3kx(GswKL&lZDrsW!|)~)NCmj1zL;+x~S>GgNYzWojTe=PdL znL5yL6RXwSynA~ptG~a~)z@FHk#%)dD96IN*5zEShb}MofBx**vL#DIL_}27)#uyS z*ZuwV)z#HC{oEYOk{1^)E_PoZxA)hb;`6n?UM?3E6&34#dNn-$=yRL0HxX`b$Ii|+ zZ|9famw8#O<w7Gf`?{E&L4kpVUtU}+eSIxbXIfJelU#rKrzf5*0fB*mMMa+;9&W$= zu1&zI^wpKs>-R+k27WxPzyHtI_4R-M{eBN>aIY_YdTQ$Rxaze#cI;TTOifEG>-o94 zwq^3xSL>SO4U>+{&fnJ=zeRh4V^jP=(a0rEv$BsSt%9sPd{t(jn~|~MX3pP3k~0^o zKkBw%VZXMEae=;uj*gGF_vH)|6;HkReS0RiKl=IeCupFtySuxm=g)`3{EHVa=H})$ zHZ~R(7Ty{2Zdd8+JLe}JO)7MAV{;S;Uha2P`-LWE>-pJ+4I7qvPoJc6^Icvu8}BTO z!bJfZGWK<UnpnA=oSoHuXO%oY#@liMwGqE}n^)NH^AGax@AI9c(v;d#z0`VZ(n~$I z{*$gnjQ$q_n~wjr+A-DNn(v_Cr&dtX<=ztYwo_Q$txu-&{;{J+OE*2gu`&7M>%hfs ziY;YtZaloVzyANfcl*OFo+`H#{Bz=1x_tTh+2;Dj#+S3U>c#FVIo!rOFTJm`^JR*8 zd7$qk6=fwQ8~<*BTN@Ic9UUEWa&$Z=?cF93{ad#}u3ub8s40GqUG1)A%i4}VuKoA( z`TqZZ-<#*(d-Kz|>A+#l2@3<ia41e)6z?AUrDAv2Ob~Bn09Wi6hA*rWCr*@<luU=r z!F_yu{C@razkc6J{=0%YEPXPTi-K0>-Q5*j8MON9s*v)3N?T*sF9o-Me;@0W2Gu~I z!u!<~&GY_uFYmFwzjkfE-LDtR=htazYybZD`+fSkIWNER%Vxx$Nvi*R)*LjA2r8|P z^-6z!c6PCbmcIUb{raEY4oS>!58rhZO5629&`GOx)nqXnM}ae{6@u|RoN^8O5>8Fg z#BA5jGfqGE=llNuvBANYFI<=~cW$nM#4_L6+v@-S`}C=({qV%uv#pbl_4M`K-CO;A zlB&0qwDjZ0k3A<HS*zTB*fB6<`tH(2`}W1H4Dnie>DRAcvAfG|zWr8KZe95)<@`U# z*GdQTZ*Ef6*Ux`-WhFbmoR6ocWyOaFpvmp@^Yad{u-__O&U!w54XgaMNN&3rDZx`u z4NEdt2HeV?pT@|LAtEoozxMaHoyE_O9Xl2l8v69<)6y-^cN9LpwkC4&tXWn$H#T@q zRy#Y>SY1<7Q(r&-)02}~TW6hqx-NeIzQxJYb)(ZZ-(=&Ln=@(Bq?t2kPMhX7DW$4v zm)qi(HQUcM<7h7LdYkwCZh3rWW@dPKlcUS?t+wFt+mAC0ljUl^1opaZE_{3pl!YXX zmn~hYnxI$~H*by@cv}o)fb8S?`oGzCca`4ye`Vqv>+@beYWAIedg!yypYNyGE&rE4 zOSU<=WU8ok*qr|l4^6zjf8kT7ycoUdi!_#BwtRopa$%t2n%``i(@)Ftu~)nEb095& z(-h&FeYVZrZu3MBl}%A=eeTr%d2&O3vYPLvoB4ZwrnTj_Kh7!&Umy3?nCHQ4y{HeJ zot><#tk>7YTG#ye@Z{uVK_^#N*LRJa3*2X%O%sfNa_-%h?#_<2D_3T2zr1qSE-C)a z=^QrA><kRMN+v!q&$+Ro^7FHnmX?c)-Ip(0_V4TZ`r2<d)5F(92+nxmuzN;yhg^5? zG0VB<%H$8<-&1L9rZjD*clSfkO2-RJy0eNv(@kY>Z(Us-UU+im$H&LzEsK_%elFY) zn6^3cOit7Let}(ukKO+N`)j*>cg(uz?RiK2UKE&h|5pJ|*3BxJ_(0HU;>3w%yJh_w z`uh9bIi^mZULL9X4YD@nXt0o=lek_?#q+u4K5CbbbP9{>MzyG`Z`mzaax%xvc*`kX zG4Y%7iY1?)oejHPYBl$2*3tP!E=p4zn%Ef_qDm${`26|v{EA1N+fLstu`}^seKqgy zuF~UuvK9w%EK0fY&h3BQw0(zi%#6+5`4m+IJ)S64-e&2aUhr!D67_?#qt6t_&1@9# z>hrJ6KDxU?8Pw>!9kVZH_T<l=*MDz){-`xeFWfQT=0J6<$`A3liia27<!hf#4L@}F z@Lrq8uh;MYciG>*vhRhSre<eHhlE{?g;U0_FE8EuWGX)#WWRm)#bf@9$7lE~<6u-4 zy?OVM((moQA1b`pOq!=xwfu5m(O(%SjVZtHTloboypp#)dTp3o|H_#a3=Hp8Ra7K; z-D21Fx4XNnh_-#n+<3*cY5l5IQTyv^ot&D!r`J4e6&G+Setxbr|KiJ%cd4wf{Xrdf z_tpO1{eIu!^;fe>Lqeu}5C87#;n8vWY1VG8p!X>oBiOW-R;+a7aeue-s6TTEv$nQ& zbn4Alud?b^IEY^BpC;{kuXmaP$Dfim1&)~!eFD2`e{Typl_1Xg)<TBQbJCl?K~9rY zrk_rI&o!0B@xb47j{f7qT&@4+G@gHcS(N9+I=!Gn2O62{|NTt2*Zwr?Y+9p3Lp(PN z)1FD5yQK}A4{j)X8}$b?+<Ein&3`erKTJ$bPqLqg7Bx`gXgW6O7-wPUeR*5GiGQ** z=7+5gU45nGuO#nYYrAFz3l+~t`|}bv6|@Mr2Cmh+`@7IW=6i>*SyF!45hrKo$k<D} zud~I6g_S+K^z%lb-7<!|=dW8wi3zhfh;#m{|M$Fp)8@_k@%wD5zGR%YXXLl}(D41b zK=;wDTg!J<L`6j%Nh)-g-gx4~iA9T){>(c5*wn<NqF(p@hU|sXi!W;Mh*qvMJ@WWt zjGlP!$K%>pOG`_yuZu079__#}b?Q{!SLQR;nf67!<9o9}<5b@EV9@S7jrMNP_KLKK z2npSAPM)1HdE0N_+<k%Tw)n2Z-+$Bd7D~UDUt6|lzFOk9ZPRP4zn$*Qm#*LOqMqk~ zd92EhGiQ8S0{r~^R=<_i-Fti8iWMs!JxcnsYt<^Q@}1jv3qCHem}k3%QKIzeuI`uI z7Z2r_b+bO&cJY$L{{wZ+0!~k#K3(kIUzWe8>g%f?zk@S(pQ=Cqc-QWOt=>;&`lxOD z6P;iYRd)1EXYBs}Z<9*@I2QbOe1GNW8Ix-EU8TL%?{+TVwd>cfudhX1W$kKy{QLd> zeTMRjNmsMB-puLID`^&xlChOgEO~p&^t;&Jxce6_7+6$sEWR$vt@<L*RF;8(;opm@ zh-n8CG&D3;tXo(2a_Mw0Z|~rspk3AyEvTzz_|{Lp{Lbxy>YP6XN-2FYYdR)q+J;X! zcCyZcXEUeV`S<OR4u;af`+F*jKRr3g%geiU>sHWA-(`RMyH~E1yttsa=aH}ar_Y~l z@2i2=&@8=b_co7Z?qPnNf^f6NL66!iuQ~22c`4*5(44%>aQ-27rF|XF1vjF%vNAAK z_3Q0=@&7}+J!oQm_0>n35v;7Nf`WqQZNJBWs^tS~qus(c9d6^_v3$vrBY(f0nQ7d- zxZU7yMuT&KOO4=~Qf7zwQzuV0&bY8(+O%o1)@3|$Ha{L6jqkm<yWruW8yl1N+Fbqk z_;~fU{27ZhZ2HzNFPZqDySqDlUChgOllwb6Blp++y|~zYCO^*>e)atfDivoLe3O%v z;}%IMmOMK%GqBmcypBUR!Lo|s*QT}6+ow&Pis*j)^SN{_!{qk1+{K35-WBbPnP2m1 zwJQU&P5A0=7X8U5qt*szZ@w8}?ru5b!4q|%j@@@I`+w(=>J+f5{-)z}B57mH&Z5*K z4+2f**-trL{b;+t-N)PN>ishx?Tpo$a>%%X;aAi8eZRaGUtDqZ)zNP8$4C7)Z`yPw ztvD;|)vc}B-rnBN&(H6V{!m$2X=rH3$;tWq+uPSK3U=R}H+8D0q~yw=l^+h@_nxk| zb9&&-t=ZF~*2-CxyjT^wdS1mNPHY{L=l6<FOaKiTWM5lTXf>B(;oj=+e3C{gYHDiQ z+T7=l<$S-fjq%J(<KtOd`{eCG`ztRm^NrqF^z_QgVCIVE-CiGpm-$rwd^(+%jk&J+ z<)x)lwZqTNFl_#Lz~ML3HP`ihQUbDaf6toVS7_<#?w;%Se6MqGrp^8d>UX|;nLT@6 zUGdK|Q|H}Qb>algVb1egKHEJ1-o3rmr%#{O?26i&CF+#%{M=lpg&)4Wyu5SgPEAcs zR#w)NCr`S%y58QN51MaZ8N8fN-tNxDhwOYZJBprqxw;;`xY+&r+UVyy^_*xvXwToH zC-mq3zi;L(0Vyd<4nKTxeSN%_SC`x3gVK)u2D8upa4cn5_w~VtFUiOI6kF_mzu9b& z`hVfyzfl)1cndL#Okq~|Au1-eZ0XWW6RAlm)Ai%`)&Kw3_w5hbpuDwJ%*v2!*RM~X zHcd@c)zsX)+ePWTaY|a6o4dRA)Kjh8;=8tYAAQu*!_%a&%x`X%iIkud;hqbhoXw4k z8|Sh#2yk(8NAD`hY!Fv@mn5>+M@?Hx%c}CzlcnC%Q;cqINIcxelUTM$<b_P!(>7<8 zMO*TIow)zb_SeJd@pV6cKA-=;?$Kk$9ZH}n+|b#1tk0qt8s;s!n&m&o!m#Lx$DeDl zvzDyAb?a8Au==CxSzC84K79G|<>zN-PoFt6b8FOez1UrehuO|&?@X@)4bASWk=%bQ zQ(E!Kx!qA~ui19wUs(~zu~62!Y)A6z`}_A-KfSx{c$pA`lZKkwGU@VmwYaJ3lAv_( z@$pPP){5qrQ5)yUNm`eBoSC5h|Ni7X0rxJgJk3-bxH6#16|@DeDJCT)#m(*5wYAZL zPG`@awg3O8*u8pH$f{GPy#7e_b7g)1@aom8H*enXN}J8GF3<b+=H}(){@?e6`TFvL z#x34WdzmFVwYoij-_K)t+gFEZ#b`<^E`blVGt|2tDDYg%@cPZ9@O3euV&>1!&zCP< z64Qy8FnRLhou4>g2&QeG`EqAgo?^<0`~N>&OU~r}H}P*=NkvJ59;9~^yv)b4;DJMA z<jk{a)&G7zzhCuwZQr*!rrFnS=kKq5eNDIf=%(uL@A~-eqjoXA#P}uu`ttJkx3`yH zmQ?Ni*UWGCLS@xV<Me;O@Bd%7a%E;l#))(1%p`a&FY~><zrMb*a_8ZPC(fRIo5B&b zo6$msuWOMFxFd4l-;vT855m_*O`S7mPx^Ve?xRK(A08}Qw#>Hr8)&8P&*$^`eNq<0 zx-B+jP=0ggm`cyxFJET!_gAVUgiqm6Jjg8Y=h5TG+w<?+mA|`l<Hn6ut5)sVv#0Ny zkH3U<lr3y6fPek7ndxdiGYpcBbR3tj-?R8IS_kB%C3D>3i)-TcR$W;U$Z!7#R0ddU zHdyD~*<qS}ZOO7_e9~q)mzH=IKRe^;<#p=x>De}wo1)e}E86+``ug`TZfs+mpfYpb zymc2dY|3}P-}l?*x<InX#k|($@_Uu)*4EY6*TweRew(p7`QX!{xA*t|?^K_6V_WX+ zOG~|(h2@=A?Atf*rT2yvv+gAK+q#()eOvSUYJ-T~{P#sWKiCMHJu2EM;`&fh^Z%bW zbLZUEzjo!yg`iS9*ibrCP0o6?<pCNwX3`;(v$d6!4xKmlnPu{_?ewIN=i+OuWx^-F z{<!Y`q)C(h{Q1)>ZN4jJ9V@q(&8HK}70Y5SWbbF)pM8DZ)z#tW=iA@^yphpS;PbPy z)el?6%ii7+UGc#oTWxaZ%hngw(_A!`YOLD1bLVnqMh2G7Cr_R{d-jY|Sgl9WSk20+ z>R=PAt!!Y!7W)(L?(8fEtry=dZ~Nf@^KA3{G$WM@GnXw>^YnSJ>jg8veS?8i?^?B) z3=9qVJ7V(g`$WIp4jOk@8=!IPugAiGEnBu2ND95^Ihn%s#Q4X7!_FKJ4Q&`0eyn6? zd&gYQQY2E_KfwXCq<(>O`{xJoRWFy8v1gc=nHfp)zu*C{=ntB>W;yf1#)Y2qcVsAl zMzDA27j@scUHG46%LB$2swLCwf7+z4&Od(7syMK32WW-C^}43{X1P*MEA9p!T)1%I zk6?icUteDlSJrazy&_Q`7`{klZQZqO*|D&&m$x5IjG0)?X(>?gR{ckq=sO2}!3|!< zwj3Z;a$ZY~%*?LMH{LP5j=Ayq)u62lrXR@EPw>9_ts_8Bf6D1*F&l=x2Ui9!ud|3= z<t6v>_Cwz5`r7N`mz%3Ru=V(m)08d7TFx!!=vl!~H96z#jh<X~P^0nA^WNqAmYK^v zu$6E<uU5OTTh0;GRkCtuN}s%M@&j<k?gyuk&Flv(`h2e{KX52=g4X08$e-}w=8+Vm z&L4{ej83@wIf&abF#O;bvY9>O?6U>$=evW(aSj(16|wP3UAc5=Q}Xe?gU#&mdnzt| zz6|O`%UWMM9V}~KcV}}(&iO?eTE@o42gG?lZA+M7IMe5#tvjDEw+hIJ+1v8&Mumo| z3UJ)3e!utc@9*mB>c4BWdfhhX-Zqm;&YpfYjhmPEZISu((^s<^CH48guy1*AQ)PzO zBJocxpnCc8<$S&Q8#i5bH=4-9c9T)y3lYPj$8~?~*|TTHj2SI0Ew#VDm6q(dn|J=y zsji-$kd-0P+j1N^Vt18jT3buM-;;e^Z)=oo$%_l2tHT~9eNa_Z&CJZ)oOZUWx7XL( z+q(Q+jJvd;Q}y?EvPLN$K0ZESVbhK#IdaTJ9wS|4eh}U=*>|<Er-|jfn%m+)F%j;I z$}LVi_o&zXej>cTw&>Fh&9!!iV!!B3U+vDs%)rt>&1OdXWrMJ|xOtN&7e6}E`RGy7 z`Lr(^laCu28RgyEV_Ea#gYRs!(k&lfU0r?N_WPaX^XsAl0~0q!#MOQc-IER<>D<e? zY{7zt<B#XsR9^b*uq@w5rNYc`_E{mv59JrVTaDTeU%YeY&gDi1h8aN-5i_PuTXr$S zV^Yk%nxFsv{<gmL`EkE}+_s#VQER82Oj#Yi{@sg$r9qML@$penv!+bBa_5eYP^ZoL z2{UI(%F3<{(Gu5-d2vrqtlQYgh@)wSRjF2-+nT$*t*xyyXU^>G?2OSXzq_lHonP)q zbz5tzZtSipDkt+;A6F{)e&6K$foGntk6Lijn)m)oZXAluUv~AsC_}@7g|OOwu4}>L zM~|#-ZQi!6?9q|VA6ui=zI*ZE%a<>epP!|srA4j1w$yui-i-|hKS#ZrWq$GE#p(L- z$JQ5~bK|Idc59pT>eZ|7KK%Or{{CINr1tl9c79ZpIL|zjjdPxFkK1As#UIfhei*h~ z%y@HseZ2p1CWZtToRzut(>Lel+1|eR@aom8H*emQHp{Une|P82&CSdG=fA65J8PEI zpId*K6kP;dZlB(IcSX?3ygNG@<FmI$mH(9CYkyp8u-L7)X#Ry-h06=NLAEEy&rnlu zY${@4*{vD8Ova*M!J0K^(l*=v|MNM2@7FN*>T|P9U%%ace_!eAX-AW8?yW9&Z-0Mp zZ}rJZs=d9vA3uIn@vNF=J>RbO*S^}{C029e*8hLd%)d+e)t1c5-`?MkkBfU(U{O?D zoPK7;#i!>l<r(m`H!spS&+I?X=Hv@`D~}Ir9)cH<FFm9nnR1=8oO>Ur%r{WAv#b04 z?QQY%bG^O2Yges0b^7${jPqZ<d`X{InRcj!Q`xPj;?Kw9)>bt)H>H}*&i(M<pr)qg z%$YOi89y+UI{WJCYWH5LuOANc`_H$F)etGuzOrP=l0AF&oSdw_`f8Tm^xbuTf9cgv z+jbCMmGbX-zwft~xA$&QpX~yB>(><3*4iR(V12^BH*Wrf2_O33e1GP1CgZE%{PX2I zV=CrxN*C^o=~^_$PrdGTMxMm3iVwTr@3XG{_GTXM8SkQ<cODj0Y?HX*sv&YK$E^ME z#mkL9JQfDr$T2$~c=?TzQ0JO3ZQ<|sh>EoNdAjM&)#2-ZNw&@R^78uh`LlW6ofkzr z#dIP*oKWt6Ftf;!f8N2($L4w&A2jk^C%j`i)3sfU3>TCvEqCtRS$U|1vuwAmu5K>0 zj&x{B=e?6EYx4PlwV+cQN2Sw?MeGb0nod8>ySHcO^2IM0Kk&>m{pGPXf(JBT+%SIu z>v^diuF@vWZ{GO*{x06H+_J>!<&7mD*V;|(N&(LkgXXKjN^~o{y@QV(i{x0ivGei1 z6S`SnSB8LBuT?ew`sD5YDelAD8`0_e_$NJ*e8a*y&(udv_@tuiAG?h^X8Wi#v+z6g zzrMbH{-0l8cfIHPS+;{=;SNUT7rdMm{6aR_5<G030k_^=@;>OUHRZ0+-4`!47+$<) z<CS`n9?J23SH8jrg@c>hZszdK`u9`sq{}Am(hE)O3)*YH-z`tCx0!vVeno!!|Dey^ z7Hj-VtiJh8co2Cw!Qh1Jr+Ix!4hy>F8sd^-F8$bB|E+N0Z1H>XwQo*c2i45Sn^^S4 zx@YcV@tmYLUE9QD%1iE_hm$s*Q2kWatisWx&=DtBuYG6tMIn}U6;HnQ$B`F26?x5P z`Y`@jzMR!_5{u&o)mz(~z#wYvq_avgeC?;7Zu<4F*kaDT{VOyQWW`i|Oq(XQO#k5H zj~ZQ@Zol=3KOtYWH%>2L%kFuq|6U(hx76+K#a%Iauk^kz7uvUE>C&SK1|KT+$Z>6u z-Vw9z@I#IR`dZFEYW5v|m~j1l|MCkL0>bXsH##J2zIn&n^m51f=a=jJ4k+n(eDL{m zZ+p{bZw9?5{LKe1*cUmdpVcYbdLZV1@3q#yS_ipRITZKCtq;+vR@(LM;K%Qu?$7so z@E}sw{`UL&_y2!0-{1(_l+3&M;tla@E03l)NjjZKF!)lUz`$@IY{G-c#r-0neS?-w zT^kv`7%umpzwi6K>ge1(&=HE8Hzqzl-d`Qo|JGXJ;AUoUE6H)QU+(k;3uG7?^rU*z zZg0!Am38HBU^&mHHo0?=#+`M%d_hR_cDrxYb;-LqaLY9)Y(t%UoEA3!+0&;-j~r1^ zQF(KF`})tl@wH#4x-AY|eYIO$e_PbrvfZ}Y+S*1&K}&;jZ*F2$EO~ip>6<q>dp@s= z-F+qN>xG5R;cKH>S09=_Wy+GJOV7?S)iyIT)75=@XJ>KG|0j)ynjFg<*RNam?!-jp z=jZ0GUbU*oYVO2|6HlHznVFgC+{RP*zWMg1O$u2Di$U|NyB7N|?NO~*e6ixoi;I&c z39Su#U1D`K>EnjP!)ktWW=xsl@_Q=-gY3?#udj;F+lI%)*c3cCz{)MQ=hv&%>-T<} z_51RoMT_3v-Y#!n7qc+H=F0`=xj9!}g2t+UKbxIDY4YUxRj*ctt`7VA%zQs+LAI-_ zYijD#7Z(@LuX?5VJ@fSG)5S$apxqIA(`V0`WtDh{WzXLm8<Ronv3@-6pI`g!rtfUC z+8+<w8+Y-ZX%egP*V5KLed^Su3={3Jb${-!?~7ftJ;w0n{vQv|{F*a8I5=3o?#Dyt zcD{!<H(DI@{&mK<Lht0#y()jUW?!GCA3tx>q)jO&C(V_AI)Bv)&6TFLUmx$Be(kx> z9E*<&+vTh(J}8`VWm7QVLY+qBle2m8^ChSwlylQ)Yn1NflVR)Q?w&k$=+L1pTTFW0 zoF_f`^z`)i_xIO_XuW>@+S}WE@}x<#X3ut2n)p1^*w}dS;>A<Fo*ruDzIz*KI+Ax; zpL52+?>)<wE&KZV`um%k-EZl?YfS&I{&8Vs($o6zoNbY3uJ8Z->5Kb&yPr=cf4^7# zes=!8&f}BWgT-s7XT+RYw{)qhx%v0`|No?~Fv;<`w(5!I=O>0)-<N-z_UuzW|9smI z|0bz=|ND8qe&5Gq(w&{1TVli+E=+v&>eY@N7Jqit|NnRO>eYGkuU)(5H^)M7f7t4) zb91g_ZB_T1BVk#jQYS4gJ{`U$Z}rt(B`+`WN}KKQUwt*}@#DuIU%z<q;`DU=$Jc*U zvpJn8-nmwRfpZ^w%$|zEhlg5k&AP=t@2*AGy~`@wzjBo<RPwxZxOkG>yx@OtA1be3 z@9FIwy&-{-Yf;jNdlNdJZ1I`AyXfhuM@PHY$Nf+JGkNtf+n+kq^)t3Ihb#E}y8C9y z{j>j`{s?#f_icH*T$P5te*V2ZmH*<U7%m7-^(uXQY;IFf)Y@&KzEV@YLL(zP<LBE} zZ=2i;naPaap6B}F|K{?0jlNS~%h#Vjd9Ql8@Ao{-Ef<)U=4ezeJ|X1l@VApWBw*(& zR{b50`ds26DJKOctQBc7icV{EdU?;<_mWxl-23v4Q7^nM^#q+e?yc{8u5!M5?o0FY zzwMYaw%%grmkS9E-TU#F^#6a~_Zu4<FZY{km3XM-S?bT4y3*3EZ{MG-XJq(tMKSJ$ z*xu!q)!*LiD11CC;nAMh%-ZLF;<HQhJs&KX!dk8Wn^$gs>Fcl$8eiW?HoB&k#y+@w z>5^N&T<l`Qb2rPX9!#3L_Uc~Mf6VUZ{=Z$MQ~Boq-~0d9Ms8-iyUyLQQ2z1p{`=eW z;~gCvZ|1~p&%1l1Q#jhrI`z~P`T9Q__w0#Td@<+#zP-)t$NOY=*Z=>wyZpUW@3GX= z({k_ZDE$5H?fN~Rx||kHIGG~B<F+=;T;DqJP|M!x@1Vmirk;|uE-QJH=;r1Y96Z@O ze#>%4)_aR(?CWaI&9R(w;)mt!pqq7y-|jRmzi_O6+tK<59y~2O3*H^tyx8iCUj9XS z>#{ek;&BP>-)HWAtYdF-YhLt+lv6GL|4jMvie1_)Ct_pL(aoQ)x;cI{NK8xwogL-n z)ir;<JYReC)~wLe>FvDI+fq(WI&$R5jT<*Ci=UNzSm2}f8?@W2_E*Wukf_MWpHHX9 z@B4Nu+ikI-hK7cbQPHzAGj+8eEMB~Lx_<n<<^J<8E_U~yVbJKKR{kI{DCp8$>++bt zyKK3x{H<?2`Lw8fwt`S+*y^hpCcCbly16<1`I(uIZ`c1gQhM8<;&{}W_#cU9_uj9I zlKC1{5)$I&bxQcWP^SxvBM)2i>p5RFEM(S|u0FR^I{tLnJ?r9QCj&$3|9-vR#LAt* z>}K)tDjUO{JDY!=3D*|WkJ^%Uc9x%hn$gU(%{x;Ud?;~Lo80U6`10-Uc}J5Zdyic! z4fE#~;X0aNu;cOT^G}O*?>O|~;o-vGA9{Y1PoF;hdXe<HN8jGw-v9sK?^jn>3$o0# zt^PK{Fga&xk*(+#o_o$Wgr2!>{5$uuwDaOFzvpafz5A*k`U`cMRD4J%x45}BAz<bz zCH3tujE#)M^kQC2HpqGOe1BOD$0fPidGR@hlIH8<Ri}DQ*NJ>IM_NNe<8D_+2glm5 z*)wKj7|onjJiE$Z#ewRkUAuPeEPg)eXx-%f_nx-wVrKZ_tEJVd%F%E7a%=eddFdM? z3=IwSzHg2`xWr)Y?M3=pTC=Rn_0+dqU!p%Jq+Gi8`M!%0vHw0EmuF{X?UgV*^s+P{ zAYd1#h0MFx>-T@#CO(hZwz=FoZFA+rL#<rBb*IetKRoHzx8|DpDvcC128UbK4E82g zrlwmLEjqL`ugqFPBrQ02@?zy}CQ@hjRDNEQ@@q<dSu$tr+^Lp1H|uMD^G0q;@hpC) z$Hm2U>N1nohrH+A`ulcFnrHaX-rn%YK0p0M`5}QP`MV!5Pj;KU^N_N8U&hub@t-$B zb;P>k)?a`9_1pa<gO~g5_x$^P_;vmM4eQTx&j?v|HLKL5`|DZr`#Kt$b3c8}6Po<^ zLT@h9!5JU_-|U)@0Xhq>ysK@s!R)hIQ@xf3+3NBwUa(*XXG!<Hy`Wu5yWj8gu6ZdN zd1%7AHH-6u0)O(e${k8L?B;jQ=ELcakB@`;L2J4E7GIn(e|~&GKtO2d)jiYu4kp~l z+1B6hUr?~2zu%vI-%Fldrn~J}8NTqoHP4QaR!`(Pb-1y}XW8DjwcB!UgBE~p{D1EV zcVEemuUnWq56b<YKmXevqrA7bwt@<T)zeCK(>7b`>b`w)a&q|kxU=Wao6q!NVBlz4 z5|p{W?yp;)jAhxI2%(jWg&akud^@rF#P6K%`>pq{(_QyGhS_%Wp+7GfL@Ue}g{_XS z|65uY@utD`eR-j#^WrY2G}HR7<rkXUdrtrR{QdRy^|$SfFNVG-*|j=+eOg+YRIi)a zY@LY)O3IclN_>t2y~h>=WNhC2{@$L-$tP33y}qt*WhK=%_ohZtkj!j}*^?)4&bqp4 z1*g7CU-doCVp)ZkQ!ms%{3KuZLrGOtRZ;Qa*6wn_=7Sq@Z*TLRZ8mlKbnccfKP>J~ zTs-MVjTB3R(?U(n(0h9(mOVJYs5aTM{@)+a@rXy0O804Sol?G$Q#MUC`}t2ZHK&`N z4h{|6e;o@sLLS^b@#^a8)mg9O?i6qwEBX3*O@7t_n|sIlo=U59_3SQq*tCED{t&IV zkA8idJacB{zdx1TM@6KxIywX{O6JZfR_0i-DrZOi{#RF4247zv4_Yj+e*NL&!rRu_ zc`dy(ue;an@#^*ayq<Km?f<@XaoZckk58YnivNq+Rq}FY@$+5&8a1!3temPHK5hDR zUP-A<uj2Jx+`VtzG1Sxyl=<=Z+A?41@;5g&W?fx%b94IlEBj(K^wR&=sdGOG*v0%p za?kD)Cr*HdN)H^>j@-0BPcQY#s<mmtQ$MA=QT3K+T5i-QZ=bg{YInvVxh+v|_tpLm z3J$KVd10J(O!eFM{NTHc3<4}igpPGgOcYi>nqY7YwC>un_}Ik~OSP%2Z~7iwUmrie z^!>jbS7(1r@p>L^&DV3V@8^^DNt-_D?=Lwm&EbAAYis_#pU>Xh+-xb6^1JWn{8}?Z zwPm@b><lMT-jq+{y}vs@alYN3?f2`dzrDH1)p}_2zeNicR4|4-xZ89xC2C)drM`+) z-MQDX@xJ$0Ffo{@-!x@TE_8H0e)Zbb*j*(nUx!&OTea%d_4xX=D_2UGYSnz0kYFU4 zem>SluJq868T)EeXU^PS_Ws`6fMYV<r&zwZe)#_W{{0P!&VSxqKVtazP5k}99gPob zpX=V;k{Mi9w(a+t8_tD=g<f8#8kv7j)0N-&vHdwSbLF=?ssb0n*3aBfc6Z5_FWiUQ z`S;iV-?#g(i=*R5y%h&`xBAXDd-~*A->(O^*X5sUc4zX>%)Z3atG_Y#%I>ZA;~gCj z-rHN<>5}s4NrZg-alS%Djw4?t^+=0fy|LoP&f@gk+_iJfA8n{GYP^$aUDbW`)3xaQ zK$m@<>+4=jNcOw%|LIea#xHlv?|)7De?0s8x?VZkT?-c$oxXPS^78LxCF^TXOqh_n z|J-5WFOQG)dV6~p_xFPe?524-AJR7OT(V@zx^?G_t#6zS2@eO=MTV1~b1MJdk>Xg} z%*5cZc*E_QYuodUruo<wK5FsK*{Wu4{=MJ+p8$u(<72LYEBwCoKIG02RzLdS<2Bpr zZy{k}+iFfFZCi2mm6__~%;S4z&aeOXGc4`d3;yfndtdDh-oWzc!*{#$Cr*60b`Z4Z zb4%uB7o|hj=09U$|2#L^MJFxi-XEt74N!D1_n%+3wjJcu_IYzs!b3wv<>mPq4m|#t zn3%}P$*HNS>FMctPPO#*`Bzt0>q^{Na6P=VZe{HYsVNK%*U~?j8CcX@Sa9*X-<#8? zPIYy46-^D4{`vE#d%xV*kEwjpVqAw~Pn}s5@Zs?>*SQvj`RC`^IxXC=>D|IJ;n%O! ze7{>Bp)>9HW6!0R9y|b@&{5sx`8Fjfr?m9zt*zOMkDdS2>HVrJ|C_KuLCAvzQ%tk3 z^+=odITfC+tgoJ9TU~Z<Pi0`>AN_rEoRlo@FXU%%SSqydU)rs%@Be4m*Z*4=yZcz5 z>}xIcz<_{V{I-@&&p-b(-nM4mho`&$-k*{CDe<k{j`~|$G7Ad}@7I2x`@4<d-mcQ@ z|Ns6ni?1*6Tr4X6%T1M`;acATW(JEoMVbE-wrnxEer~p=zP^3YlMa_t5@uUgzv5$9 zu`<uc`}FGd*CW<UJJnXz_2%J^bfejV(~LZB>EH4=c6V2G`uBHtqqpUpJacACgw9;I z51@l-eFVx*M6cfcVzx6+ZMCoOT+qVb?@KO%cJR)(x7UjLaP|7-T`S(1aj?939`Dol zQnl*iQE|{_fv>C}??~HPHmM76)G;T`ws&3QarA8U%xeF-ZDntd^-ABb{eG8~TP(pq z;=0t|FPHsi+A(gt9AEZu)-N|zM*l+(t!_2($ymJll|NfAZjVLHkAmqEp&BCXe6o)U zP8@D;Jv2jaWp%UH^m%b1aqE;WbY5y<Xp`T*A!K2d$#3rN;~$$+IhrEYhOszGom#be z^QWNTU}Gbr0*-afD!Wfl*O#{{$+*IPf7ge-Q*1Y+IPOi~^XD+X{h9gp@hU=<2a^2! z&b_(0nVC5<zQ(ZCq2T8JNE^A|Kc7#Iug^XI<>lqz;NYW48&`+9IXb@N`|^b2AE$!E zq+{;A|3BSrJ#NnV%YFTy2hCHah+I!|S-xyp+^!PMpa1RJHkPT*yxqAk&^7lt!#+u+ zxr#66&X_s#<)j?z=7R+v9yr>_^~i|!9klxI+!Qe}diyDUxif15U;SZgck$_d?ArBF zq$WXtzfC}_S^t4&<eB<&lN33Uesvu>rgq%UoGopFXla*q`MWJYyL7}(v&+{U;P366 zX>>mG`<%1`i@vXo_#+-)^N=yRXlKo}HIXG&U#?yc_EZV~7sJSKBIVEYc;Dv4zufwJ zF4S7dgBlzy=^hVeCwj0x-XCF?eY@T(q*U3x@6Xfe@iCj$T+NEzoYrfxEC0j>PQAzt zlC{m7_A>vN=24~k=){%H>F3KX$}}k)@0Sl>E$!aRr7kqLU)(h7@y6sx^ZaQ=%0~n* z|JuOx^FiP_bH4V@o(a0Mwm$0>-yiqyR`}ZYs>L$|h1<HAo3BWHeQ>Z@KW@*DBdpeC zZ+4Xb|M#KXzCA(w{lOc|6VG{7d|Yc={q4!~=ew^?xR^1=JU=ct`0w@mKFJ1mE+w>| zURv|_Y)@0uou%H>t2SCOu(BR~YSYb>?<^&6`u{-Ngu;`c4K9z4cJHpMs{Qcb;P3D6 z)%SliEGV6AP`h}N+gp_;c7_8IYvLbWc=YH|Q&ZEr8Q%W>`WhM%HWo7umc#|FS}pbe z$K!3AP72Hs(tY`yKY9L?L?zDW&(DXh43Xu@dhE4S!bVR2>A4w(kC)G{%c|S6abw}# zU8RZ2%RQ>Um)|<9cj@_0RTr`Hx3{+DZT<A`_xtp;dojE7Cb=Z#JJ+dm@QT)aNIdoM zaQpV0n~&_YH8eEjp4}9!U|{I;@QB=N^7Ov<_jmWrGcT!F?_RX6^JdP!N8S2=gxYo~ z&yBvmV8O(<tL&b$v|MDlRQ&v$WvpaGTwLADOG{@+be>uNdArEliSy&jKRvPKnJZyt zIZZ2Tam{_Uxqc$ul2fNnEiEn0jdNIRaHi_;m$UO-{3JIf9qsbB|9eF&3AC7Wq37g3 z$JG6*Z<H3e1U>RT4ceRk{avj2%o{t4pP!p+eZQ(YB4^F*Xu*CtS;N$<H_PYO&6+v$ zWnQ#~hQ_>yGsP;TFJ5-D`~Nw8`@6d{EeexLOScwxg9frz?67$GwLj+dY~I?%tIq0~ z=Q95MF25{5Bk%scw=Igz2MgZZFw~naB>w(S%I!6~r)EC?BvE(gf#Jm)=RWOaWwL5^ zJazi?<(DOE=PwPCU|?7rX8&sP^~v|={lDKUJzYOOE-LER{{MgV-?gg7O74Fxl(g*3 za?Yjm>;LVv7TaI`{$7`;_OYJMIaa3IKCg~F7@f~M_2i6hG2Kfxr|MlC9V=HkvdS?q z)cihr=HAcLnS0V69qAMm745s1XEYOZM)m>6#jX<z-xc^@U$7wXt*^-PPe<<@_;7l< zzO^Brjj3tq`s;kMQjbak@4US&Dk*t%568y)4+J=pkNb<Wq!^j8G22#rSn!q6p!XC5 z!;27KhK82b%kFhsQhxWz8mFCU@VwH(`rhLCLhgePKKzZ3t9x}tbNcj|nOkqQa*KBz zy;6Q(`sJ;u)(ri}>ps2Qaq85j(A6>54l%N_9_?Ph^j{#Z<Nlhrub<pnrWw4<LhAVY z+uPS~S(Ec%k!aqhvlmt@3X-vC`uf&9V!3(D-m0sL+B<jdym|8`XJ?(suF1L&-`!ca zqi(H>fbLW^wj1+18V(*}WQ<uG7911v=Sc82j=1$%TWY0#|G818@2jn&^MrS%(}GKL zi}SMdvteriE^T%3t!UKy1}ZMHr^oIrN{x*CILlNxcAnXNLq^6s;ql)0b{4DOddSDR zl)ZuLkNt*}N6+ixf^RRGWtKbZ@8fM}(mwzC`kI-oPpD;gs`k|-*JpmQ`mJ2Sz%cQc zh}*Y)b$@sLtzK(2_uZA1!FG0QE(A0N=QXk4yn21z)DMeQ9__2^yXU>|fvZwlXy{ep z+}w;1H3o<43-aogJd2Z?rmb_dczx{dXLIJSV?FjrC_bv}&yT|A=Ui?*xv?>MclrCe z<d+i~9M-MAwq?Gg@vkrMbZei_Etis(w#}DiWj)%ufa$-4j{V6qYgc<`uX=W7=H+KA z3$pp-Y$9S}?$kdlGT(WnQ2E!l4=;@`a2@>SKhwJSS<lfVnHeH4Hq<jPFm!dl(vR1B z(!!-$`*&`%qsEfJl`Vh%)NH<a=g$J)2VYmU=dyR}-PQ5jFZ<zGQQ-TI;^*g{K6zr1 zetN4*U-dk_DeI!QpHp3Z^~x2U=xsR<4m7L`uHK#E=-!z4qM1K9MC+&e{F+Ci>;VA* zF|1l2{15R?^S!&{)wR2~yT$e2m9*@<n)UbH?)NF2&POiR-hI;Vx0He5MzGp-A)Q8* zms1PAzl*Kjro_d~y?OKI-(Np34w&<@F)H|S$-5Z2yX}vy6$C8e6**4+xskSc<%SI# zekwA}>o_i4vdWEtA<6Yz{cmkkoi6K?E&m(r-Y~rE6jq<(*Hxk@A+ztl_j?)3q9dyL z7Wb-N>#h#{f3RJ1-MXzM44o}MPc2$9*Sb7zU(L;IzXb~xlt_j=xb1Msy5`QV)cSv4 z)0aD*IXPLqxTr`dKI)lWdWoOw2L^`1l6anpcXqj+5uV|*?8=ppg%jT0c~%p=_+Lqu z*+k!u@<O+cvN2THglVOoeER9vuV2sDSBkXlbL3?>@$<7&ZrQ?|i?bP;7+9R#zNi~y z*8lnFUjAbLwdz;hDQ53?zu))zk=5?9w^p^kzEr>OPuXm1b!?gGd0TODF|~+&H9Lh@ z&H^<>SwbG%R!e!(@MQb5{99W<Tj^zEwj~~B3k=zl|3~3_<)?z~dj~n>7#NZZ?P}Sc zJb7~E%9WCWn@>+qzxry~5|#9({K+RL&H8nq>nKYPNBgb|7q?0BO?O%@%+19$%luVl z$g*_{FJ_s=|9P+HR#Wfx=kPf*12Ji{v<c@@Y^uJjXg|)loy}Y2>)g-37CN_|I(2GJ z+>%9$lCG`_Rd#RVm6dwrbbk(W+rsbRJz5$k?(ZmEyuH@Z(Xmh{<iYKw_fKC|Qs=Gy z|M&at)6aJmJUp~Edb^O=p0{D<If6D*-}opSJ4Wa$&8__R=jS)Q73<gUFMRA)vgJtU zvQiGFb92vTXBe^cbiCMdZ?9?9-n_SM{MYk-6#U+IR#*P}*Hq<>rIm~4xh1{`@h#_D zqUF6hrTbn^rD~%ar=;bAEo-j)3t|2)`2CL342NGIkIT=EOT4)$)nd-qxv9!AFG9mP zctw3?U;8~ff1jqV?$>Sl8X6ks8n|lQdw%^W^;>bjiIw{nPt*SY|El}yGXg$IZ2z?& z`08ZO5}j)^FBftg`*DO{OHVKFefgJ}#_1j^IXU_1QcF|QrcIxwm2&c+%JOfM&x#da zYmScO&l8>cWLu3)`*9Byot-gxr{xv|&Wv(BJk___;-vD5M1Q~C>AyH?A1yXAGK!jh zqf&xts+{%TrJ$W1@%0xc)&BlA*RnY6=B9^d^tP~<S$2!52Wm)c(UD_)s>v$)qwj#w zhsoF0=NP?=uY5Xn+ReKR4Qtk{*_?j<+uZFUO?Q8rURf#P_vXC$VeTG<&6VPMF&TeD z^78ULJw5lc*spoK`}NbOtD?=lSq+1h&42B^(?W);*G)r5XG?^RiI#I{(8`IcYsB|m ze0J3CW1xxP`yU@4$JzJv&)#|@VcVZSpU?N*)0lobd~MWJ8;gn?9|FoPo|%MbJ-m8- zlK&iwi(fh2K-Dq3=nuaIoI4-yuQC6dbu4{;?X^!Id!@~TDi3u`dHJr);r@zE=~H5M zJ4{&f{=unJr_`U#i`1D`{QO+!QJ(tx_V$(8SB`Bd-Wj48ETdk0ZzEqr!+QPOIcB2b z;=vvzYZo<6H|kX3&Ul`rk&;rs_-f6gBb?hUlFdcd85F%Kj^3Vk_4QZ2yFV_v%S-mo zD!>0$Z}w+hNozALqo6Mr-Q{gRvWc^@F8$riRrCCWP&IGO+tyxb^M7Bj$8U4j($WI0 z3w{1mRl?@r-D{;<t-_jLbQ4cDWiXv=<ra_n*0i_mZB%lybJC*2sjtJdKYhP%DJJnv zTIkWIot0-Fa7Ik*2n-HRUUglG<B@T_r@MIY2}ft4uCA^<b{eX6=U#v1Iy%p``py2Q z@Av<=D|m3=^?LqiMJwMGpUG6<*z@<?hdq1l<lf#^d0SjWMCAB~2?zA!_tiX7Hp{P@ z5mNg8-d^*270Lhp{EXh7_q9r?<hY97EX~*QyGvdMMKAyL|L^;Hfj$B2+(vev*HR)S z?ze7i?Oby|VQ0*|xpQ-Whb+FBl9JNW${CrnX|ea+9dS|7*PocHT<JVw)&Ah~N*A4+ zmDiaV47T`5UEajJ<d4Ds;^*gVFLIwhT=2)4d9qvntt}_d%}<}}_x;`O_upQr&NbON zeRpl~tP>s=UtAQ7ulu>QeE&8L4UN7>ijC`6uDrQ5`+6fYJD-fjhJuGq3=Kz<e*SvB z9+X(m&NhGk^l9mYmv?0w5;E>QKg}btA?2jdRIjbY&(FO$S<Go-t-hy}bM2-+zt^uU z&10XOp7JYxSIJ2=8*%+OmIIg6&mF&5s&y)~{C!wQ)$gFzclB=tT(YiADiC34*tzht z=e~cQg$9h}pPrn&=A3Qgd4K2s@PL2|dv0DfjIa6V8X9`^x3*j5#<jh+I+do8i!=W` zo1MSsEe97@7juQvgIxDXCQ`iZhaVPL@USs6?5O>1HvM#OXQ!f2r?8rjMftlq>^3jC zQp}R?>?$`}m!=c7WrgS3&e>mArN4PK<!fyJ14f2Tb<Lq#SKr>={<P@l-QDHYUndE5 z_VF5BeC?B&St-KkeB<=PayGw&5b2PgTTS){Ff=UNwm7IxTEa%JAj7G$^5@yv=6B!6 z?*4H^mGe;Y+m+Kn6C%reXFogh^0|vtOS>RP#`*JI|6eW#tzX#lmYa*KYj1*W!r^QF zpvl;;U%x(l_;CIHe^%W`SFK(9^<(7<VLLm!($dni*Ue2$P33<aJ$m%(ySFvLc{caf z<)&~nF)(Z^my;EkbI1JQ)0gSn-%MBSefE>p^6k{W5j|{+!_F@GZ1s(|iGd;D`1K2{ zLU{=lRaI4qiHfaF{V!FI-Y`D5Rgz`S{tpK-T$S2d4z1IWX_(y{#<8iEc^*g7YGZFj z9X}Ci{(me_ck=)E*g1FI$&Zscl$-Qob_j@x9ZM=zG`{Glz|oYr<7fNY|K0ijKK^UE zbLS3UUCG+8*VXU$sta8d)Ac*{*!JW34a^A=ZHYS`&+Tv3=eMeQ0@^~kE&u*I!{cvQ z+7e~>+!t2t{5${hg8~bQw%tDsRZm^+P_Nr8!PC~!(Q&j}+*qQASK2J+-k!>%U826e zzABdvPl^}nyi!y$HEw<Wys(oA20}tYbIk6pOtbD%v0`BeIL~V|)5m4e<mAw|?zdMk zF&MnKbB=9`Ged)4>UI0X6I<__t>orz=jA?}DEs@`{k`FVVXHV~1RWRbdKT)eTefte zSbffmDYt&@k*b<+7r`gbuwdodiKm~|*zLcZ$~^h8sH&*C|GYWI>3mOC_U6A3+~&Xd z*cpq@XWK!UxctqHi}!RvBPAzJ+}M)I*ZJg|%~`)jg%y{Jd8OuVNjdpoYc{`5{65fu zbjE!*IawSfc#b9C&zqinURp;)MEyg{f%dkxbul|Hef$3L@$vt!<Nq@;1gyOB?46<2 z+&-_r>a8=5KbEzt+3_=YXUw}Tnbzuu5;sP$I9kc-GBbGm|EZv=;^h5Q&bln;&W=Jq z>ooPQS6mDXGmn_ew9*PXl(dmSA+1>b-{TcLGX7cXw1vB0s%<`5XFkO%_t#V>zmA4? zr?>6UIQJu6_6VE90sH+APOTR|s3N4P!g45SLxjz>Md#0-Uw--J-2KVT3mY6i^8edY z@b}l(6)V)GAMfB)nwYUQDtcRP|J;oqzMstwUl*e()EO18KmBz0x){r%kc#yY6X)75 z%42Om9H}$SPx*vl^5OC~J2ut){N&uuS9#3PI&ou!+v1D=9-g?%%hj4>AaN(K<HXad z#772R-wz6>f7l5E{JW<nZj6xOV`mWHVA<AF!r+jay42yp6Nw`Kpt)1SC(hKZ{O9_A z$-VFI@7I5L(70RoRmfKchUs$-GBdn-{n}SYu;GDqxz?Ngr?VW-%{_fM=)<L!GOdeq znYxdveUY4UAw9t5#bnMWvu+)0n^YC$!_#t<f#HORny6W{PMS4;!%fB@zlQTWi=XdV zF?Zu-F$SJ(dzYDm<~?q%iQZMRqJ8fxr3jrpDJK_ni|a3{%?}8e$7Q4Vp|rI0^|iID z*RI_fwf1<QthbL33&WRJS68oEwQ9qL3t3zL{d_+E<jIqAAC`2-+^>^3FI>>pBjm!e z@vq9tl`FHh-dZbG>Sf8W;C18|1_l;KFK_P^I#&8NU+(SI>OFQ(GtoS6ik4{9{(}n* z&P{zT>%x@zQd@iazD-5Pj#T>FgjVjAa9%!{NuF={@_-o~yF4|PgolUU{>l1XUL<|X zjJ-2<dM??lbj%jCi}adrzFy3Z4fX&39rb1_-06RR=En<(3m-l_WSV_#!S9nA8h7RW zIsP1IWIo<6|NmjT{Jt-jyu((P9&BP|VBlffoOHB{SK178RFl!noEI0~$(>!1EoxaG zE95(uHE|<D!-0jIVjOd9Dle^dE9K?lXxeq<<U7IA(ydl={dCf}7ArBbRex@a6?R#* zTKfIHwE{<eO{m<m?soz|?^3SPQsuSfIu%pO9F}f6+uK{i*z0jbR7B*)W{!DIpL{z` zo;szauV21=v#g+bcBj+IJNxVFPqX*BJ+6MgS6obQhL!2H=)O``4kqt7*^=ky=1yzR z05#Et`L7=IpKDcmdYbO-ZMoI2*KR-Yr2TB@p+kqva&BzMyu56BT-D0o>L>2pDwavu z*u=?Sefg0`%Yub}ySlsYMon27dM)^b56_*eA)G85r%jz|D51h7+OPPa_2R_J%B^0m z>Su5Js-6D1#YU+8)y!QM3=9qvPQ5;AA=m%ncfYGvZ*G{WgTRx=hc9KAgocKGTcgs& zwd_O0%9ShcdHFs2(f&)F@Ajrt@6!q2f4|?aucK4(|8L;jRNu1rUtd3Wzt{f#=kxiC z&$eo4+?Cl9x;AzO?=kD&{~z_vYFPT;c-z#c>JQu5mn>a+_4@VQC)e$BJXmn_UrlN0 z)`JNG-STD2AGWqWIPqk4c(?UF?Y~|V-O@iv%WzeC^}Z_3{-UM3_k8lzR1vM)Yl0XV zR+uogJ8SCd=FU8KO;12%#+~pu{r!cH+h*^1J7q_t_omI8XV10}6&0=h{dT)?+80jV zS}r3$tAvk_mi+niXK(fQs@sAhB2)StSnug=>R+BYwRchG=J^$O>^1qk)#h0g9`a3G z<Q8~*!N*-YI<97E>g%U(JmGTb@HsO9Hs!9jp>gY0t;xuEzwVNdYhK=3i+lYCK3rf3 zUVSpCbn}!Kue%@Hf19+@WZTY%3+E?s3O7wyv`DF1Yzdb|(}x46r|a*w4qasXhrK7^ zbkp{nn@PXF?EQW(+2BLBn0n<=NpT@jRX;DTKd)A=e^a%*wW;ZmYCz-m?%CG;MvsI} z{_{86e(=Et$HT&_v$NL4?0m$xJ1U%`CN*{H$rQ0pxoo}Dd>_<{Z%9hI=BjzW{JM-= zoGT+qO+V(2>+5g9#oO<s7+n5kQ)%J5bd#=B@6`+zhJ=k9Tn?>Szdl^cIzNt^VS?(h zD8&a`*W`1&`uu0nl`B^sJ$l5<&Ns)p{N3F0w#g^oy?yvzQcTxx)tWUg+I;f^0s>|^ zvhFKBwJ!DQGm*~a=QBS??&?tQ<n{LV-~Ku0hT;}4%jSEkjoTy6Or0t!!#C5R=8u9r z)1)63txmINUv?9}(Jjv96Xs&3@#EyTqP)XP46mex1~@qzY*F9*b47?5!+}pLM1^Mi zE)3$__N&`(`ca{e`#25x<!m&xwTpM2|0ZDhk5#61TjAql{dT`HE-YAZ(79>vqqftW ze9!o0r8d?5{q-*3cz;vVCAAd?%Fmsh>)t6OANFX$H@y#U#hp_w`p>a=_-Tvs+@O0$ zrFNb=<<))klgp31W~~Q?sr#<4pDxwgUwY!?*|oZwfj_?R9|^R%p0f5&l;D8}D-18L zoxkXk1p`CyXANVHAHO#Bx-FiY`ti^S1+M9(&(27$4=H<ia>@(O;<C55mR>Z`i#EIS znQupbxR~nIt5>&$zwU2pdQ=+F_`c=XsatzCzg)CZzvKd^*r5Z8%D=RwL)Pi;aa$u6 z+dRpyH15IKwBpoM)pqZL4{z%wPCxS1Y{r_I+y8auUG;7IqV4Kaucy6XwL9~-#q07y z#I6Nae{H%oOE#hV!P!&wX;XzdA{I`F3k^-Z{?Ll$Cx6%K)vG^W+fwmx!AG^tmWl`c z72c%0cze0k=a}4Fp^tyR-?!hZ`y?Qs%524f@<VHF)f1RH?aRE5PoHS%bHC1Td){3w zJ-xE2nRC4wBXoIoeP)V}j7;1b)!I~6%Id$AL+Q}_yQ_m%mM}1|FlJ^}GPHk`eb5<b z#qT&_(-$V4Zdbm{+Zt0(F)_>t?SIP5#bTl)IDP*7eE%3f@sB$WZUQX@%(H%+cP8!g z(lga8|35Sx+BNUG^s}ea*-cC|W^d*IP0Wa{I8ff=nZM)nZ_T<>Dm<;XULKuvqhQyJ z`cF?h!{>TsP5sKi(6(7{&&`}wYt}sawBl{+doz}c6C;Fvo_gxU;Bf73*Q-}<_m?E_ z94!8P_SL4<TfSzw-LJUdr_Z9)*>?2NS>9FC_?--%XeVcGz4ff^xa?zdg=-mRpnd|Y zob{onr>9Fxh15PjqoEzTZ29e}fBuUoPBb{)*9*F5FN&|*$<gtp+5)Egg5Ue+T{U0T z8XUjjbruH;zyB3U-sOICi#ki!E)rvSP%<gDvXYfSw)MSPf{xoQ^L3jxJuFK*`t|kF zJsg6uuR0x9ORcTCxM^nhy_q``k4FVH*zY@>$PyxTdr64xM}=0W2On3Yrlx+|v-nW( ziA#15XU?1%J2Uo)hN-FP^>wk`ofBL5UY-6l`R(o3Tf1t$Z+x)yUsmbkXJ=>c1$9SG zO<urs-;SfG_<3NMlhDcQ=g(Pln0Osn@Z-*%J8RagS$F$-*+Rj+CsS6fTleTwMnuf> z`$=u<r|1dZ-x1igSWxxjKff8pOe~HjQCr=Xn??0}*|DQff7!(yX`#}kg-M3O?aiM* zeR{J|qmTD^pog6H%*_!x>V9()3_A8!|7PImnqg$9ym-YHmxq$C<(xH^^v@UATlqO{ z>Z_CGpk2cESVe!7X`bAnd|p5I?ww`H6$|U`B;0&?dHL>tzx{&ayBjy2>z%ZEg$6qV z2g^6J3CDl6C<wTuOj2C4yk5m1gv;km$}yYXbB5cy9xyT(uuVF7BWvredA(H<-4nm| z>+0!k+q|$=9JC;_w)XFWCkhhGj0{a~JV%2wf7kDS%6M5W?cX1lwPAZRFRSHSH#IeV zl2~zI`{}cD-97i!ovCA%-D_A-5I>{CzUoVc`0d-7ud^jf<X9~K*c#33xq9`gjhtxq z{3!DkC0tuu1%&Pe1l<pLxzOUwuZ%;r%U|&^EV#5o&Gq)&+!ZED)7^D-b+2YwXRhUE zc)<4alIx!0=jV3rcC0NeEp>Bq^XX|hUOi)PqpE<@@jkmk8}GGdJFaedF316zpU%0t z>FBw4&Y*!1M$sSJ0;h(GE{PTOt6jMF%zC~94+;+||GIwVO3aReh1zx*ud?S@H*D_> z*lb*5E~%@k%Ei=sqU&|*<3ex!XOX_s&gH*03f(UA!p3=V;jKH1wkrx6f2{C{i<@UF z`L)ioR>bS*+UUHVC1=w<e|&sgk|$}tT|e(j&iN*B`5R=ctFG5B+k5oS&(5m7-;T@I zf7zz2p`r1=fve{BojbKMYJopAC(qeESMQPMZ@1XpWoxxVi)a0^61)3wrHb3)g}ZjO zonM~xhV#B)Kuk=(gMjlfMuQ_V7w#`Ho*rLXy{SBTrqjghZtQ!%Ex2fr7Rr3d??&$J z71uLNzHM2(_|uI&0{=lZ=z7-ZsHj<9OJ$5yZfvvs-=ArBzTDx_`~CMfMO8-~l<9Y$ zYh#&qdYUemtG~CAgJWftBkMli9;v%`n^!g!1{<byUGDyI#PyQPp2x@gt!-br1jip< z@>zE8>OFgyni%HihyRERy}BYydWI2S&tV1zgA%K?{_lUydDSLVe)c#s!;I2ple#M{ z8kzNby&fxstzP;!N{4Hzg2<)Qr%%6Kd3}=VH=|i+r|ZXWyU+MrQ%7e{<>$1RIr_6N zALI9ba>Y|rbXB*w?L?LbiO<e?8_fJ-|K~&Vc3DS9$4U;Z54jUcUu^MQy?wjYI$H&e zk}C|tNu|FG;)3H3r&x#`l<sYtHA~8FewzP}dskMhUzfLl<3+_U`{fUwTnK22h$%8W zzohVdpkdRLIp?=VD7fus`JKP$;!cK!Yg3DK1v_7eaM_ugZ@=7ju!76;lDdtt@#Uuv zm$@yrto*bj;!H>1#4VML23C`VMQ$j+e!3&()s&SRqqpak-v5#!A|lf6!1~WqK)a~; zyWzD13tcvD>GpnjV#$Pwe@|;`>Ba4Nu|vKiEb{#ejh&x96-jK<1|_<qN4adKdI%fJ zS2Hp7G%^cFgqM6{Oe(BZi~9O@(=jg9Vu$(}cPjH@jZLJ)84|+ERvZ_2^8EP52%m2u zXFZb+Z&X>7?fp!E#j@<pjH_8vHY!V+&-9*HIXUl+#@W-WOBcS(J9KB~UmdZ>_5Xjz zgEK7?gVu+&ntKXjBZD-v(#z&7Hdx|xe_x=aq-5E(Ec3<L0TE}_+LbDr4+aDWpMHMX z;D(<Nv!J$y)~fAH2fjSsGEbacnDfjNmEM@(d2uf$oS%CsV%?fup<bOm3O_8qJ?qTt zesJ4!Nj{tZfnUEiP4!A$9$IW5rtJMDG$P`~p=*c4_2YE3wPlS|X80T{Er>jDAw{Tr zXa0NN@SAV#Hr$+&c{!>6-_Pf}c3I{BZfa_3;;PZk%dz+2<VyYW?)56xrG<eyGk+ZE z6z0q2$bOa0$e`nX?!oEPr{D10KYe<t)Y^$J&u^98yPfU)^UIGPKe4=8`d#~N`GVvx zUb!E4vR5qZxc2*G=li)%Di;eZ7M<+VSD5Vj?BhyRRaIVIUfKAQ+#eTzx{-c<Ug^mx zJNN9_^X1Ez8xiuIQ*M5oDj}m+b7)8K@=a4uoqPRjp4GE6Z`&1~z2Eoy-0i*v3l=P3 z`fpLX^Qh{}?XJepb`=G3wDia@Oy*?gm)lZ*!!tNnm7(FN$j!>Ve#_UdUHg<f!#^c& zyIb7yX{WE2a0>gs&5+WuG-;6$ikTPqVp5Cs<YNH^ujE`7ZJ0DUXKH(eP3Eu9^L^_7 zO<t%Rw=JF3YHs$n_p*~*4lN1dw6wHjb8gRM5%}Q!N_qO}_jh(CpWh^_F#R;Yyq(Te zqiXv&@#}Jl!pEWnUR-c|@3XyF+efYPSkJxN+j3X0TlWn#0)O6W#R2<cy|V5FI(+3v zBChLoAAEf1xQcn!m2c{IGM|_-Fl@Wa6dx7UbkLzDPW@qZ@ZyDgVq6~uoSYlW$*|!2 zTki>8-RJBwR=o)NF1`8OjQ`=&ZgOpI<IR@i=sx;LnEi~0jDfOI)ePJ23lcWLdt;gS z9VhI!XK$ML=1orb(#5mtc6A)*{Ia*=<D!chThgDJU3^(m{q2pS(8Gn!)>c*doSjE` zWbB?CX!M!v9>rHNBU1lMYofN)k;MxtWJ4bOcU+xu!fu}0oIf%>*~wa!;))wzEL_Yc zHhsz*yV_gxUSBN@bzy3Cc~jFR%iys5^3`kCKK=aCceuRyUQCF}@xTu}*2hmC5GW21 z@>9^TsNKKu%*mGG$;T#?e_9vVzrmg7c)(nJ>m`@pf~M!i+Btb1y!yIp&YU@Y<quN- zR=?!=_2o;+^F2nh&$jc)Udoys6r}XAujfJc94pU-7v@+^eLLswJD$m&vn)5C|MvE_ zwsvgUzUHQ;M=UE2{6D<*eqXephsDoI^R?%{h_do@?XLa3&9-RK#OpWY_f4NNCBdMe zIQ)v4;mkEZf0i<IC;t4*kdt3+$I+a~E7>H@!F@jE`g4mtFINR;6!qUVlwzoU!l5(y z;fuGr3oloGn{&|IS?Td#<{iAetNJcWcb2TOP<!+1>+8AmZf-x8wN=ixYRj%&Szlgw zuuXn)VecD;`oj4)_EuLV?3H17(0a4Bu;Rnp?e{?)zbWZbArIt}%p{Dz&w0=*)t|ia zZn~?4sLo5-x`&5acb8kg3}3Zw^`_tlTcdJwbJuztd7)6Vea6J5KUSMX6WKq>$f`3Z z8m?K`-1(1j>GV&a8ujeAcUsz?vWoieZhPc0XUfIcka7lwxesR?U}ktxvS_`2wBGb` zn^-p~amL4mnVFe<x_t^KPEJ<m=K9pm$1B)5x3V<wvfA^fSL1evJvy@Yu8dT##p|Cx z?(QzXeK}fymG!9a0;c~H)*P<Sp4z);=I1-P9@p%r$-nx4J-+_wlP4twGneg~mKi_) z)}~ECGV2z9xSQq3#r5h7o3ZtT_QDkDpYjPa3>7BcTfcsh!@mdp(R1^zOG|xiUHRQx z@5w_|JCJj4&dhIfdmj0<s=N7b>P?xhe*V?VmMvrMJ^r9@AE%+ErR6rcf8QDuPIL;Z zZ`%A`U7h{(pE)(|FD~oPd-?kF?RVMd?%q3F`R-?h5a;Ko)8ipwEFSWJk%2+s#Ma#Q z2u{zG{SN#Q+%nS+e3~v}UACtAZgOd?=xoh5C7Qi%!SV6>LWT>=KJ8u;wq(HqztzT@ zm?|TRrWbLaSg1H>qbA41unAT6&tK%a)~!AIBjUWpk**c1LsT;@Z?fl^T+N*6$vpF< zr@*<D+eOwU82n&hm>l!&MQ@DU)ny-d?%ery?s4uz%o;M!?$`g%^*=f1X3oFI{q{Mp z<V4<_F<H>=5OC$o$(Ju(TU+_|uXxAbn%*|m2euZVX}<CD`~Uv_{`~p#-nZObr;NF@ zJ}@v$DF2pKn>h2w&Y$xP*&PF3tZ4L^`QpSxWqvuEjK^Fof!9NCZ*~P0EXR{~-r07z zd^M})iS?H=de<<-9d|7(Yf3e`x!BE+U41sg#wRuJ=ElCf*`6mhXIFTIn)UY=Z>@J< z`s|msa+S%I8*zJ1PVV?u7rXri&)<aytb;cne;Sxt_vTmC&%M>(Z{?+MJJxyDW@Tl) zySw}P$DpjORqyZZb#-k$+}2v=d6$uafu&c%EybYzcJ1Eo*CqbTeBYl<5U~6Ir#Rob zsp(Ts6PFDGL&~2&)}|_R1gF0+>=xi@@AFIg>D@1DJ#FUC6x%Isf!T(VmT$KGo@svh z%9SM{TCGY|vy~s8Rm+ZxTkDpc#QN!@3Hz@@WlSs``|RdS3EXpX@{5lj1)@_nOe%4k z(|Sm)-F=gL|0DmoPMuvPp%3oyOx9#L$7RFNaCR9B+b0vLuWxT}pFL|<RQ!Pn95?=5 z`uzNSd4N%PRMf88-(^cT<(;|VVPD@@JZ}q2^YM0nssGpGzdtQfR~ITx_fWa>M_jmH z#`4n3+iD^rBIONSHY?7Z(%wByb>`LshszWt_+(8R<mG0}nl)?Mv};AhJ60|eVmOf4 zWgWM0%a#_01BEwo=M=myT{dTq)ZUAS_#W+6Da+?=b5m_^HDXiQ)W)CMFL6$0ipyKk z-shjAzV9pLbP?)xP?-H{?)|gNE_Nm+GVvU%`u^_jq)C&m@pArQ`*!VBY3?-(iQZ$z z>F3_u-rn!ks_y$vRp5r{n)7mp)cc$h-u$bz-B7H{knrhAoQ+-S+gn@jm9elsjbst6 zDERuknPuS&>zp3(9Or-s6ZY-nGz?!KYg_QZ;d4t-X|5<k!{JvNP2np;czJn~3>R-* zuxiS#Idh`4Sqhz4EV^E2|Juts_h7kI)AmO71ZO8!C&j&+Ha&WFcDAXhsqX!7!IvS0 zJ}<t$z8<=&Ug~#*&a~+5dAWCYef{?K%npnBg^w3&>iwN0B>826;bK0yQ&+O)=5M>4 zd+?zFcf8z(>+$umyRR7+a|Q<NGCsfSfVQ_*v48wD8*}+XTkcN1%k1%3>F_a?>0wjy zZ*Mzm_It_7ZA?uGVeOOCyu7?lq}Y7^_$hletEP6SnCQtu6D9SK2Px<FxNnHkeVY3H z)aiFuuZrEQ<ZeD_ZZ$9EJBt8I=aHTd1&W<5ni?8A>i$-FdU^&2PxgJe^kbj_WBs=` zk=;jw!ot3Nzh4hJCw{sA{AZs#gO?xu);0Ck&DG}=7cKL@n02<D?{3-OOLrSKK3<e! z^lg@DHfS2|l(GAFQHJvcZ>Kv;aK#!V?kc~V@Y^$KzVzhTRh9q${k?ec;*V2CYIFOK zZj;u$cKx)eRB6D4<lhf@wPGuGp32yCK~=}7|Jky&Md1stufASyDa`QTx%}^Aw|BqY z*?LeU<XU-1bcQ{PlAgkZ)t9ASzq)eu>QqrtQ2`dgP8S`q?ynD@Jb$u2e*e9!twJ0( z8XWQ}A~d>v%R29xE#zeV*F5>#yPbB$Y4S1FkL%~fB}hbVv3PlyzwgiA@AnV4-Ml(Y zf|d2Cs?BAl^(%u@WbKsa{pD(V5g~0<?yw+m(ej=ZyJlD0Kjzy}6X*1B#@RHTZN2#d zO$w^2OGC6Ky4BCHTApVV61HmAtS=Q>jp8Sc3sgVbKK0y#*<AX&3mk<c-)krT{<X<O zYO!0giNu+-&63KCX07tHSX}wz1INCGcYPD~nqEBb`~UHqpOe+!`_7Sg%vn7z^~Hq? z9||76y1KfZN0RCA`Csc4xw?*5Ec?GP_I{m2<Hkjq`W3e)x;sqJP}_3;%}0sVjQz<m z`|EV=?fsVqDV|7vnP6&aTD8|tDN%xV+ODXt&2MJSnUgj5;-N2(H#M``hTdgl@R@dE zNq|D`wVkD`9E$=tYZ%WSpZ-+-z*qhUY-;T<zAU?CwKe^UEW-g#o(bQ2Z*Tp)>gube zn_KVlaxksmJ8jO?siiM2D1sW<pLi}NA6*dqh1YjxwLh1d&+$vvk`LY{7NiK}gmg0r zuVBjC8xt8F&FyH=>ZCZ)!$O9SVacvtQtgLD#IDZnNn=o8ntMX%V<(RgQ`G{qEiFfd z7+DOjo#b3}E}Ef~)u{g%r`Vlckzx`jlqVPFZN2KVKGL{<|KEE%H}5>$)?RgNk$UHQ zZEue+|IgR|Gfq6jVzckLO5LIbCF%3-a{PO?E;((n>!&@-S3kBoo@ILNTEPxGo|O(V z(rO(Xi@bk`+1y!>yK3$F)$3Mobz%@Guwd(ad0f=RJEGBMQS)TKc|kLD1Q`y5M89T? zepF$v%@eyj>J4MGS<A(VhhCh>-M{SiMW6R8pM1SO>GbK-bw8hqgG>B1A9}d<1TNma z@v}z$nG~D;_qp-&j;xpv?dx`Jv7UJaSEt^iLgrdlLB~HQ6k5EMPw$wMU>AEzY14^5 zzrM;<i5p!Q7?N}6vgagrS`^Ah*44$9hAw75bMwX5L&cRlw@%k9HIaJ$Qq`ix-b(e+ z?EHO&Nd@v;TwTI8&Yvz!irz14o>4OCrhfJ9iDm{@LKqn$a<^{G&dFh6Sh#C>q3`#0 zmu148A<1*ql`0q*%zZo_1?a`=eYvr7$Ci8<eUm5C=dZ6gHs^Wdo{9->mqDci*hfAe zbh!3-F5my}wfvqy;f_UqRR^nBo!9z4Sn6++XEgIlmg!Wl7YRB!{p}}(X4wdVE_P-4 z`Gr4d)t2v@R@tNoHr%j0e}8}c)OmUN`3=jt8ymje`TQ|@TaG4l5s&Ts^uP!Cf6JV% zFPL_&_UP@tExj9;Np&B+oZ-LCDtu*#0Z*XD`HUZV%_oH<v$AZ``VK8GbZ#-vpO$%r z?R>-+-#5oOx&FLV4-aE5(|&f=TVb-{>hSg7wkd09*v?P)d(a#8cWXRfk$a!ASIyqH z-nS)IY0uO#{PKfAaxZ8v*2|J4^ZfY7c{gNMZoE~@#Lpmb{5PXc&C{;sPFWnUY~Q!8 z**(?Pv}1X|hxL1mK74q1IOB7ah)DV8Gn{|c-tT)Ub;a(pSoQ6RWf#Mz74PWZ`_n<d zWo5{t0tuyy&Z^OO#mwB3)~sZd^D#Ltuwhc&KULMPNlC5gI;VcA7dSU<`}2NM`kBgk zo|CJ8vKQF>`EdB!=Q_~Ryc59z?EZ@_?RR!x_;90bo8#KO-##nWopM<fpYXbSw`aeu zb1Ccf<@Mg_Qqt0A(~PHkx8BO!!*uhXf`4#{ztW|9b>;R94E_qYx2Y;v|9QS)X~)f+ zb>WXHW6G;<@R&!eII(_j(b5ygr}yS(^XRcS3N$EOf9iH*zs39W{Qss-jGJX+aU(Rl zi~%$|&GzxZ?PcZnW&ggK6zkq6Gt;^}?|OK1qD24k^2zo4{ThxY+5Y+JUg=iB#j@}0 z%e!Ss1~z3SRh6gh_PUAN<#+!4n3u6Fp7*ZOJO_c=Qr6wm{Wlwjt=_tDVWZ2T#KMB# zYjYGD8kVoV$jfqAXnsfge1&cNbAO+I=E1=5>y?+z^tW!$qaGS782rAl_RE(;jLb|? z_T8-;IGQ4K#KLDz{?h%pwLS08!<_qdb_Q?0eb2R!IhVAt;?r|`v#>cf7C#R2+soM1 zRD|C<csl_!w;Z_m;*KNc=baY@@US)Ce5xzOs30)!<rLW|%fH&L7k)9N_j=u5XM?(` z?>_UkCk9=M{#wO%efdwp=+#kDy)RtX@8Zu{$Ioye;_1cY3I>KoKcTPRYA3|TMnC>@ z+qb<V-aub}`?oWa*LkkLY}1Lga#<Qw^Yv;tr~$I{_$MCDnqU9F%{&|Sa*yl1vL(u2 zLPZ%E%$_eiaQl&v*3=(5(~oU!aalC+B#(3G(&xUP7pu64Jw4P~v-+s8wdy0gjgRha zjQ&@CG3Ondw0E9^QsTLpxARX=)8&`5`2gyK+fGh*eITu!ZTx+ni2wZV=O6aG^>&w7 zb&8SUtY?|mQlaivO_43--|Y)3_qBPQ7hPt~d~iZeK!Nk(f6sjRuNEBFpA#Rp&Z_E3 zA1E<aeio{*`Skn!{(d?8#S3;cFMq&uFLTzcS?l8VW^Ik?bxZ!Ie|)V)Q{jOPckbMI zc3<smd)&4srnet&Yf--a*nsDD-}Bt$=#3F;-rk&cLn!6eoY${dc5M<8>U3LL#K4fX z^;U+-rkhXF_n5rnw6KY<bln&3Gua}<am$x;bBpZl`KG&<Znuof=&1j6V1C`MIYw$t zF0UH%KXI_Ux&5A}zWnFGzrVkqpJRFX_PZT&y>6Fp+_-V!!h*2XSF=i!lNX1rzWTDn z*VmV=*>U~#*CkfX2N@1;@LIa*slyGq{5VAmiwaPau$ooF-`qCxfwZ)={v7-M<B5q& z!>V<q?K7uc%V2U7X8T;Q|MoY*w!~<;$yc+snyPM{;lse7-E`yM$;dTfERH%IqK*Qa zm)`vwH2X|4Xe~ne?;Aoka{b32-}Y|KcZ-iZ^_ZQ3K}W0`bcsztg_Hk3IZMXrudAOs z&f30)JGnMw>DTAypZm{}X+F54mRaZD(x2>ce)o5NzNNjMr)0bC`Uz7+X3UZK^6|KQ zzl`Oiqe+#wW!YD(U%!6s+O?}!uU@%w<@)v8YgYwmh;X%fEe+C|sx|dgiqY0e{Z0pk z2OCO^B-;|WIy;UhDKfke>3SP^`#pzLXUD+=2`zrn^hIAhsy0=4s7(4kZ#EypkKCi* zO`Qtwbgy@~vF-H<#S@J>C96d@Ds|jU+8D7`tovxr?~IMJbj2ngP1+W5Mr`xJgn(!r zwaqs_Riqh-bsx2Fa!|NocWXng=!;X{H9s2}7?uWcGB^~!jynAGXVjG}?_l9&r*B^O zV@OQc|760P#oP1mXuQ7e|17V#q|>72(T@9N^Jm!X6hHsBnl0|(-14^bv%a1NohY8a z|L?Wi`)t~dCaqk%R##tt{fZSU)~wl5yJqFem8({*TD#U%s`qU8qm2=KbB`^%eA8ss z6vuwP56Kr7MTAIA_F6dkBoEh2$AuR>RJ1x>)C4k~sHfXM`dG2~=AAgv=8b3F0|VYH zQ0Ly$yGOg+%c%Hp*t$IbyRxipiV_YHzZaRW7B!62ahrTH#Z3Ba+Txoz1~YroHt%v= zZZP|-F4yV}5jqn+u1pcTC^Tt`*HXXbi!XA@X-uqo_25$q14FH=s_Gf*;>(^gt2Rvc z4@+CQUf)||$?n@R?=3ff3O=86t0eL2D#Lf%o{F+K{aWP8y#IIJ^)oY#e}8}fUR3@` zQDq?*WM*c1dU|GNW=2LvrlzJAbNC&2*pf4?<?zSHMM95~j>_=$9~3CIv|(#LpR!?v z?dQGXr!M>Pi&u2t{PcaA{fmivcQChC9c7eg<1m<ZA*@`4q2X%R3tzS7xAks|{gwt~ zUkRDzur}<l!G;;Uy}fJ_ZJ@PTJa?MXe}>FE{+*dY;?$|Vsvj5_9QEh76}jHpxkocN z`C~;-bgtlwE%%Dk{_d=Ny(M#_prF$BTc5;?=XYC|YW-fj{hpV%x3bXP-Pxh>@$=`; zkN?rJ2n3Y2M&(vdb5i-m`NN2@-lt^A`wxnCHuG9ePb}KWBzAdi+`<Jrn&tF9T<80@ zcFn5(+W*D*)|bo-cqVdI7(Gn<7m{4NRfb`sfdo^7tGdI6w-yJowkoA<UitI_DCZgU z|C4Wi`K4t4aR)Wy6(QU9?YYx!=V0(;y3DT!AJ%G5=Vs?Gtlqry1L)$u|DR{CKc92c zYPoye{6vXg4-QY6F81cfpU>y*|NTe~*UdJX>E-2BR8;io(<d%2t{nMLt*LJ#<(dUG z#Ey2fOkSk?w}q*G;Q@b*2bb>dQ*CZ~WLUN7KzLYK+`qT_iKkey5<0fmZsg9*G-Ppf zSvA4!;KM=*28Ie7i!Cqr9_@-)8>XFPDy4f?lu>{s(SV=1_ICV&cYF8dn@Q>|dCS6Z zLGsU!eZsQ4rmKGlpEh;pas6sV1CL8B4S&3U25B0boY~uG+H+KG-?kU$MOXL9@3*e2 z*%F;w*}XvF-kzVF_Wyo7{_*kg<42F?L>$a85fc%4^5lt4#Rmm*5ZJz9!-Z|f{gecn zjx0*(tT^&Q@Su?Aga{E0v5O~D!uNBCOnK+(FZSbp-EZE5f`50Fr_Y|2;nkgC!r1Dw zbi!>v@rFbWHi;bWtL_39bbgAhzM5kc8SPp3+5N)YMfQt5>;IfEXJD}ZAK}hAPyfSu zt=+HW_RBN~Yvrs7h}{*UA!L|Y@;y(-`_b<os=PlEAOC#vBw^R=+{*5spM}rQKVSd2 z*ZkkV-|zj*U#$(x_VhftxB9!BO+`RJz=Ww&LjwX5CKt1{3O!Ty{WA5O^aP1#%DmG$ zYJb@5u>SjD@q&uBc{(3XPt&!Qy~6IDTya~ldZqq}sRgM%yO`fDR^&)fkoas6;hs~U zla#+z$?T-Ll)RT6kMp*_H8;N953ZheUYtc@-M_{N9f4zepWmPR$lBn=!H3Z+mv2`0 z?JC{Aw&l8*Y(?hDe)~D~^+z?zZ-3&lkV(6`%20p*mg29ku7XaF5k9Xa(zRyInm2FW z{Qmy_{{DJ<b#?dUml+u{Qi7KFm>oF({b=Lg!?jBn+Sw_6yBw0&-t@?>YSRH`h7PBV z+haFO|8-0)*>$FY66@`)>$V6mNJt#pGGonGjZ@oK?z@^{V*Z`CTI5dhysp^4X)T8o zj^vnygb3BvTJ66zH-RH!zhYvg`n#B&K^OM#-yfYD_;Zil=QR17zdqk6oOto#-ST-( z;T(L=_HW8~&~Kk3X_hl1LT6w3`+I+Xf8V@m)4Tio<AZ~l84e^GC<b}9oGJhGW#vPo z`5f`_@pk<#N|8F#rj=%EXlN`r&i&_d)4`N;+8PYJUh(qR)7$L3KK-9q6U{F_`$@FU zvu9BY+-ra3SpT|fenh;hnStTgqonoRHVh4imV5qYz2mR{;B!W!<2%_TY0KQ8gEKd0 z|Nne_{q5(E3*zqWEzq@^d+wTf+u@bsTpKs1o!#_wI!DAAkC{2w8jf(x%wIA;zaylp zJn*`Q$P_vLU;ambD{!39UGK2!6hl+Tk$E%z^EwOk988dZo4@_W)$LL9cs?5HF8-5O z)O9|A<3vi^x*aoS+MKw(kAZ=~K4{Up%pDbm^UtbnzLDp1x5;qElGJ>;+Q)O_>-KHR zD4g`0XQwoa;}oyd*x1<I+_k>fbAuNqay&AUFh2hI|MtaJQDQrOH-E3_S^lhpmv!mx zMy@^IHCM0BzK~IIYgd(o7zdN>dxzJtf2S$#yP2~sO1|xf0go-$2SW)So`Z4HVJZTw zn%&-eQvZ4?C`gNZdf<_k^{Ux(ax%xeH+pAyIlE>VrXKHWc5Z8HY58zB{lr#@Ubmew zalbis#{4tbFWdio^Nhr#i4BtH(v2*5cD;Qb;Gp~a!R;@9pX={4OPsU4*4?o(%8~Wn z=@nOIUAkq(I6Y_O$_E8CAAaObRJa@0k-srYS8VmoKL$tI6)t?@kZ(R%k>ee&!nab# z;<;jSS;N6ZrndIyGJF4ipE+mB6prm_#$RTd@BUJBY`?wj$J5((-Yr|aZ{fm&VzX`^ zDvADT$->a>_S861@!`T6waMpGw!OQZm3)L@{_F3r?EaOe@4qnNhk$=h_QC~UYyuj; ztFcYCT)t<H*Rjr@Q|>e^QrLJsYICWNwBkO|%yYM@Z35-<#Hyn|+nVoGnb;D$Z^!XP z*AiBUn9nQ_VQPM2uChhp>%FPkuFPy~JI)KR^~>)`x_NQwY4iMDAL{dY3g;{SHk9Bg z+PP;P>$WN8Hhibk4VZVx)D<YqKl#K^!eY(d_a65uH(vi+b99gXKD+;C#WVg(iioH? zu-?m#SbL)Rk`ar-zaXm(5hX{DUJCU0-CP)bRQ6q<vK$NJS@$1e-B)vr?6r=u&k$?< zq33gD`i~Z7mW!fKf~&t4oov!;)JygJ&6<)fVkEKTgob(9{)cTW-{)Ds-X34B_Km-z z|9k2Dg=QNgbhuib^roA4S0yJaGcYhUcrN}l^Gw5p1iQ&6(~TrzD}J{gPrRo4+W!6D z%iQ~ZeY<d6K5=iXP-oMpD~()xu4}AV74*8~V4aVQ*fmkn=w7##CWmhOS#q*4>aelR zIPP5YWZ{$THb?XG_9wrJ3Y_dA({%8`mdd-{4;UHtcx+r4IDKNE%Tl3~x}5KluS~Pk zer}yTzpkj}__?1x%cPBeuL)c2v~Yv3%ht|aK`XcP+9?Zj*r+MHXgp|b`!JJdoigJt z+m4@8O!L+DZ2k7g{r0x?)s>Ch;ckwVVh*hLtV2$`&Yq$bFF4if7$d_LR#pavPL(sa z>vr-)U$*`5Lv!ENtgSX#`;#w7cdAG+Ff^-XnY?PhTw-8wY@ddF^Fhv|2XF1E`M!^5 z`2;mK3DdUC>BYgvTz2H&kzqOPY*+EU|7d>Ar<0xe`({2{b+B1&@=3ERF?!Q)m+Xx^ z$7vxm-Eq2+<lfra3Lm!V2Nwv)W}JE=)4B1`^>p|8{f}LC^q>C|sC*}vk9DbfBiA1B z75O<@tJXc-=oxeEFpsitoLsx|(txTrM^-%x{_{+3Pl(XV`>W6Yzg)QfsfjE{LKNSH z!v`dG^m5tG)Ol9*&9Z+l3wwjYe#M19>(iFbJ0)jsH|y=TLzY_er~i3(d!_vPd*4n^ zogOFm;Kkdp)mt}i3|tvvW@2*VNzBTSTV}Tz8B}cMIWPB~*%J}3IsM>+OE2H59@#m2 zr?7MPDXHnX_g<-s@btZ$x%Nk3z#T@d5A&9Ju0E})zdZP(-J$w4kL*pwhyL!m9=3UR z<(|KMEDWDCPHpGC0?N#rZ(fO+$nPld$70{68K=d+&k*s7`JU~|m2B9ktX%AW=jZ1q zdkY^gmgFfHb^pQV@#5>Bp80jR<i+%43>MryW4HO{nxK_ZQc@w{(_^%zZu8GwXvyQq z!`14$ytT7s&V>ZA-eaj3PO@xwfBtQAQDIE#+O%`K*8hvyZ58zF<s4>_Da%Dd9@uuB zOV|@0<aH#OY03XLccMzHYBN{H&yS2NS!4Y{;}pAY`wK;mq)HRx>s>a>e#OKIFf4fV zDb>r#Ugz1v`iM1abNC;Boo6G#WR_79a<9``y)XT5eRa8<tn1YGjDN0Oy83%oiPhW* ztWH9QCb5(%DR>K{x*yCvcJX6}REUi1yvG_^97-CCjf>^%#J||4+gLc?ap(|mP|(;R zFjX~2k<*hSCElYdK5OUu{x%8I?B%<)@BXoyBW$(u)vEY#tG{cXUfcWmc|Y&H43q16 z|D2<b?hMs`^JD+_ccwE%%x0gx)p|5(V}y?1^2_GNo&r)!oz@5O_8YyJEc`WVtK(X; z6<1jrt=!dQnp8}F-nu;bQ<&V2<g>eM*RS#IG3<&JWJqLSvMaHP`*!80RF{+T<Snu5 zXIP!q-k_kOn%)(0dxEO~i?1NZ-#2B}JsTS~-kGx~Nb*PV)Fb)pK5x+LdtUFQ5&yb& z)~}!8@%(#2wyXbXc3hMY^t?w~-)3j=^OZY4A7e`qv6%OG@0#hUk?XIYu8LfL{dMZz zjoa^D`qV$GUG7hMo?hBInTpj<jMh4>4A+`GS-8||Y1qmuD?_AOA6*ZBtvN|#gTaqm zO<rqL;_B;OIcs<2#coaeep-L#7r|;<?god(27W>Q({pX&l@si2Bi)1TyS0C>ylga6 zOHZ#T>ISQ{qkxEGfXd8CMX|1xmFfA*n8YmN9#qcTU2|CO{O39CUyJs9=stW|`}^z3 zb9;Z+IZaUU{IT!HKEAYkhecDCos%rjyMA)6wcpv9#%{~sKQr2PfcwwWq{_a>>;BZU zp5CZ)x@h|U#D~kpodi6bF7xP4JeB%bzV^il`+v*di0n+eX&M+cHA->$k=N-49!ZOy z<nJ*kJ$Xt$KXz-{@mp65iftJ7HaGCI@}Hi&%I-XOOw^{npP|>2w+X8U1+C+an{Obf zqx$rg@a=CO`Pi3+D7APrrDO<|noDpVv;TUg_$TABJqjE)$2aX;{cp$e;wvnT98D@7 zO%5l%XDfA_KHM#=;;G;wz~Z(qjODIzjQstgACJDhJ%0I83YY51&o;+qJg?MAnD@Lo zO4B#c#MM({)-p}W!yY1BoW7nKQBIe6-u}MzbnlcI0(<|Q-+gV({T(}t{!SKNX&@<4 zut4bSEAueF*k6yrx9{1I_Pbkq;qoemDn>^6l05zDRljWde{M;cJLPBUF7CYTiyz%N zQTf?*rS6@j%VPUk57xcf^6l50d(Txkn%-UdndiSQ=FM>?u?-D|hnSA-d-j*<-68YM z4I3Z4zSMqT#q7V#pH3~bKPs@S^KjI@_1f02rHs8qmrlPd;`*cQwW`PczpVTC>NC5R zcyulEu<zS{cCq{29d9<)*4Nj*JtiNnx3^DZx2V&E9-mA5ejd7V{F=<1{YhW9iN`lw zywCW8lclD>^3J@=&$9&-OJ=|0P>epwd8RNkQ`k8^nx&&ta^3aWy6*koBtQIh5mK@I zFfWRu$zjENx2$84w^lh%Rrg*y`PgjtWh|=GCaM2PJGGeqZO!X?$yqV`p4{T-t(Y=v zO?CCxEyu6R&H4JKD|dBxpQK^Tn=S^4t_NER1R`b5O}=_nrS)?A>)pQPEfb!e2;6&5 zCR<MO(JdvnUn`{7xc7C&y6&G~GSx`eR7>^O?8UtIWpV|YE@#>PJ(g+y<nI5Q|6YaP zvlUtr%EPMJd8<5r);Y!FXP#<zd7tl!<zsLbWU1L;vbB7URlM@#pqD4DIPV@VJ9gvK z;eJWUM4JuUUl<vwRnMLsYwDc#;zpdH%ETFyZQjgkxwNWpZv0h?yD<jWjH<5r2FukI z{Qmb!+)QNioq&9~_uCWIu2#R!Gm%<3^SsUWrx&g#O=mtZftgXhLSpf%wqsqps`j>d z`d$hO>6gA47<O#i*51=Cd=`JF&$H`Hd?I^av^(|$!;v1N-Z}GbWqr-N8y$N63CA%l zx4SmB-#gvE$*!yaG<ChKo|(jI2`-+fo3~dl_m#^3b@<o*y+7Wc-6OEE+L+--W7OWN ztv5`+EZp4BXI~R?{o4GS9S34pf7x(n<}B{DVcB~;Ezc}@ReSR6ZF~2vzT5BqlX2uJ z^4I>eZfljzxwHQ(*DXoOcXmE{BIN)21;HY*;n7j?fk|_$ts9>5cF4b%U+I<QVHPnf zH~rj}4SN#Iw3zRyotrQv!$<Pt+jGtFa{CMnZ?6e7v_0!7q~i9ls_Oat&kPJAa-J@Z zAx7~|lQ%Etap&0o_2t6%UgytA%wIc&b+!LOg@qbk0(F(@>FRcdH{Yvji#W=(a`4m^ zu*iF?6}!E$c&grdYtzW|u2+x!xj)zZKG-~SruomyYqbA-w22P-<m!1+TvYTve^KD$ z<LAq+UfHo~6?0I;2@esUTRmTHoY^t?>2$l>;a4xc<NKi{wC-fohO*Gj-bMd6|K^j= z=lSueoukRYyUzNX{CPjUm3sRVZ_fWN$J=iv$-pAbQj<_%6JNIR-J7G`T$WQOE(+IH zskJ*=^+n?Ly^pi!L^}t>rAXVR&2n0pdplmGOp)1L;MvB)mz&*o3hb<{zxr^}vW9r0 zelNe6AFrZPFP%u$umAhbeR-u_O#hYNCYd#F_Q&tGES&M>-1NAgm!sd`n4`B*o5>+X z-~;1@JBgM-h3n3y`I@YDQ_FfePk&eW)m_=;IXPZILSF)`BTUZ5l;3UI_Sdz^`UCqx z#RUc$#?MlY^z~YozPqHp`~2M937k0`r?<}9xq9B&U2m^_-!|ph-hu~C&AJP^<(+C` z@BV$c@5~>4{wFs7;;p;btBW`qHn1_;Yw&IVopSZ(r(0I7bEM`j>VLOR`BGlxt5>@2 zefJE0X2~b01*rM|oco|?`@6g9Wr}r59+zzN^1kdboDx^LU`O8VeXDjob1>Vd?D1*W z{ri^hk3P?~I#E6E*6)Am>6Ugzw---j`S|;1=IsA=#&&(Xo=?4=S6z7bX7|=4an=Tl z1rueR>P#mURo`6IcI?zIx0aSA6{T|mZ+d6{j9>lt`TiARr{C9YZ(GE4>3YBq(@n{d z=NlK*E4GyEy778_yvd2Bnj*KBEj#t<5%aN~#U1;0t>)h0V0vlE(k+UXUXp8bvNuef zw$*HlMF>}C)Xn6_I~s$IOI%KWvg=J>>}@`A*>%1>!TiQ617?_Sa^?tB`Pw~?Wvf=& zy)93kB+fd|Kd&<R_PSlyuALD)Z0fxAsHDjzW=AH*{tFED3+Bq@mnL7{xvPr*b#Hf| z+VRy-FEzGqS^cZ#t@ZnJv%Y3{o!ZJ=m2`gHw+45PnMrOn!CN|~oDPwcY>vOx!16(l zr)5HjuJJOdRH;hu=B-=Stlf6;oQKBRHqH}K8k}=0e9I2~SaWK!=={2}KQ5KGKUDbo zOi?<-bWdH?vHJHJ5l!dXE$>gvzRmsmw%$^8p3AF47Kz;C=BN-*5%|FI^*ysx@|DEx z;ihI`<|b7U{%Zm)Yi77DmHBa8@7UG)THmv$-~Ib5HHjxA{Gh-GkELcMTg<1)|FFrb z(i6RPe(M3YJ^2%h=H8i+Hs!U*+uXiQpSEp!#Wzj#ik922)d#!&Ea)-nnKf~>>G5eY zcApCmo(vY9?i2VaB6&xfqd#N6z#>f}Yvo_tW(Q|*)$aL!WA^Rxd28(C*IraRCei#M z`m->L4Tlg%Ma!>W4Q16ge{J&?E&a+n{g&XP$4OH>KT2(tzt|_>v?8<m;L^Rn-|sE2 z_3>e_z96S1ANp7PLxVeqs%m=e|F_Gxz4AJIMRTF#$GhqofsQA(e0m|W*v#+s*ALHE z>&?~5UY%c>)Dz<6X@9%u+n$_56Q)>HeLJg_{H0U=l-=JyR~9PsinyxGxN2Lr$0Fpb z&<DGqwq0dDXXb8pm)dfv)_%&~&B^bVx9=<4afj1wv72Tci_?K-g~kT=747^P%Wq%4 zaxd`ejgoyUPrfQy6*{RU;_8NosZM$ye>2}Ldz5mvet+HJCHMX23Eg;BD)50r@rXfD za!Jz1b>Am8T%GxtY15g19N#uBa5?xw=*zJZ<;9btZpDf|zvVY=yXh7S+cgTQ8Z)o_ zPp)cGS?sRTKiAqit0F1Z_w%_!!t&x_bJlM+6w<o3f@8X2`fr{Jc~0Lx-`-ut=S~!6 z2Kv68_W#Y_cfD_|yZfe>Sjf1o4O=hv_KGbixEGz@&vkL@wr#)u-f=ye`gdlp0!NFW z+l|vjV#_Zlm2bKIR&JUq$C5Cks@{<06Z!rfK3Dh4=c)JWNoN<!*QF@Ceyv^n$Kgko z^sD`+*3I!deM&S~(COsKoBj41H5-n;zxnx_c(vKFyXE<BWVf?t&D{I?c}7v=A*;P_ z#c%6wmHn1xeJo<>gc-?G(iR^QS$biWr2V~RE$b)B9-G#7tc$t*ob0b-*X}F|@=!}V z?k6Qbdvd0c)UWF54h@wpE(e&-e`c<lcJ`sJRm}GP1#kP+XIsX3bQ=4gKQ+fH@68fJ zNkzG|d5IEzk6Yw^-TZoQ!t3vo7B61>w@$BvA&KqJ%gf8n^X_D9jau$A^V0!l{t31` z4YF4n(k<^jEVI6oxBGN%sg<oxw?LB061SrnAw6y<Coo!e9NbZP{M@eZ=BoVCzXR^g zHkxU~aQe^858M^~$3OntKhK3@rjN3iUX<L8N9FJC1Z?>~zwPBtPX6bu52|W9nD+^v zFWTldd+o`z>@B<2=CueYFYIB9+!B{}!Rz<_<Xe&-rtd$#<7v#*pO57AWo+wKK4Wsy zxVYw=PruY`F;gqo`IA=2W<CG#m-~lbnfmX$ACDbAE?sYN^UjS|E*!lE$K$3?n>E)+ zDf`HWi=LfqTdfv+{U-#9--}H1p8wplXHV+sX-k(bT^qGE>)agB>G*fgNls`uE>UTD z?(inL_1DjC%3FW^=|?MDxxVLuPArX2f}%8+Pvz?LQcPsJ*!S{NRpq@;hx>cwYu~I| zwXg2bTW)bX-H9H|TR-R>(tl9j$5HX|X#4iO+uy?1Oqrb*FH-urL~BOw@}pco)>-hs z&M38rl0E0mm%e*)aWRKtlS3Bk;y`05(ZyjNAzYpBW%VWp#Ww$+&UnA|b5Ql)m6v&! zpEsMQyZy@5<etnfpRREA<Etk>y3(0e8q;H>=O(#!I%`_^4gF@GAM3JazfoPfR{ivC zztEUfyE49h6%$x|c^R+tG@*34JR{YaNo|sg+g;sff3aHCo;<0sse#>5De8c{ZPk~< z{Ps0puZ9ac#n=D+y07+kRTl4q@&o3krgsY#v^=$#_B`_4@<K~bCQnH(t);0vs*{6? zG<Bz6WV!hE`RxOVXSQvxmXeAU*R$~QUVFT+SS;J=(Tty;r}3tFOx@>jpnUP#w@DAr zUH6}Jqg~U>Hg8SUors?w9$wmEp=Q;!fVuQPlasUZgZjqe&FlE4-+omVeOGSw?d0zj zvT-_pLKgNcOfia5Te^ftH9ezEQIhkhhliU}porqs02ALJm4gN<PAyXu1)XlZ&a{ue z92R@IZsWGUNo$wxJD9uq_cXV_7Dw%F!xLYlR>mn`UA1&yaYEKo7tQG!DO-HJR!$M( z^wml+@tw@Pck`BVMxGz*_N)mgy%<z_F)B2B?aJ*}&2H(N-Prr)>DB<1%qv-ow@6L) zOAlE6HEU|z(o0%Xvv&Hd4#}FrC3#q5Nl>qo<HRLlD_uA;r*`Gd&UQG^tibtX{>=sx zb8~eSl^=5IDk@vHY$@^ERr2yum#B74Kj;$a{ChV4!!F*q@uK2$YLkPC;|UHI0TxdI zmd={PWt<$Af}i&Py(hZocCRHLC)4|qPkid>+kbx(;b`jV^_@ATHaqOvnI})yIIdqF zKK-+y%`BI%3LlQTyQ=<sxNrZ~?dCGpQ4v+&UUUEdIpeX-KF=vmjw?f!gm`&LHZ9Wl zIbq*1n~I>8B^;bK$C?yAFo_vF+bEpOuFoNn%&5$m+_UQ)<CjOD4(`%w3vm;)X|Lq_ z95Z`*{_6C=wbGw$ger7C)V?z+Ulx1)%Ijyf4hl&p_H5Vea@ogb&0!vGHOt!S+?ALQ ze}D3pu=hKxIA3imF>9M;lhFc$9a0@)AIxU^);$dl)ter@_FBVwr{$M@yZd>6BndiY zZJqV%QtT|Jg%iA%dMyoFd{KgjZS&1JQ>ILrH*XzR=yWL)-{c<VIu>Cg70;wQ<=Pqb zy-pccP93Q?Pl3U&U%#eJ6We|F-o=ZG98E`)Ud|CszVr2Vol=KE#+qCHI;TI`=yNo^ zpAjU$GVgiqd%gRLYNzAmV&^@t>=AS_aoUnUZ{6vG62GT4)blAmiSBz}c>R9$^_8*p zm+BRN=zd9eUz{zuUoX?abrPfPRhD&Ti}qHBXoUs`Pkz7g^wU?fTG^T(uHAm`)t_tc zgTENfd~=xJ{>}3_O$rrz<Nk+T(Vh4FZwJ@^7bRBnp66~Wkacm<n_et)eWuL8WV6|4 z(~1v>ufF`!qHpu<w~X;c85$y7>#v_K-Pt1=_oZs@_1C2>Zzrw`TKT2I#y0o=!J3`} zn!i@h$yl4{s}>v^JNJEIZSCHZDMG7-7#J87K6QwFh>VQn<>d_x4Q*0*b8m0;t1By$ zLYWvC7+mBo`dthb*;@1S6R)&ch0VM<bLPCfyu3S<lYxOjpz=u0LBp&oD|n^NIwBZA zA}ia%`a?i04i1hAkl{>@2bc>>N=lY21A%*`*JG2eGchm-a#RH}JUSpzUQ(jaa_IZF zLIwtjQx7=g7#J8j90WcvFfcf<G&Qg@Ffb?yu-Jf1Zd3p*+HT-rVdMw7O95d#1IRcg zh}OgllVeLtw%kzVDV<;QsWWW#T+8BRH(Gfbyp~4oud{X1u(OL>8PXMdZb8nyJvVdA z+P_XX&eiJlM(EG>%*)FJmEC;i*+jl^`lCMm^ie%VmjwnK6&IGr?k+oe{CIo#fzv6Q z(&tsWz0qP?ykLQXv9a+QX1g`HH#e!8o13p;mTO382>ycN^hQIm-E0OCy1Kd|u97@# z8@YFSnVOp$^DMsn@`&COt*ckAs7yY&C2H-BRtAGD4hNXQUh%sKp`$LgPrkg|A9Vg_ z)>glnMo$~r<rF+OonPs1`!%Gpa%X;9<>zO%e?A;mx+1Ij=f*#~yzSNh|NZ^^>@0WX zNx`H2Z{q_3HsszmTYr7_)Tv*8Jnlc8Vl**}-GN7<g|qLmn0{PLP|%~Io%8B`y<}$R z`;z`@@ArGzTch@ZmUun2(EF0=&hvlU{`0Tb@86ela#BE;bmgBL|3X7UyT$eMGBY>c z%mLj*T35GEV=A+Pn1!pnnU|N>qQ#4ijg3={ZZ@%U@B8!VwB7Puck@~%M6I3Xp(51T zvPi>_t6!ilr+)t7cK-0Nu(lnyPCP#TEk7sc%-OTOeSKjoLo6*VeSLiwh43{*C_Fgq zR$N@{<ka-O(8<Zk+uM77u(Y(app(DN$0N4i?`$r6d+Xb`Zx^P?1pc}4k7MDtZ{Pm> z`Lk!wo`7jm6aU=!C#>!Vx`;<d%-hrRWO#h7Y38LR0@ryOb|^eJ+;%qY^_%lS;4;N- zd6mt)i;LaY$L+1Uyv&!Y_0in&dz^)5Cm!j4+i!SpL*n5_N4u|Pm3FM|wE?+()22=3 z_iL}eEh~S=$WSn~p+WxAw>LL8gN~%}o-Suy=Cd^Dr{7NHmKeS1UQ1tDrEd?ueEIVH z+HaA~2OR>h{Q3F0U*2Bs(XYdI6}HzWCMMR@)RdK#b)4>#Xuk8$&eGB{f8Wn%XJ#6k z=iQOmbc#`eYk}zB31->X)<kYj`zZ&id><Ta-go@#*RN`mSH7O3Hu>fC;M%v(FJHPO z;AG<KtukpssGKC*&cE7PT3y}U-CbQQjs?5#mfx@aeymq|q5ZUf(oeqqf3x|#iPYI1 zNn-)0#csV?IyyYDFBy0k3s~gMHf`D@B_*|L)hZUp8+)t2Us)MkYp<`bU%oTuu3v6u zX5{|5+T!BP3LMsDZ)O-IHmz8%u;=H-zteT2r_Bd}|F^Q&A3b*L+4JYlyMCYTe=9F5 zyEplGUt1en`{BTd2#cyO8G-SP3=7$8Z?;a}oPK`a-*30&`qkCd(?32s%HpWdBBmSl z<<n{X^punmYtS(uyUX4tMVeV#gYJn+wAEVi0+iOp^<pBn=gDqqlu)tX_TOE;c1!vD zxc=kDd3ScW%h!rXIXA54f)*SPL~MyKKm<N8lr%rDY*Ogz?*9E>WNXyk`v3nPOl4tU zU}nN7c`mdUKR>4%v*SXFQKrePJ9q9(nl$O${PXi{qnBUqmABuwV8Mdoy46>Iolx#q zQB}>{dW)4??8>!kT_F|>4_2`;@;k`q?R+Y>`s%Ft^Y_>OF6$|bi<5IY@v_8kwps7< zpG{3oQ?<kYeeAC<v6{Q@r?_rZNLbjngY5EeZg2NreDTaI)76U?J6{QBVAvsbuwWy@ z7q;X-51RS!mEF!g+|KXLarN3Y(0wHw3(w9r-yO3~H+ox!iByY#Yaq9{o(qSlxVXGk z$%>sjBbQ%RY%$BdB_c1sKlSu9cKMosE7utrcD!;pz<fcvNkOjq&BmstCeXDfZ*FdO zb#)bSRc!H_Z#Q@H<j3CSEf;*v?>?yxh>AM3Y0brqH!)1d3%`E-x^TS=L&4PM2KEK! zWxH!nP0=**y<d7g7PLmbiIsa^)ho@G3Hr~hJ(mXE_umqgo0F5{?A&bel!@VhXaTQW z!#x>`f(K`28pqdsJR1M+)AXO8pI`p+wDwU?PtW`P|L>)3{s~Go`IYnBIeI0Hm#tj6 za?6%0-#_o#wTn|&ZH`5u)09Vy4B^Hc6%19vqM}c~R&CF_TlMkL(Y4Xr?f(Dy?6-XL z)~#RP?S4P)WJ>v+!sFZT*F{G}%$PoXd4Pt1Q)Xsnx0r6!j)I5p?(XjH>Uy{Hx!mr% zc4=oMHpa6vJXpod$nTJ^<~wUk-rZfI+F>c_>Cc}(e}8kcx~694yE{9%S|2?)*vzqT zXYq5r_<c2he|=SU>-k{&w3**-hGDW>T-?34+wZTt{<{3#ouA#Ge=;x#FtHqqcq0X> rH3bq1SnySE0v}MS7ia><UNio+FZ-61kv_ph7G$!gtDnm{r-UW|VhbcA literal 0 HcmV?d00001 diff --git a/man/figures/README-example-3.png b/man/figures/README-example-3.png new file mode 100644 index 0000000000000000000000000000000000000000..9a63cff26e675937ecac1665d77d243d60b792e2 GIT binary patch literal 31206 zcmeAS@N?(olHy`uVBq!ia0y~yU|PVy!1#cJiGhLP>pPER1_lPs0*}aI1_r*vAk26? ze?<xdg93x6i(^Q|oHutX9YUV|v;XjXj<GQhbK5DUjT|dEns(^NT;|%aUi%qSMo`t> zv=ZMfF?pYSU&LiDoN#KXPQAIWZ?MSv_$!;D7Y0QwTlQeujAzG`niifop!599`+nxb zCzR6D667TAuiwwtUVN_RS>Xrc^XDXZ*g%f@*1A-dfq{Wxi;YSJ0|SF~3kyF3Lqhw6 z2aF61Zv=#F7#JF4otoGg7&bT?-C~Sbv1pOgsZ^fBCsK^&`dz>E(PqZt#f$xxUw-{n zBsoLbbzz9s*DBktrUe>43p9G7wrN<EyttrrzOii8UbPBGfh94=HtC$+B&45bYc$hm z{q@Vdi+e>{WAvU^%DFlQh^VC)Np?A15$j@l<5una!D!}^6Oq$I_s`f~W)q~eP@3(q zfd-f0VS_8l0)hOCdqrHMITq_4QOHtGY>>@ZFTZ%zDlN_Fg)+-Sv{d8nRLz+)r^HJ3 zu7O2ga-^86W7g}eE8R{@gBEJIXmBl_rpu+SzFe%5Z%eR53Oj~}v)0#sU<f#Wb#?f3 z{dhkPPHyhm#_4=-3m6)VR4N#(1LNZ6O`Yn>5vU=uC7F@o*98}xVdn9Hfq|ingHw)y z;Q*iFL1qSq8;U3ay<w7U!`v4a79O7LZ|BLu$-}cmmYd;1I}3k;`mWN~+lrt2-3r_? z<Lc`0_#Fj_XJ?siVP?!&Kj8u60$r=ZM@QuA|2SH6HI(txeqgvDHg(#xS6{1c1u|?& zUU87wA-d%Ew_KG9hU^7w{0zB)k&%)@HVvjAy=Na*{yR6<+G=iJnF7OG2_YMXfU++y zF3Q*aIQZqvT<h|RdG1Z@8`yq5U~JfAe!u4Pxw+Q=f1a=JNk4V!6o+EQBK8ezSsxf2 zZhn1z{dMRyZ*Ol-#T5scBbYhm7&NpsG*(PM9oWpiK~Bhq;lh%O8F}~jt-YG%>pyM! zbm1!x7}qp|Ja=xsy?w@o1&+;Zs;a6N`;PLsy1KG8FO1W>o?+4=(0s7L%ckL|!3n+t zei>VDtqxy5=@#FcZ;Mu}=rCEa=Ch5y+>5VOGkN~|GDa|&Rxm7BxnaWu6ORwax~!vK zGU~Lk@H3d)-BsFc659;&2*`sMLSkcmXRSN9m|yNdlE()IhshC<>&?65e7`VUb8cd1 zn016De*LmMs}p@rJ`81yoN^2qLctcl9xz79fV`2i<{)=dz<U+PCiV?XAb~3{Dy(=m zF+)6gB_ma~`3=LGcGX1;Z(7>hkN^4knNx9Z_4j46-I7wiA0$%P6Kp{#=i`gT{oB@u zzHsdgyY{up_V7lwxE1ELd<;vRg>4xwTnTBKt|`Le`-LIQ0puhpS^wjo_xP+-0EIZ% z)|5AS=DEGsUw<uH%IwH1cYq7zli=XRFF@ff1ajAs>#rmGlzH7Qo|Xw{X5YXC5<BvF z&z+5Rdgj+2Ond+hotIy$W?pJEi8$#e<JzxQ#n25(o4&_BmMm+2Q!#J4>56O24UrQb zFgB<q3)k+=ESeK@Yy(f$2L`djUS$krPOGnqiHZt3&6zXj&Ye3M?aEU(cJ7Olw|RYH zqmd*?l{2s00lzu+^>yGF=FN)dzV_;C)z0Q7lNs#ii*(c<Pk=e(qs{$-39{!uujxrn zH8Q!#9Kiz$`bU-f9xf_<^rS+}w1Po<OPKthiOTM5{Bk<ePal;R*N>Ysf4;t4zqGlY zo!vZvqHk|*`rG|{^6u_#Ww)Lmx9|TuwkaoAo$)~2%dfxOo*yihIerQhJ~6A8oNsDs z3SAvG^WV;Udn$`hPt%<V2KswGFe$b?|M}(17t7*jHNRdi7uSzFbMj>7D;0(t8{OD% zcKUvq({s3NBZFA>PnQ4hcE8{E>6CWX)>{?JcI}!aaA~14`_34>>8CCGlv|!Wd$w!m z&aW>oyRQs!b9I%qso1b`GDE`gih0v5H8>8NTyoK$zPMBFK$7l#m;bl2*9$r=TD-V7 zy{o&MQ}Ofj^ZMG_udlAYep-M3ot44MCruKHkB|Sz6d!*-dV8Lrla#IIsx@ow>?~eh zac6h=`vnUWG!Jgj(Vl!#MpicZL2u;o8_|y3U57dnXKV`);W@k|C(y#eqJv%LxMxjy z?m`U~#{|p1$)`CKk9n{-PB@vm>9_y3RoenYlwQ><B$($I^2aT{$imKk{P^+RJ9eyz z+4<?RzkTekl1x|E){proFJAok?(XiE32y#fTH4y?d3QAA{AZix9%x{^#602T3;*xp z(fS$gjv-p2Zv_HGN~5-EOz~P;p)mR6nX2-V?nPw>Y|^DT&wn;*ZAy&ndz>RF_tn4k z$JX__e;ONPH@H6I=Hc=2@e%1i-Y-9Y&Kw_(!m_e`m7kYYY+AMI)XkeaS58*q=kI^> zCg*Yg(xpp-;$}UzSQ-==8F^Fa{o$g#yu7TfyH>60O5#ac`|jS}YLR4x+{GFZ(?VB< zT<Jb^_3GBt?nme5T0d%ZTdb+AJ-Ns`T7zq@-|-?D^~ra479W?`7Pk5+>pX#=$VknP zdm~orim+zB^mnz6de0Hntb1(5^XJc{+b^6>G5UBqbGlwE7Z=x&$*rxeps)cY5yQQ4 z=TBMq>8-xcuK!q~&-9%bKf|+4u1)((Ux#I7WqEpbDsWVPf5*$st=#hE?d|O=R=oK1 z^mLQLoBR9!cdF0JfSIu=XRl<T&3R*;(;L<(aEK%`XI#&@=<@%^<No`5DnEa{9)JC1 z$=_dJg_oZ!l-XYL^3qi8@GO&Aiq35<?d|5JLJUh@Tw6QaLg4D*!_8$nX#&3=NPgRQ z%If@Qo#ToJnIjf&71~pHWOv4=CnqPX`>!ka4G6e!YO40qIV=rnr7tc#JgGi^iEQi5 zth6JAb26L6XTOLP^Zmjw?XXoLgF~>d-t&mdYE_1>jb*YvFiZm%nO~}G4_|$s_q=l6 z(}=cIP;mn;X;t(}4i|m>{XkOk*8|2iO`yWqR3>Hl_1C;?%`?8jil8eJ#XDb4DgW5; z)S~U6f;GcwPzhvex-+KizD8Bymbp7F@PbQ{CU%CbtfHTPYd>sNk3>>gI<<6K_L5FH zPywNEkeR{MbmyE@>1z)p`%)wMIOPr`efb{9+8_q1t0zx(=J@#So18^~!rKBB!*2&? zhh2M}^<f4(e*!D0R4)Ab>gvtS>B69#c-y<l{AF`~%>>!=*_p@KFU(umDaWwF@a)rL zOS62lKD=mV-vFu*0+P=>)w#WaUyf7mfEK6__FWu&FWZ094PU+kQXqcsjQx_+QZ3Kj zaM4fuRdxC{W5Z5RaVj-=>Kmym4=no<C1Hi#3d566zp~#nz2hv#a0V1wS0sKvi0oT! z&p$79<7^pljol!1S+elhyE4O-#xmV^pD?UxWZ`GHa^>s6(>s3oe$nZ6EMvF^sxq>A z)_z=e_ie-rwgs*UE29{!FK*8Vl^hrQ4%w((esZH~_en#Y?!Ye$*Bp4|7*?!&otM9c zUvBqFMsVG|V&%!FI+r)Fo!_KWHko+?8>n3nyg5Vmw4vJWlUL6+A6Kwu&<2O~*1K<c zZWq{Bh;iR#h+yRe8`Ye@LCiL66Y~a8Jroce+?@XIw#B-<3|o*{pxP@S*+7Cr@y*}6 zZ?}Ga5ZRPj1gYk-Uj2F?ty9u0Wz#Sf6hyObWfsL8ma>_)iWOp1a#VAE$%MH#+V~m7 z4g_swD0_6QS6aU21EXTffd<CH!on?wCoV~ovpH^LwC<i)na->i&^E@YQ>V;wZ@F*; zuD<$K`(XFt7q7n`EY>-^u}MLKhpjC!!;SNT9VB|^vfn=uw3R1$4;#aoR#4E+c&DZw zcCB;9Maeb;p2HhiIOPrmfunWf?zxGPL9^di&P$J+CU9tz45&pQ0uHImI_HhntkIkP z*+&1`UCz^2VwoAzKuzbYBiAb05^o&K{s5}S!Kp`?qiM#`qguNS4|dxdftpUB2FHqr zm2qbtEvx;|q+nngIbYf11H&}1eilao?bmPqnpS*t-&oXt^bLbfGsuk}Y|a}bHLYI_ zY7bp|V0eP>fK<duz5{+1R#xBM-kvUSX=`@)t&JY31`=7jZogKo=u-x@Lu5fI{^I8J z^Y8cl?kf{{w$eP|-VOHq1y5udW^ns{VQ}bG;4p1|<0H1#Skkp$%BJBdC{m;zH&kvs zrT0#vyYd5rE)yum4f~cSr+oeO;GzqEg04yh!-8WLC;D<r<ZPM)zd#CztcrQ!n=AI( zRa{%b25MxS2B)1Sg$=#BC5IRA%N@u92WjC#>9(gGClz+zy8Gk;JAcB?Z&v*GjvjSA zmHJ38)JXF0_LU)8qFk&;8ICNP5Rtc*%QcaQ*;R4+>7%_#Px-i<Iu<Wp+}+K6yl{@s zvJkDQeO^u-UQ0JQwp{5xB*FI8pY;asubJnK%HQ3YSR{G8&}-?YO`A4teOzf^Zod81 zt5>U5X>}PE$UJ}XqT>BM+b+Wi+X6*&POl2ldgc1?)vK;WD^{&i;!)hneeV9=>hI^~ zT3@|-wIy-Y>eZ!Hwu(>A&9xT#e{ZehUJV!B-zy7>i?b&_cd%|%t72GiEamYIw{OkI z%Qk{@<_6)PKYuE__sLimJ+Xej$JttJ<*R20H-G2fw0frXaltog><KHs-E!e)_!<%# z`t;c|Atxp#ri|lCQwwia7K+r~Rj>vrF}?DDu|aCy^P@U>yWZ5?y<^$42+|x42o7(a zZn{a{Mr;=&G~ecLp7|^LqA@6O@qwf3rrx%^g|n-EA6(4FpCAc}uw@rRGkx7IDj#Hy z04ot>aa^<e`fa_iISTESAHeQr$m-dBvUBR!s_cuPMhm29JD9LyreJu!i0!hIj1jyb z!yi`8%Pf(ziQYaNTss^DH4+aUKAimT&(D?#_x4s_?sL_06gbkG^m=_tyJHzcm~#{R z2H}3YUl~C`LT@$BB(FKRIcBe8+1K&~j10x#JeiqgzVlXVo<Wz~fg*4+IhY`j{h>u* z+T$ZJdK^tV+U8m`^MUFoM^FvX6MT<Tk>~Uk(~GBHeFHc8c|dtG`AxHW%LbYBO|d%e zS+ie&>K<^`;b>AQ+b--R(YN+Kdw(Fby`9ygeN)g$V%pm1?t3Yf)+!YYkOa%t>?q^u z&XJgE>igx`)3+PMY$0Xxtlz&LL{3(#Dpa*@Q{+iDkkD}BxKIbK#!6RT5;}BZN7e14 zLQWFX9EEKgQo$X)2bKF4Eou^26rcfWB^9Ww3~x5?TV$SAo4i$y;Y_QPO~YJ^;%7b% zAaG!jYd0tbC~%a1evs{cQQEvyT}}Bt!+{uZa42x_hHo-nd(fC?)(b`*P`CYx#Pvn$ zEe1J%D?c1bskCM=5C;W8uzA8ffoa(WUGoIm9)m*D2&CP2uUb{%gt-bFIkCKQwI6c5 z+xcYo{r^|JIqzbI3D4mt&z@}y^0*)ZN+r+!ovQNXjaz?x^D)OVp0G{X-!1y0_f%}$ zz1#Y&gPhe2HFkz865?x>TQ<n3Upb^vRjoAn<fTiOGTc8JIDsmehm~=6e$5p)RIny) zy?FG?qi>Tqg=(Zf{C>Z`U(R+{^6|dEzrUY9b;@Yo{_5}Vy!H1!dH($QqenubqNR_I z@qYX>&$jy4_xJ0AR?1bs*~oAIXTqKPF7Z)OR;j0^oSSRSFJ+Q(eO)Zi;gGN}A*Uxr zKi}QmUH$#t+MtzHUtUa{In(p;-doZjUmPnjw=DFP-Z*vNx=uOmn}JKiR?n~b<T>y8 z=1rR>O`7!V?Cj-XtB=O}&N6v<sFi!RdH%n5yWh)IKA9M}*lp_c>G8YEbgitazPz|- zX=z#f{9NtVtKs#(UaDVa?~}LRw`$d^*X#GkZAv-Wt-mkh*Xqj8&;EX%|KFzU&5Z{K zo99=*+xhBM*6qFi(4wJ4)w=C*59hpt3cI%@zP`3LG&FSP%$fZ*pEwj-9`EQBRu^*W zle7JGnBRWNlqn@|ZcG%|lzCY#KmYxiGd}h8^>h8cAL7<8d4I3=!UD&G2M@-@#T{Gz z_rqcS<$iOuG&BlIOJ%J}UVw%Ss^6ME&X2GA`Sit$45t(O|9xGbdwZLxh)Bu%dv~wp z-`EE(kC%OZa5S^X)c4Da=6vaM^K7kCP6!z87It#$lhKr$V_zS){PN7c*_U5`ZEbD6 zyxgCko12@HQ_?ui$HnEykxt>-+FDbo-U{EixVZ1{?#9N(9+hwBlg;`S#mvqp!rvnf zuGHVO%%6WheSWPQs2#RUwmamzdIg{Fmt5ZP-~5V21qA}<ckI|vQB@@-Dr&mt>4%4h z+xg}HJ)50xmUCl6#m7f)Z*T9HG<N$l)o*#S#IcH{g?pVIACCUVYjX!wU#MG^y|G9< z)WRvOCXwxwJ70n0*#D33<x|q<sI{L>%XoEl^>zLIf0Xi)TsSO?o^<>;FDN8b^!eG@ z&(F_yKj-G+I&|pJr%#_YZQdLl9Nf+?KX1~cPp{YS?~^o6yS&Wz*m72O_W%EWzu%sJ zU#$Mm)9LX!zw_j*KzZow-_@5kH7Q)lU-bNfi~r@#=j~R9Xf0m6xL?Nd)79|!vonp| z@2uF6etzC$HQ!klg^&LI{k?hf=Esj7y}P?xTuA7U!I@2|r?0JvEdKW9rmS_@lP6Dj zq)bly*s^?not25nm-Y33U$5W)Z&&v9bz8Hq3px3`{&Haxs4kxMJ8aYBnPwNS=bAMy z&C(278DeQ^*)m~c@^QV`T_&ccTcfw<Jz8&;e@{kI(lY(r9L?ZmC9kez-rrX%bG)^^ zegFS|zvXK_96Zp-JY6U9(<N{HzmMhr8`$+G&akciCg7x`q-6K&#p3Pv>t?4$y1Tn; z<-bjAu&ZEL(DuCYaoNU4bstO@zep{u{gAO}`D*umx%)Mrdp{ocoUGQ#t~K@5<9_>p zKOXnLj@_Sdu!)shY{tBaCsQ76-*V~FrT@S8|G&L0clHgQ4TX=7<=x%YX<9MYFMZFw zt5-$uzlvf3l~&0H60eq>JZUlS`W2Ilo4@PkyX)Fz1p4{;fizctd~{URd)kyKQ}+CR zw|jHi*+sHbY(XO@0mb+8iq@Po*}2QHOu{waUPe~-`<t7eANSjry}p+F=t!rqnoq=* z48gYx-hhTD9C|b5_w2ao^VZ3H>*mcDT=L`Fc%{F6K5u`y?@?l-lnuj$L<0#PHs<6v z&Ce}#N|-M+fr7nn)~Q_^+0L77y2*2TlSDo%qz-jnGwXV;xc1|UdFw4tUOU_D4l3)x zsq)n6(?>N=-@AA3ZIYq2;dJTk-KMfB;oE=lf_gjLiU*l*bgm9xe{P=bYylxz*}L<E zY{Iw8*C;Q3v2l`Y!%~Qic0X=S_1bvTN7|(NTaGsS-rqlef=V7;QT`dAR`-jF0N#14 zZ|AUa&Re7%zAog>uCHGX{F`?7-{qb6_2Ty2*reE40!pdwZ#90g>y<RCRo$wxf405q z-hJKO<rmfezu$fTQ?!}f1ir;D7#sKs|II#Gwy`(g3^YJD^V+I|@|Hy@A08Ym+8Oib z<C~kC=hu8Xd3SfYdymA&?fd`w#$-hO@?_Xx|8>@j$a5tkwxFg*7<`CDvYh=<rJb#9 z?YTLY^Xq=SJlZXObf(QEf2M}mtQ{A8l}#&jLb(%GPV@ipe&6qR+Uxf$3R~TqUQ}Fs z_s*SPUtTT_(OSG{5ucn*#x+ld4c=d`ZAnaxx$9L1YR;^EI{QU@^;=UXkCKutAALMM zJJ+vYU-9Pk>+09nbT|8Tl~~<<zyH6U-0oewv_!Z-10<(6t?_ZI*HQdx5FoOQF`)mT zgeP~~!K=MC=_+>9@&Y^dzE4V>n<!B@Yt9YB^O{eRzRR56=%QfOvEglvmPKDScjA_9 zz0&6Y{(L^4eSKZ-N_I7M_57Qgo}QU$3@Ti2=kK38b*iY0OwOOTH#evM|8;%8oOPMc zsl|Nqc6)MeZenKV+Y*xVOo%1%)|O03Ny#v~<6`oQySljC-Q7RlfQ+i7%@vtCb*k<E zKc63cJTuc+SV(9I`-2A$628vfFm3VT#UIxOs(kDYT<sJnu{9^K<i!O?n*a?FS?jVX zb;@fO{rG&|-t+DJ<vwb`78V>$3T%suiXJ^Na^g^*Y-n|C&GzKpZ68(!XifE6I;l+L z?fF%qtGT$jWo2cruZ^BQabn`EyJtnEq;^$(eI?d&HioS^@%%j7W$9a@*0Rd`MXOY# zr$3)<p5JvmG&J<wxpQfAMRxAmm3ME?&5D?~IK8J!Bd3)X6s%aaDr@2Pq=kL5)?uNc znI=+Qh8uKNhiLik_FLf)D6w<Lj*#&1?FoS)At4>?QES6~$#WcCB+z{2qm81=`s>_m zj_a>?zjs=F*>KN1fh2?HZzC4Jt<f@(@+~bb?Y23a7T=>&{QKM6!pFz{embpR`}^D9 zKcCOn*3@t)u3Wh?`}(@ID^|R?z5V_4__~=hW=M#MiOI|RbIdeO_sht5@#p8~{eQpR zZsisa3kh*?bF2IF@i-qJ-{!Qlt5&R#Fw42|;^N}ZpFS<~pT95r`nm@X9&FjNh2Q?q zg_9>UZ*9puc71KR_32Ie`+hvySNl6+ny-&f%!Y)6KR-X8t{1Cy?SXmTogc@f^DV5b z`Xr5?U0WMH+dTi=*|W7zr-oaVy{UL}V`D=@1Havm1@Zgq9!<^P_cJXt^y=pGcC%;A zI#qb*+S=&*6_0thM*X$_|JgqK+M2?mqO31*bN#~g8#IHLWthxb=-du+aQ>c;Zr|VC zJwMm_``hjJXGI^{=J6qRSBW9tbZs4-H<y-nN2<FP?c5W-KJJ*jx3~AwJtoHsn-n_s zR+R+uGrJ}p*`)JT!bMlwZGGI{Bd)F@T&+irU()4T8|KZS$fNjZisdvx7RSXG1=<V+ znjH-~_M7sp%@56e9-KJ)`)#q5w6wa<XU#z)tczT`<EmaR-CO<r+4JY1P+jgnzwXOL z_w+L}HYOf!+n9Vj@8%{|JG*-c25;`}F2A`cRaI3rc)6c#$%}x3f)CvKdo~n2JOpa? zA8zBdE`MiJ_=x3r;r;smf1l5<my?m1Gk5OZw6n7gxAT|3y7Kbn^7&%%TOPjcxBpjB zSNCtKcKEuuy;cPe4v5E99F%yt)O-4*$&*2iu$?h>IX5<J*kJJS&%tK)?Kw9$WnW(x z9#@%qv`aL;=Ht<s#_5wLP2!Wcd-LGIhbzJUy;7#9&Yyn|s-sVye0gncbWF^h=={B3 zzunF^uX^7nYyFCK!pxa3-@K{$^5UYfx?f6qy1T3E-v9r8i%r>}tG4hf<`AC2YZV5M zgM~52`(&-l-mC~(nQ>gn^Q?*GV<&SNcaDo0CdUNJSeoCwxfSehD=I0eIr(HzP|&~M z_y528`s=t{^_x>uwd?BYo<4obbNJ5Q>hCX?&$laiF~M)Sb=8*@)2C0LKR-S!EUcoU zA|pfNc;V+~XR96Dzpjhj{p{S_*YDrIfAnZm#mA(NDTi<0y?fW&+xzpUPfbltSF*NF zo;>-ba8h#e-aUKn+`XHAZce7n`!{c7goO_qoY_(M_}!hI&Kx&)7C%2T)3~;_*4D;m z-;YP!`ugkFtXXs8#*G699CpUcn=xZY_4jwn-qkuVv`jcR*ZTPJ<Hc(ABA0G1Vmn`W z=h9N|@O3dOFJ`pyND9fx<$;T9-sL9+ol30c78+MHwdTEvy1p*<XtTRq<&l#oSFTyJ zrug}})6@0OpE>j8<Hv^<=kDL%pM1P;;lhQWmc#b@b=H}eRGd5<9S=@acK`K#eWdMm z3%%V7XPf8uNf<iWeEa@goL}mmoS>j#>8mR@ZbbCD3CqjxulZT@SeT28>(8G*N0RmR z*K>>ObsSH+rKYAF&CSIHnmUl<moR7$*i`qoDmf>1cbTr1R@SR~>?{tTCh4@WIlUQc zS@st{_q#0L+|(4dE++E5)Jt{71OKk9O9|gDW}6w%oW3z+?cZH>e|J?(m_L7g*y_7? z?{3ezS@h?}$IHw8%ir8E)YX0a?d@%FORVni*X!}MU$1_9dz({HPEO9y&~SCwTBVj1 zS6|()`@MGM^XjUqxV=@OHg=VtmQ-B$@NLneMJ+8YPft&uZ&jN0>B-5!z`$eb6%`dC z;^N)Mk1;20`jfOcyvvtw-n@C&*To8-7ZDMusH!q6%|Fa=WIcycc33rdoYuX0>Km!- zMaR>Ozr8-t$ZTn8X>)#k<mR+bPfqHbo;GdTuHC!sKb=rsx^$_ud7enPx3qEEnPtAS zw?yT7cyK7Dyt%Q_y6lZb?XN9it7ErhTy&SOy>jKVy6>zlWp8guo9Bguh2`Da;%Rg9 z!#CgAW@l#_KmYdjc3oYa%<;Rs%g_I4S+Qcp+uPfxPnq)P=kxi;0`K)!J)4<s2ddQ` zJ=(NsQ%g(Br%#_gK0cnFk`lA4#B=@i<;#}&%`jNFvRazgVg2>%zn{q4R$Z}}5T*p` zvn`Gjw#{C1@U+kG2OB5Ny*tYw@sRz$kNo=j>rYSD@8;cZoPI7uL!_~>@$xd?+4lAS zuC0yspJQ=xdw%>(AGK}gg`NKV`EzYeq_C{)+sBWCBO+!@n|AHWXJsWNP$9Nq!-l%Q zzihwXDfYc<SN<+$ZP@L_?)?)cOt^6);_|wO7cN{l+AYp6VUTcTMPOiHAiu<2qm&a9 zRK2J1NSm!Ge}8Y{#EHSnd^owdyu7`oZL7BI-@iXb&)>@{>(#wB#sV2}K|w(&sjRA- zA08h5{OQvY(Oh1)9M$adCH;%SwWdy;I(4n=`R1KFcZP<AU7EZ0c;TGIix-!lGG7T> z3-EG!u+}Z7zzsU9gI2B(Z(Y55b=2Cr8QqVrtPJ+I|NEsle%%YXYw^o3&pmhQ-sT^B zC5_Wk>h_kuJJ|ck^!}cWQ9ssRVDs*~@pSp2vuDqqQg?B4v%0f;xAD)?(|O|MlQ-8L zzhPJVYfbd_a~2(U(~63V%irCZIcZXofyARnkB;?7Cdc$GjotA7>m-H+xvMf8*Swu1 zqWw;)_t=)p6B8q@JdjVT+WT*MeBI94-`_4Qbk6<%>fphHSzE1ibbOXyZf$Qre)Q-~ zJGN|4_fppM_o*w(iVI)vTD5A`Z?}t^-)@~M808WccI{9rH>l)qOTL`rpf`Q_^5wVx zl}3Z-D+7(Y_LWVLT|PnB=}Okuzn>o%`o3FeRtcWBxZJmB?;!<ih6RhuCd}Q)7C-sH z%-=#bp!ssiD-RgoxC91X-2eY?zLUrMdwYAG`)+Tl(gw}mWo_McPoqkuVprYXAHTnB zzrXd(z0376iF4=7-p?21Zp>+?qN1Xwm-p+-%VVhx3=49#G&KdMzwhYl%M<6^chAIf zW9PqLca1(e95I-o<{q4pvBGcp?%bDe@7XdP(M@USN)!6?<>lr5e?FZ~Jw1(A+Du1J zPtVNk+SRL9%_cH7)UIB6(D?h;gRfVudfHd|+uAtdWS>^ATk=!BYTd2IauEw=vi$$` zdj0-?zh0-GpLcg#?(N_2_k;RR7Z<x9KYG-6hQUJJoR_=|Z^IWizbUyo>-X;mkv)r+ zYuMZWzxDNxWAh)K-GA@gR4TL=UEmZXU*qB7;pKH|lB#!5P>|h^2hFzC-%4IwNIW$~ z^Yk>`*Z1~TXSZ`Ol&y>t-s_{N-tuC#iB9?bG~<j#%e4(Qoc{DQ@NE3`8C$;p`~7;o z$A>E>_FbTS_4@jHdHcFO?d`{(ot^#s%*@Ys%kS5IJSsk2KfdnMN%fE0*%_u~?&*wM zymvi#sMp&xxViq-%H?%`KDzt+pFcTS{r~s<|7GoJb`*woEuU9)>gds@pPrs(WMo_` zug-8|_N>;t9lzZ!3O6@SPTVZnAa=p0N!}pg!0r6~f2Z&Nv-F{slb@fT{r^A4vtBSB zFxqPR<G0(z$+vQ!y39~xPuQ3?>&5x`_Vzh93@*Qki;I(!mG$L#Xp#5g!oq7gq1+7o zo2zag?c%;G;56g+Gw|@|!eiMVzQ4Qs`^#m2PQ~Bf->=^;^#1AT>HKmw8O<jc4(z)c z{h}>VGE7bQ%de{DHxnMnYn?oKGJ0E%W%08!)8p%Ye!HEYo|?+a&c6M@XI94<X1P&r zZf@Lm!6lE5bb<zdzFhV{)+|=fS!_D*!Rl43%HH48m6PUo(K)^E_qx{AQj81|SG_;9 z2+VX^cJ+0nnC}<<^`Wc7M8(9ctgO~WZ`V^+UYxqwTJcDN!JC_#kALY2TOFz)qWfDb z*X1$qn|JTt+5h=)nBV@7LB@pz^6$!DTv&K>bNX!yFNTb1P76PL27%3W;sv)?ylq}@ ztz33^bJwme_QQ$0BX)m%yZwG!TidVSzt7LJjb40Fz$xwQtkA$f!<-u%mU>Tr_VlUm ze7nDQb{4lx=#@5SV`2I6<A+Y<CYL`pId^xNDkvPdeY^VFn#ieBr?yPEbLY;74<9@y ztNr}(qouulzEx?Lz@p19)6UL%`taeymoIk~J@s-rF-0@jMC$B?h0gwSEDY=Z{9xr4 z>yb8J_b_$m&YjL}Je7|+)opBS-1_DI&j0@>{lS68ySvNH!~O;b2mk%^$Ey6DjGSCt zOpMP;j@cJ0n$Dj+tE;1<((>o`{r~53dvcpu8lHW9b@la+kB^V{%lmtJE|l$7*}C|} z>sPPW#Q1R(76eJ2PY~I=S4&fKrd8>yYipzRV|S@=96Hp>&8aADmJ_ftMBQ(Whp#U$ zC+EpCXL$Jd?24cH1O)|^m3;#Zz2x8D$IQ+bv!~+Y)$sVcyUX8C)ehIv*1li$TKD5j zc7C~@&d!~6f2-!()rPH!aOAkTG1(o`Q00@cm@s2TL}cX5nKNHLcu?@=MWB;MSy@>@ z!H0i;e@n-?aafkUxe=YexAf_$si0=h-12)rUoM{?wkASxUszq;zuWoy=T4p+920YA zsrPhVX|n+B<Lp^B2fx3*{=S*tPJmx3^|k`z0lup#?|#pI!Kujgd{?N^MVI{bn>KAa zboj8dv$JL2Z1enk%vMLs-`%k+e&!P&AJ5O<ufOldq0^_ewY9a)%*+f70`#V<tEox- zo;Y{z+~lMri8e{|yg56X=I!2Hotc>#7Z(>0Fd=GfSy7QuZPD{{b00r`Y}uFnWz)O6 zyZa>!ot6gi%37J|>G>@TaB*{s+g;Wx@aaZ!f9%epqvy}B-?L{<;*8zp@3$p+MlSql z_v6*8tiHz_(*)TX!h&zJ$6t5TH@m3qll>uL)ipm+5fK^7q9yhJ|2^v8w{IW+j-n3_ z4nF$Wz{t#@`1<;K^SJw4v#&2&r1UYu=Vyz+x^0mfN=iwuuB_a+aidhPnw?$U&reU6 z`G5QNt?oeTT&q%{`qPDTZoEA@bBmd7{5~6F<IBg7w?E!twp%j#v1tW6JNrx@HMuz! zg^PCVxN-2{!`JKg*L}O0e);lc-}@>I4XH<1@~y5;Tb;RR{py38b$&f~JGs5x-N)w) zXx4n5P34adiG|A_FI#6)RwQp#@?!V<eV@O4*;Dwqtzy}N1qUu)4z|hL5$7Ek80h45 zXlwTMeLtVg*5CKz(T$DC%l4breUqz+biTbU*ShY{kC&I1*Z+FCJbhlJ+o##vwx*?R ztp9M3z2E-dkD12l>tc7CmA(pb6u5Nh(!ZbQ>u;%;F>FZxdTo(<@6`vKvtGQta${q1 z`I{SszrJLy4cnb@aZ$hBuN5n`=T|<PdEWm2o*g@OtXZR@sJL*?o|->DK1xbTPS=aQ z^!n?{l`DnSd@^3$!)(Cy3oN?+`gQFJsl9I)y}Z5e-n}bd`DEgyOP6}3&0m%5a?`i2 z`jX-5dbC;o>Z)0uAGE{Q`FMLvo9EqmcXzk5lT+FIdw*XppPzSg(^0d7j197@a~G}8 z78LnDd*^!od5OK@O|~CDe~#Xq=37#-rN7@lF)=YJDk?afPtqvm<RsO@ZM?7V?k-PB zc``*axT&e>(xppo{c>;Lzt^9Bdh(=6vv!rgyR$QD?Kby*IYmXqjT<*UeE3l2xT}jx zOIw@Wk4^0C_QlV9TAc(XBrI}oZTb26dH&s9UypPO^Xg06)l|gA#TBbw?3%&;J%44$ zsyTD!I5xBS&ap5wF)>k9efs9+=4LkDRjXEQitOms($$>`nJEmC5%Qckdv<hcs_I>* z#}?-<Ufg&yf7#l#x+1KnH)&1nstVk(YuBo)uiAHN{QLX9UR_O1&vLi>(x8_mR&)KP z8&==EI=^`F^}nw-9%t{k{v_?q|M&atw6wH@ta+pRW9zim%r}sflw5f=_V<Hk32?h? zcg4p=Qxh9fXRSQQ&c>FOmiF)8@AtpIzn8bIGEr2qw!Up)z{qeQiLLqImfCq&%r4$H z_w7sN04<ZqR6D32zt6_jc5nLmdCcs5GG;k9tl#hXd`f%$nfdnj!SNx?a&SlZnib3V z@BQ3Y`2jSgt#o!vm8+}k-+#Z~i|faUY@Z`(Rq~?ze(m*~|11m+n=9s}?{E{^)BL%% z`3;AVO@r&K_t!ps_;BH6$)iJMb#-+u6TGMEB~FiE*f2?f<Lm4fPmP>99{tNKT2i*h zmSM)ynV|mEx##oi_dP5!kEmi=u=eEn^Yg9C^%PZ%jEoEoCze^9eO$TkUftz6F@6$m z3wPzKS~p4Ago^9k@$tKN`A=!DW%)J_z4uo(eQYQ>tMcP|Ts3Gc7c{;W6C0Z=EWi-4 zY}G2SJL*ab3JqmClO%Z9it3xDYd+y}XTMxlUAW#-r6Q{8+ndVg=jKkDEq3qSvuB`k zM68$N%mtq&eH|SiFRxcOH!sg!#Msc@uE6nin%rbf(JsF4YsLCl{HHfJH+wD3`nPMD z=G0TuxY*8I^=W#4Z7rxpa_y1zCng4trUQ54o8L=Y-zpEtzigb8E5|u++U4c`|EvD> zoM+$;b~u?oy_frF^IOx&5AN4|KHJjL!Y!`HBV%#l;K73x|4ypU&v|-);lR0%Hs|lz zckNsJez9z=ys52n*vE+vG^<RuJb!Zaw9fAD`!%!Q|EXD*`k3+MEYA-cH*Rd1@Z`yp zs^_z#s>B%_7PXoFXuIITpRh4a$VSMLVauep%TJ_)^beR=GH{!G{yI}2C@${b&Gh+u ze?FVtGGWgin?Fk#9lA4iOp0|*;+6Yc#He$@hxgyFudf%o_v>kE@2>p(Y*Xs#xSEeg ztG~Z{dwaWo%ttnc14&H^SE5g@Q~Yv}IbzMs{p<Gs|NH*$@9+8=8UovkPMtYZQe0g9 z^=f#okTk;$<9W|#=Px?0@vGgZsHo`sySuAbt-7{8{{CY3{^IBFq!*Wedvo((GrM=q zm4}DhU+S&V<7l$z>z$UC^}*88@_zk)+v8VrZoGN>cJ7oZBC@h~e>E~T%$<D6rGIIb zyxHoowOTqlB_$;>+w)@G+}cbhZ*g{Z4qqR4w`t?d)1c;3@qML+sI_4W18(Rvr2X3! z6BF}lZSd-=S=J>lF3eJ7Y*3AfjZHr@!!Y?+&%?v*m-}2Nwaq?j(h~Tk?9J``{k*)q zU%!8!Z(F_1ZLwm@nOUZ*7cEM<u_4iWy58B-r)S&M?uuyk_xAq$?c2MXn?Zfw*}Gzw zUp_m_^z`Awhc90)etK$Z%Y@I*&#SAbbcpBQ*>Umy{r%zV<G983YX1Fv&Z)R_=gx-@ zA5K>D{q*r8CqKV^>8mLpPc<|!$ji@H^`6#oUuS#XT`2*92XEinW?x%#>eQ)a?{Xy$ zU~fa6Yh%3=(<E<Q_C`8?Pheb}-oJ`}e}1xZi}}njSooEhnc?$~A3v5X2Z7^9k6!F^ z6>2^hkgvMC&7kXE+|(&keCAq}zP`40x?ZdhOX9;rtt}IHrOj4^tP)oDTe56fTT4qy zS{fTWdwP2M`pC`CK0G{pyifM_{`&gh?eA}FRJOPOe`=~WJD-e)kB^A)#ut~CdY?Rb z(!EdS<jIqUYlGx%Dh$-rp8fjzy7t$X$c;&?icikWH1_oLym|8`sGqa1_BWr5MZw2M zN5kW5OW)ty3mQaPv!>?t+U>J;ZBJyFIddi-AD?@_oN7x-dOABhyY%Djy=g*!s^9N* z=lJ;H!-dyhLBoh19v&GPD=LH-4oEdAY`B#5LBch^9<>b==jP@X9RBXs*6eq8cK-YK zPft&;TU<ZyRatrY_e+;9?b)+u!2*S?QE#6-N%_@s<3@zOzJ7W6_nF4&Qs=F$t&bl$ zV!&gZcV~xn`8xrpGJ<WXclY-0URf<Kz@WIK`1!eyA3q-Zmv=j38E8F=s<rj+7Z(>l zKR>^`u<+&G-R0Fck25jcvY7XLcKnMrXZby~S{fP_MNd5b|NDDXzP7e@_O4IQ&dyeL z>k;Vx`}gncUA9;nJ?m5F{CxWKY3aj5tREwMZnp>|-_zC5FyMP6ZIHmAnDY16*JC$! zmA%c1soef>FF!|vz@xWsbKPEUnegm;vw8~;XrlPS!nLwo3^pMuYg3LZ9K5a0&)+{| z#*EO_VS=FEcmDpr*RD*RH*a3}`Z&>k|9Lhyue^12b>-ybJUw0CzVy|VCnqN_UbM(3 ze)WzW5jJLW6K;9V_`1j_uHeN5#kqdZU%sq-d&~5rkE3Jb^5yBl-_3X&{&XoM&HlY& zdmH=Sl)AdQprA`%US2+Y`0(RLk0wo?tRJ^0V>74=<~dXCc+#vnbET}y-t@^@`^~po zdo@d3H|onpcX`v&r%OC1Ut1Sj{rFh#sZ*zXXPcRp{$A!g``MY9#lOGh+S}XrJ$`q0 zcY2LeNXV6MZ*O~hdHwtI`TW`0=JpD!(&tq^`+VMBUr$d@Tie^iLqlI*-oCEJ&F$Dy z@9AHvYO}IlF}E!+m1>AvzyAA6TX37F^+?dBpvjzd4-d5-Ja{mATh7WgYu;R3e0*>9 z_iZ^hFRcz=@7gVPQ_YBBLq1!xqZ6-O^P4x5=g+@C%QSn@;>EQ!HC)`>moHtKwaZ9J z>Cw{Zaa`QoudlDaUwq#7`jxlE&(B@W+G<<%g@co`v$xlDE~C7Z)UJw;j~JQRdZbLX zw6tC^N<SdBowPlX0oE>>6=zoS<HMdkHpX73xO^5b4!8UHWO7SOORu!K-)yt9H#Q^~ zNEjIz&8z?S^XlsG<HwKRR@=91%Cu=-J9|K@Ycs9pOyV*(-+t=UDa10Vj9+V~b!`hk zS|qh9Y_<HeMHN4vPOtx=`+cW=_=*s%xqjDQoD)~wAA8Rt_29nR-)%gSmsTA_9*>GM z4mnoy$sgSAS$yxy?Afz-7e7BYWr|4iK>=}b^RzP(h0EsL&HnTH^RZrOas4=(+FvD? z^O)Nbm-)^8bt`*)?wuVM!yYm=+?}*#lC0P+#?`Fs?5nT7+OT1RV>4T2W#!iCl}oN= z*G#y(GI;sDipRZf^<SS%_FuMq`Svsqh7SP(EDLW=bocm>V7oKsU%|4q$NukHwR*L6 z>8mR*)?1ana@igz$nb{w{O2V*S^6Ez7{n%<_^#tEDlD8>Bzf3C=X96#(+f*Ov~qW{ z6gnpbdgyEqYh7f}_HlwZ>+wRPnLaB+gq%{0A{S>jSZGXb5m*{@^OobIV8(CDPo4oy zPq?vX+}T&V+w}27uNcb}k-6y;VoOU+*=|nU7ATUNZV`G~%r!6X-HD0HoQfAOUd+C} zZfX(t-9;C&wz4IyShp^0Wk}WDeHR_etoHT^6urM^+gblfZ1ZXV*00TPI22XI|NXG4 zoSORm-jA;_?n>M3*f#h)=B)ek<73MNH~ZIItxkV*85&HN@NRm{@$13MkKe!R>*-ya zw=e7FTe%|j$3jI3)xGLJs;uuYGHkJM6gcwdFT;(THofxla(Q|A?0E?>zj$-{>z<o1 z*vwH`o6`O^X{A-!n;YlVKif3_jxMXd`IP(Jbp7o)9tyIctp|#kx>eH@JwAj~w(|8w z?mfJz`v2@*FV1az51MxFJM`&01H+QEmA9V#dSD4^TYxsoyqK^h7PN*_2ec5g#3TA7 zU-KIV@B*ij4>tY=C-@dz1rIDv%K8wo>YL)^IdecWCaYGh`uh6%_ZJr*-`QEbY`<;w zw>J+CHmlmb`tb1Zvf0Njsd6~w<gDq97XeRoXZ}8zym@B(X|$<OK^d8xkBgmPEecbw z)mObDqi!S^T!~I_d(;bBG<(4B$FE<@K$Yrp|M_-v%XB7rM4jX_t@usU&`Ru@gUgpL zt*oy8{^llVM$`B1I*bvMpP!!#3ke<RHqX2B;{E&ktHal~a*KD(KKT6Ev$pnj|5+v{ zj~`dJvH5dlWw7sDl@^qNnMb#ttNYE7u&?{m#L9iFS6W?l27Dgz+U|{^;8h3b=31Wz zH-IFS-Fg<tcB@=^esD2ce!Z8M*D}AkyGmbQ^PaB9*|eeHp_9{zHeTrvt*f2F>OsN5 z&Q4B7#>UOf&6_uGzP={1_{WEb$;bQN-rv7}<?Zq}Hzv-XU;p&fRAzQQ6*aY4d5%Rd zFD-rY<cYF--;*a#W`r%~m$Q)&7B2q#>nmvNIb!3Ym6OHw<7&QM4gdb`ZuQesQ%{{b zwf$a|_Z}l_YikROivR!q1~r{LbEc%Az@qBQikH1>V^4rqGqg`(IiF--VLf%~R8cuO zIVq`Ag?IK;el{{PnzgIw`nuTS=jXnD|6X2L7`dmSFnIg!-MgnxoA&JKQ&v{il~=RW z)zvSnA31ics<LwD?%n6-SYEEUck`yDnp#`pjKasqB+HGnDvVGENZ#Gs8@*=}q&}B9 zK2x;kWv_0?G+!rq8-@!DufI+`t6Fi$pe2!qt=U(J>9!`U7B}sF@axwvv(l$$XPfu- z2L1c@&-X5tX{*cEjowv0hSlL`Zng+qj=B9IB`|QJ;huG|yTwFBJCEPHcTbEZxhgpu zwC>)D#W7*$GikxdX|BBY{#8^|9654iP1M#dfkk1f>wmx9zHHr>FJJalZB4V@Jz3q~ zth5?37V+unY5%!arj?(btXQFO`MQ>#o>+e`dy7C@W(tSL;mOd6rG9QMuAbY^C7w5U zaHbt-U_8cdW?i{t>4Hu<h8GhyO_Eh?NtEQ-wAnuSc;DTP$;V$_UcNQz?IPE1(2}8L z>*knbUb?k4JO9p(z{tp*nU|L>%e%iN^YR?a;=KF&-adbRyl~FTvgd(;fw#Bk>uYNM z{CwWtJpW!!-ipV^`_G>^v7_YWq`39|zP@t}5}h``UwSd&OI7V&|4$beyK8G{o#}PA z0!<4!d&%1<wmb}I-tJsiSC@TlO=n-<w~rq+b##2Zy|Z7P>ged09#^HQqq8P{f8BZ8 z?=ivK&(F0EUw!r4i;K!CDk^4X*GkxGGBRE~I@-<7BVmwrWyOjW8dJSe!&W#tI%Z~O zE_Uz#_Wk?x(@#A;J<sl&-gXc%o%0wnopXlkn9kd+#jCe$2|1N2b6j((*X4&(LUw?s zbHYMH1A7`DTe!QsU(VkevZZxVLS)#|pg?`D@bK`hQGX4@k3Klq96SGo^v7G=T2sB2 zUw#Q1TlrlOaOToc?`P-d-$$z`FIz|KoPFnLxA<C~!(Kag?zAp{=i}*VD8W-$SeSgQ zM=<@=P1`RAnHgkl&U?S?NwE;~{gTl8;6cLHC|NPFWtU$b0=KO)+*3d+${pGjIC$7@ zI=-HK`svG;FSjgSz)<^v!J++%lnvWW#t0Tu(Ei52z>lxj?-z2iv9YQ8`pVUM&a;m; z`b*i)FJR+O5Cp9sFZ}rlyr$5jq~y!3t=XCFmu*g7esY1`KltU+&-a(^O}n|*yzcKx z=hJS?&p`VUtW@+$njOnTY=6C2EUO>C@9Sf`(|P48N4{@79%ZI70krz~#e|6F^uXrj z%d5Y?%i4Ntmb%3CTISo}^se&#pz(|5<xh{x*W3I&eR9D%F}{~S7XRRXe$MY~Jo{SE zw!;?>D(9unz8}z?XsJ@s)yBem_t$<gy^_zj_KVA(`M(d;dp7XpV|X#af?uxo1H&}O zCUyp^CFh#c4fy2_2!TtLD^uTqwy<!3mZ2$>tv27KSZ*8fg6)72NVYLT^SD=8!mA^l z!u3B-$G@6u1F2w^&dE9T@Nm0td4FvMs8(W4YMO2W+Eth^_riq>S67E$?rUNKh1kW_ z;p;(z)b@2Ys;aGJI%ijBE}9+$+EQV?we<D1h6aZG{P&TY(?Y|-uKmu9ikh{3d-?f! zw%haX|9dd`e%<ffjEoig_y2!$bF-;buix_7rrFcl+uN5fe|~DJHmBnA^Yi^ZJOuRb z?I>Kle}Db@xV>U}F&gi<=FgrjEhlG}c}YcHe*T9KAA*<rZT)4vT@>V^g#j9WzyP#` z@A#!Xvsm;~Rjsc)czf|^w>W6-dT;gjxSd5yH*NZ~cKbb}zqw^)-)5O+^U2%Qyt%RQ z@9*#S4^limPhMFWygl!3)yqq&jsjwOF*}lv_x<_vM>~9-j75Qhq2a|Zs}C;)uhi(5 zv79t{^5*pOa*uyDv-2N2awKMd-CqCscG_WUGX9q5gHvbYj0dV~UC%GzzsHxFntJru zF*Y`~Q%^q~IdbIg?(*6H%Fv4UkIa5)sj02)?d@%CMKb33_xAMk@L=iK-N4(i+wyPs zc2Kfjupn*1+$ohGWQ6v}YH4YG`ubJ0e|Op2sF0A9U$<wQ=l}ZsyZiXDW;cH^_;~f- z-{0#Wwu;x()+#G0E%TczB`y8><;$6K=H&dk(bUAGudn~{Muh{1;Qn+0CyRAI9Tnel zOk2guz;)(DGiZ+f#O2GMZ*9$fROsmFxYst*#@2Ry++HoY`8JiG7}afUY?6|a!q!H) zf_AX%|NAW(OF{lP+1AFUtGoMX@?*w{X0e-Xop|LKG*)CTn!ZKehVACfg_yJL2fu8e ztmYfFyX<YRv^i)eU+%3h4U@4I=)PFy_-~-h@y|BTuPbPA@0VM<VnxP9^W1E3X89sz z)2&ujEg~W^W!f~esxKM!_4PYr=1rNB^6NHw>3oOT@7K?tYa=(SSy|mWeth|c4F<Zp zxoBg(%Zwj5J3E7V0SN~h0vEfvy1K3mS;g*R0q)-HnO1k-?5G3}+bzS0Meri|RGY9t z&Y81k*KXRh3A{5<=D4Mm)vUUiOBZ1b;BM1c7r);w;Xs3?yn1<c(FU)jmq3HK>n>`S z@B87_F!}a0-RLM&x!r$4BJAfY85srDg(p7ED-zd_+hWu+Z4%bL%U)3XARxg_-X`nA z1*fLw=Brty5fL-|mUHv-_jh+MmJNIj+TFvI_57gsO@6uNHw#ivJpJ_LOUbRk8+^a2 zPFNp>tp#|%*uZ4`>|pW)*#=io5hbjus(O1{u5t?t8(W{0X;+!WS%YL%>uHa-W-MYi zkQTCOn5&_sB^17}zppRvH|M^xh0>h2k0z~*TBRozQ<MF===3|=x`z@Q&r3dg%M2>+ z63&%v<YBvc@zT!X=f;0#>KB<s{b|X&yK8HLO@bJx$~`crH7}rfdD?M4ZuJw6(G8Ae z3=WLbR<UN}g5!I}=19)VPa?!VKVZ}W?MxGyu@$m=4^;MZE%Bdx7_`CfM#hA@kB)YK z{`~pq<HE<sjvhZQ>~wCP?eCN7^Y84fE<e&CSpWO>{UZ;}dgrk)SSO!zG6${pJmkjt z@7dYe(c5wYwWcm9yQ6dd^UIen*YEk{b$*`h{ffuEbLPxhKCf!k#mU<`1sHNp&XKYa zvT0Dw3AA6gZk<{SXsx8)^wUp^`W|zDhTrn?@@jv53DlYz7#PUTFP8(_dMW?%GkE)y z(Y6%_#l^*iot~Wst+%?iI($87kwfruKUG!Lef#!3V%@iI-}bz_N-ZW;LJUg+G(_s^ z>XxXQac*UVMNiJe2c}ZK1qB5)HG8_dPoJ8qZU6Vn<)z-!!$LwVtgO1kEv&5W?X8|J zaOs6-pr_}_Et!{(JkGql476ChiXrJbLo8^SX3)jHCJPIT3w(^Ofz63Crs;M)Jly{O z<8gVhJ043lj+n12Dih*A@@%i$`YGBXEdt@;;nFUt_4BzZX53T)%^awysdXKHe7xV^ z&rhwz!rJ=&p2}dG$k5QIZ{FOw;yH2h<jZGf8XtXpZ*TSLt67@*XE&|!QM;VARrgDn z&XXrkmRx>WVkLW2B4XOq(@&*(+md*e<chE!HsESya&=rG<{BC*s@NjVGS^Ri`svDf z`KxB-DY&e^?)_)-_6X^pAuB>wiTw$&u(aHIqIkjFO|DJi$IpL%b91tQ(&Upz-oK39 zRdVv=NkM%L@VZ6sV0G7Jobv>NqN22(F173n)|&dLUR9*?|J2L8&5teG5(7k91g51% zPFor$@~HkPe{SFv?+;B1HVUgh+T6e8c<bqMCeD9~>D`WH+w<;v`TFW=Y6`L>zQ4CO zF)^`a!oJ$yVxpq4`)VQuT0r&H$0NeNb6FUE2OD?Io48@N%(H{c5l6&Ke;k*u|MTqZ zY|xCa-*V8f47dIs2hak7mzS1mhp)SmVdC7z!^zK|4^Av=QrIut$}!=u1FuK%UsrCV zp^@?Q)YKq9riQsIW4q&=n$khJl;v6{GXvL|8~pPggSZT!j23X4y}vb&A&MK!*?ghb zCrBQYTv<WOy_;@reWCh>{d{57-hE${nKqb%@|I(6({ux0&;o6pCeXPFdhz>YWI^EX z!*=;geM>8w6g(so-8m91L0jdyZ)D7pVc4>*tE<boolnr|&fUA2$1mB;d%pC{M9>DE zbOVWsdE(}aSQt73n%Nn+D&|d(YMx%WWSgfv!xB(ii)+dC2a?lNJw7lz19Mp%6PB3n z+$`hH;b?9H*}}>+@3~}W?FZ0F7~bF}kInhbmwr7s`krxyCVPS&sJLJ-t!TIgI)y<* zf`?6W^&J6F-<}I}I)uSuw(|=+p-rwv$=VMx-T}?*2J)bNqr$S*WpfM?nG`|WI=3We z%ANllR5lBI+=K|IO#ATp^Y1sC&u6$RPTi?}Q}G}(WWQpg0!L8zrpFddb`=btLA$S5 z(?A<+L2D7BER`6lK^wkAUVN?E_;zpPqX?TduKW;3HaxGqHfJknPuLmINQ20W601(r z3O3UUhHkL8s`k#C>N)FZb7m2wxyZFdzvOVzLTRY9)m*<Mc^hSCd7B1RQ0y^*_JA)n zy}0>BGy4YcUWNtNU#ps51RXd5YG9T<dUJC#BN%jx=`ND>{`{rNcGe5VDA8++*f$7Q z?cKL$&m2$}4isS^vt*aVbXJ0zs=RUx8WZB0k84yxHl(p$`uza3*a?&%7(`}l1{bx{ zz(wtu8#!#C(Gt)$Vv!ja+0QRx<4@oOMTtWd?>qyZ!y8wCf(;xK$_IrH6@j+vJp)%m zOUy3{J4JvJ(Pl^>UVR`b30haBw<d)>LA|E7_VVS+oQnOn-z45f%u=tFvvCx*ZE&6N zfbosX^K*04&&+VN=32SrJZQrmXrHN_$wg)c*0iq&L0b@K@Pn<~+&NE_Wnt)J#trr! z9~cs{*_s=lSBB~B?2K!ZvT3+E;Q`};Ye#Z&ubEh?R4^1P9%OD<+o}BQ%nY^Tg`k=Z zw4d$9EWhQ-X;&YBcAeU(R4{DVI!moeCzSibEU@k~`HS4;VMd+F19N_E0G+Y2V%4fs z=g+IRl)SnES~9-naHYWK*`RYX45YI@FqA3T+t)uiF;UsQujcvO@{Hq`c(}nkBWJAM zd+mX&tnAX5W1v!Uaz)|lNvEHdFegZ~J+=^GRcuL|vF*dk1c_y--G>eybhMf9kKcE- zhDD!p%L!ST9@PVz-Y|PPt4$U>S^srfrt*BQOKkrf4&-gQ&Z7VAp=oz&<g`@PxI3#V z<}H_IJH1Kf_(Bbj*_vF1rrX7M4o4gpWpVr^-{GUSxi&B)JY3j`<8Vi4<<1zrX>P&S zjb&C}ei>!z7v*|!!k2ox2KMaroN-CjvY>_ETUw9VzDg{RNjH#y6riG9t$#&Z4IRDy zx2Hu;J7wPvn%*){(>^23)5gxTSXj7b^)b)Y8d8rc_vyAUmVvs23E4?Z$q{eZ`7d;V zL-vSThTkUzYd^iqSzFgi3PMf=ie4@0s$Xet>8I%4#17tXcw^R1?z^CVA|p6*ZoN%f z`tLtzZ#SrjJ8&&aeAmQVF5qMdkG+%4Z&J7{m$fm^SiSdLGkZf-)wef4@0Q;ebOH^; zT2D*6a^-=l`NhpeGc8Kxz{S)C;l94U+TY)n%C@R(oqg6r&Q;%?SMESg#v*oxXyfgj z^MXMxFax>3bYthdi8j7|pak|4;*qmyDSScOeUqOW&Gq}<aP$@90??5>8%)=Roi12o z$$j@k=M!5MMu!#_euiyfv9Y?r8cX8OpG<8L@M&c?0F~S~X1Oh%c+bwC<Dp0qs8Ch| zTeLPz`&kaCSls|B>Tk@t>HCH2%R%NDpbfG)zKbswq?ukko%$$tt(ahg>><z&*+om1 zq}<+?+cM$6fdhey-7fMycQldeJ;MkpJzGJAeOFgkP*4zu;>C*>bL|gCUtkCA$BqOY zH?(cp#f&p^)Y?JW22{JS+nfir4<3Ddd3kwoP|%a2ox68eZ_m5?>&wf>uU>hX@2Og~ zdiB}Y&EY3Jg-t7(4}Lf<Uq8pX{N1r$>D1KJCWR9zM&;$@_4WTJOqk#<U%TaK6I(|9 zga?ebHl8|ls`mFc(5@p(OG{Bv(MKmwhp*2)b>>n?SjgR-zC3JB9u5u%F8kZdii(<M zTu@l`@!Ex~t!ZBmZZ4ACxu0$Q)vWzLpUqys@7JpXjm)X3sVxG2>jLa9d9EwD5*8XZ z^}ZR0jpC8>=kuSOm?*67Cu3Ejao9ljuN}iJ6P1dFvX{5EW`p(}ZOgr_rKPot<?CD9 zukTl#%e%k-JHL~ML&cRH=GO(CD&~GWpFO?n{QO<tPA}w*-d6kP<8j;SZ*y#`zimEm z_xi;P4@1!UqjQm(f2(GCf~UJ*Ut4>7U+wSt_5W_(+@HSP@bWwfgFB1U-@Dt?dgOA6 zSNxsZwEF1ty1iw8j_2<F4q6{{cXxUH$D`uQ{pYU>ne}lO!&@mK8wcy)n3y@!rhR)l zJ$@5kU#;4?H`YJb&;3&+;FLGdKJ>kp-@1a=_fD^^UVrcLe9<qv?CXBnnScJgw6pX5 z-tTcvPKVyy+#ISU+FP#h?O^$Yy1fz2`dV7E?CU|NGfB2?D!=lD^SsUbi<`?IUoYO| z7rVRs)vdkPUr00`h_|fzaOK?jX=-ZAmM_<j*->z;N3v+Aq$~@=TM;1}husS=zXZ+o zh-!y@Sd;UD`@e+6-}hWoHy^2voVn+B$HlwuJ^O0EK05#U^8c+isdsmkdU|>qr=QEY zIzxKt#f&M>OfGUq$tphidOd!+_3oCV>U<q@7Z*(W^|v8$=kb3+KX1e<o&L9@Am#3E zZ(-r<>*N2Qvwm;$@rdxW7QPF02_m)*zbDL|ZC&)_#1!-UZ!F7h&G~QrbGrC6kMr-A zS^Z}1`FmY`vr(T#+56Am_y4ywGWv99XR)r_+vZFYDZip7`|aN!JX^`lss7sP*G=)w zeywMtG;DXzE~?crcs2Ly`P@J2obG`ZvvP8BK7IOB%!YlzUWX?3jMrbP{&tCKAM23} zUL?3|{r_h#k9?Q4j<VLe_jTielk$1pk&}N$JDxl-Q5m#+FZ!I(^$Zgu&d(3t-`TM< z+3(Z7>z8Dieox%^@vi#WZ8}?LSDB<F+<AWA?cd|Qv60pDDjsz@xAR5*bZ9W+=9F9D ztF5Cm$D;62b!O(@WqVB?cRR-|Y>xi$u%B1@=c9GW%=5h?wpRI8RQ&k(_;~b(hx`Gt zv3JinnX?@}ssBB9hQ<01hk6f~+w*wEI?u8GXmej_{kaWq8dmE6E4?kat~)*_C&$Z+ zEA2*etWy(v#%?|t3jsN~x@X_D4YSK^zj|>kFQ_<hlt(?-?o!}S5BHsmC7qwA{NKOV zy1##s*B92htk<>in@Y_#E#IuJ(xNIbl`%yy&|S75<jJEK!S62%ZkL>Y`f8-i-s{gb zUVT0Hf=A=UkCZ7BYfTjvICwPZq{Q#OeD`JT`gKqL1_~*(sF?VkDBAa{bMC8mmqU+x z{oUm^x427xMa7?`@p(26Tz+^@*ZX_-eVsX*d9HMwn)URHpN`HF|Gw|v!c9ei509;V zwevG0gGQU1)&t9;*h_o=Z_a&oEB$_LJ}9Ps{raU8VZqYNzG1Q~ORu}m>3x5{-Ok_h z(XHm=o9g=i;v221j%;^HePUO*KzUDp_o*|x^AG=9TwnS5{QG@-tG~bde!t#cT|Irq z_1`u7&Ye5=?%lh8|LRs>eN|!=Iqm5@r@#=csaYmcy>5#yznnB_lFFomwXAKD?Dfy) zSAYNiv7RA*&fnu-Pep!ao2H!6!Ys$ou;9j;_WAw#v%bE~|F?G2rlQNsd|O*vC;siY zsO-6E_3GD8PEL-Ejb&>-__Qccgq5M<)yn01>m4|xcqKjvn7pgldk@r&xSf0ZRNc=b zchuwD0&;llM3gIv<^Ja0x)Z&9@0SxztlaY|pUpfjUoUgK-pa*d?m7ATKOdi*oV?tB zeqK(_n|JTzDi%*TKDnz!>7W1O)3pa1Zp(j&FLAY3Q&ZE{*4EcwzhlRaB}-Jaw6sLH zV(WPC-Oj)N^;7j)_WCP#_Gmo4uK&pB=+X0wERM0p9Z{WjZf||?)oah?BKA~#%wE5D zTiV%KuRm%|FW!Au-EYo{b?fY^zvaZn#)gMqKVU8)*LT`QsWX6sq2kL$_rwFv4;vZz z9Ups_mw#Usx;pBX^|ZhL)<<%`lX&dke^Rq9A^7UTum3;(w*Qm(``g>>YilyIvaBjT zJh-_zU9xRrrwi*!&C^_;ji>AS_4amN&q@yQdKj?z)NjvAIprnazi*fP9aU9*zO1Bn zU*h52@Aq*tc=-6RFht~Bb5Jlac<Xa_JA3*6<G%!&Q}=wD_UxJKbny<sA76I|>0LZ_ z=l8|!zwg()`}utS`qiteANQKCyX;UoNu^)L60~G=)v8s$epSs{c9hBS-<Bt{jW2Jm zFDv%S@u_lhn&PB)KwoC2XYaGBHJm1*2O8Rsu})H%>$m*;^UoDF%<5SZZJtYm8XXiS zpUiu6COi4rjg86tc0Uq21lIkjC=W@ycVj(+E88Ev_Oxef3+;BLU4I6uLHz}u{#tYY zPIdWCyVWYTzDMNO$sb@)?4K?oJ5@y1RNdWv!-ms2me(%q*uQMs>eZ{Coq2idyN}ge zy*Sa-d%tRLAAG#(=2XkqanDw6br$OoJW~4hdB5PEqx$=o`(3X8c8z=O+O_j*K6QF6 z?FxBVw!8NFy4c-iZ><U*G+cijdU}ay<xc*8w_nZt^=3^=1<&3K;$A93txk$JUh;Qw zNPM_3<5SgMb^m#5R<F*^&wu~s&6}4m4QKkOO+NYfBhP=gMu!C#Gm?^%larE!goP(h zo*Wz;eEIU_<fNoyX=jfgcy@O7^|jH<&+6@ZzP2|h^h)Vpo%wt3U%Qv`KCkp^*{y2p zm}7G5uReMCelgQO$MrmIPWP|Q`?>BL&-c|H2l^*zCxxD>SgU5JrKM`7rW`k2a{c7) zqsny|NmI-Wy`m>h-~IDIId{6x^3qkoxA|nPfAAj==8&uK+4aIKOlkL}YC}0gw!Qzm z>i*@wdeW0WuNJhEe17e>$h5R)Tc<oLu>uW>f4v?rZ&jip!X>(7na#$WkB25bI<zH3 z#IJ`xw%*{u!q=x?f4z3)N=SJ4^($BASQanaym@k>1Ve+<BA+g=OPP;~jXqtuY??JQ zN-xl()kx;>5+}{BBnF1<=Ut7rTz>uK$KA62yKf9;%Pzb3Y@YD_`7btqFWkFJgsU}f z{rS_UwKX&}w6wf@edl(37g?D3YwPv6=>2uI=O$H)@B4A?!``QdADfg&o}Xu6dTo}p zfAp-^d(4ct$7uFnTOqXQXq1zzzf1R0r_?D%R#Bp=VjM@EB%2iSb}#*UCUF04(Y4c# zxv$)#n7{vcTFI>2*1!2eu79u2iLvC2%B}M%O3d=|th)83=S$)zI|(I52FKN_|E*@e zR@VG&S!>ts@aW8Ct5>hyyg68FYSz}MUbp7Q(`DuwFv&MJursJkJGVFg@IGDtd%G(> zKI*so^<r9d-p*S>9+U2DPCpMC=Sn|6FF?b@R{8JL-(h<5O_d$3OCGbZ#HycgxPQHK z>HhuoCi;gBd=vyK_TGEF*Y5D;43oI^*Wb(6<e5w};1T9(Ri3Be-g5l0Wzmxp4-dEZ z%UYK`J0sb(=m(3vxut%7R9#?I;VwO6RV!D`z01CxPtdrKl#%%|H|s^-iq{s^+a7N@ zn8m<w;_0VLmo9DEv}vYsx|q25=eAuoJ&RU&s7TFTCD9hO_S?^zy8ZVbf3*4Y;c)f$ zx3fR*kJE|&``Tmb`3qB4Zrt|$%Eo!Y?mWx;i#yj%a8*@*;_H3F|H{k9$;P6WBHHgJ zZ=5077V4>b(QB!f*3LiDLZ=OmP206@vpR#XufM<c>2op}E6Q1I&OZCbmYm(Z@n=c? z<Cpi`@-MV2d6Xp`dK2?^&YU@2dt|15nRGLA-@kt^nDhUMGdN6|HSyDj|I?m|EYLW% zDW_x68olW^AC^?@<!I8FdTPZAjio^+*ZN<cr)-m-adlPb#8vYh1y~e2xO-U~w->+u zyn1(k{r6Ma>uo-rP+qL_<j2Rype^Os<Lh&`-`*@NTxVB)?)>vG6}MQ|b@BIH{LihE z`ForF;(^!SgKtma{;_J+s{DOF*<1r>`mixP_*mhzFhFZ+*U_Y%G3x?Ar|-Ef?tJjn z+`yD+Uh2)u%l+Tq-k$&e-(PkAc}q0Bl&_yVGtX4HIxW*J)2~RbQBdKIcaMp0apa5d zznL2y3?z73okUy<#ZxuA7HOP%S-veY>h|yGSw7FBe9k&*c?h@!1qH>$#YKWaNXV3^ zwQ3wmF|0Mo$&dBxf1bW}Zr#!KwNv7DK9M?|B6;jm&9=`Kq0js8f1PLL^lOjBId5;R zQy!XUeP&NI%-t2Wl9^$HPWI+VUbg1jZ=XG^*b*eUIOvo6t1!2TjqiR1AA4rSllXbL zuePUu@JY7w+U~|ai&uViaeuq<+brd^>eaHf8ciZgmfZ;oDew+lcwGL+hud#|`(0(& zs8o1$){)fHj7>}oI~vj>+q6|A7U}RUzxnV3YxAA6ceh5ZeVM|XTeK!_?=Pv<FTB`T zZ5SFBu4MlIbM`BJyQrN-PiN=vvwSk$)z9A_lt+FZ6_4MtZJV3slk(6rKacu;{uI2d zb)%HQgM}QkiWv7-etu?tucEX1jKP}Y!b>!6y_cV3ZX?$(eN<Xlc=6?zLc+p3U++74 z^5mb3rAE7MsPO%8P$>BD;2>yc$-TX|Q;ax&9*X>RbLvm?^Jmwe={djaPfWp&hVMUX z_}UNWZQl(#Ve)C&?z?&4r>^QdemGD>u|u(K!o-CE+cz&ieDC7ZS1(Gxx6I&{Uml|M z`0-<5A)%z?WMLtpNs}fm^PN3y(j=pAbAMdP`ugqd?f3it*LCT~eT<*Iz9f0e#e&&Y z)_t-sEVk``T`~3iz5d60dNMD6-t_Eg%DIysGtVjO<w*Gk*Vd{nzUVQ@ab<wW^1#fe zTny_TDLAmzv>m%#o69RA*>gQ(lhEVKj~<CkS}6VG_V3;N^Q^b6es^Kwx5;*w*cl#l ztL}QVGk4aSm*4MbP584VshO#+;kdkkwTxK1vCHKhH+v)Z^4tAT_<q&qksg1A-`W4a zEAG!e@2ju(>-PPB%l2;Rz5B8x@AkI0^8bGvzqr_)lP5YPYSX7@r+&J&T8RDI;3n}Q zfW>!b13SZ(E&pDA3g2~?v0wc~8T;F^`G+5FzFi~Mz5M<w!>>Dk`{;GwJZqrCz~Cq_ z*KhhPFqk-T;=FnD=FVL!`|{GQC)^d&Pj9XM{x0|Swzs#ppMU>dJwsT0iq4$)Jq2aw za_kK6{N2Xh7teF}MvmF)t5zQ_=WXYgiQ{CN?D0d0GhXFU=TV!569l*_YZ&z&2-n#8 zeK3%bzpBzBa<t;_!B@|IE#@^n9_?o?d0TRtU}uF8=lsNo<(K8T{+fJ>Sbllw(xs^> zDJiL`sp%jP|Nh`{X|tS)cRQaaeL6kue`d2s<yH1a0SE2}|E>Lfu~ydod-Uz|iX4+x zoYuT>KV-#zOY2&(`Q|@<dl^U=Nc5y_?p!FjHD+1x>ZMAG3=EEkEIBTST)lrc>s?0C zEZ&CHrA~=GUMr_~s5mM1ABddxmECju{ru9MJ!aJ%ivncIIZx=tpMTkxY`aXXA*riL z=<FP?(w{L->vjYkD2@=jara%{t+e>%oD2fu;?w8OojY@;rkv~ceHV8J9bjgtTGe0k z`ORN0#rKc<?e#P@KmM$#{`ThQbNl~0%iqUMQaQcZ=>6Wzdv7<V#l4I^7uv|k?<&Ca zBXFU{v6Lc7o^$i^s>`?UU48o6#YAJNxiPO+hiL7Mn?HB%+Uu{2i;6aF-puayy-3aX zfVB*0yM4~xU0YYJ>QXs5XUUzTsovsK_0IXqRXR*R{@8H#S-$qe875IWVzbX4^L_0o zFe64W<V0)H&Hy#x6Ddq9Lk@_?On*0DZ~pU)<hK)l1-HLm#cO8Vwop<sP;+I}(jbpu zANTgDzwdJ~I0&?4-+R96y{L%DimTVF>Zdc>&40gg`Mg`3Qcr)0w=sHu@_Inc7Uy+4 z#VX#V>|Op$!k0~S(+Z})zO9y@xi@Kxep;Bm`*X#ey?fbKU+r3$(c>k#JS_H(lziL) z{sku*7O%g4_5SnH2xd8P$qyTOm>C=j=jc!3SjyEIq}<;%IWuX(=jMZ1v$DU<|FLWJ z|B&=_U55sp?E%)$)xMtba#|_#thq|s%4)T=_|$1v%FD`Uon>H{>o<KK2<S~eeK_tv z<6#yXh6AZ@?tS{=Rh``&w?02F@7wRcmY$vEVQ2Q;@_wV-1c`$W6IHI>Ow7*TzHQsr z?c2X@-xkHgrv825%9Sg3f<cT^N?MxVi-vNmxz=TGb{O1JU;1L(%+u4)?a<Y<`stOQ z7<nyi^GqML&y{zcJ+@dC(#7^KRHG%y^GS6NKR+W!*TS=V=eECIwSWD3yL&a)<as<) z{w!M5@^Y!C<u3^_1zp`|&(w;8H}Bkf^ib?UPY(|byY&keD7;boTm1ao+Q`kzwk|Gy zsr~w^_d8kNa+d0J@9QTI#~xq3L#%@7dHT|+;?M5Htk`d9saXHOs^jFPjfJOAGc>%} zGSfS+l7-<~+UCN^^FDDZ`K|2>)H2K|IDOodtwv(knQ8C-{cE`svix#Pbyc|U+rDkz zCi9#=Rm^QtoOkWaJa>(@7mSy$U%FiM=FG17_ZyREm<!~*dYSp=-Al7*iD{v$uWD*) zo;-QdYOdZJ&a5_`ifO67YQgUA?$y=17w+!<Sty-hKX>|^KktP5#g;B>`R;hQ84}VS zpDLPkb*D`e^DdsebLGh^w{D%^%J8~m*PlN%d*jZ#f)+-XMl~k32!7C;p8fpXT+kkp zgU#$aW8&>ze@lIOT6jz6^!+myX>=b=GMl|KV0(nlof=amLI0&fE3YPPjan4cc|}U{ zw1J86L(ik@xx_y(Uv6sCShZ~J#|-DQ8;iFtzdbvnEli_@we@2w>&Kt0yS8juF;A{K z**V^M@ydPYZrsV?Yt4{3{<W$$GBVQB(=#$s(%kfRM$WA*FI&aq9%LuwS3iD#vNbjQ zRo?-lElZa!-2N;h|1JMrb^dCdT8<_)^(W8L!^KkWo1}2tFf7=*`Pt0t&zTssPSw@D zzjVFV%~?TU0!ORW)+puav6){U++eTSy>b2dr<YRI`E@>4tTElX+wW>lcBU<#fWmq0 zOJ{aQ+Gfis?l*|etzW+JW58MA?f2EhVt%+uC^+Z3C3hdZaWVZ9YqLgI(cHA8<mAPR z7Kv~jeR14}k7dvG*QPUlYHMrRnip>0K3&CA=CII~TUU0>*s^0spYrZ+|DN_<(KxIA zdfq9|zCZFtJQW&E2?yfcP0p5-M9iLb=56k_UsaEHF0<>m=3tm`GG*t^otDp2Q&V}f zF720dlmC#nz54mNxzXG6YzrPZ7)a>&=thO@tNFP`w7KZ+<BtWM=l*WFnWJ-BiDQBn zYu46?wG&r>;zma#uE@<*fW^6geZ&44<`3*I)_kkDd{bDrv~;eni0{Xr6=`WDWo15T zX(euHAu$)ED^D;mNS1)^2$-{I>(!v}^flJm7PY&srxY<WBqb%CI&~`T%#6UWuxYbr zTW2tsAJ5yqK6-oJ>uYO&MZf=dGyh+=`lOf|jdaOd_wJ_U+2m%eF})T#Tgq>uoqku6 z=PsGrV{7L0SpMp{X>^j~ItLq5-2AfBkGe{;R_gdIp4RQYWAmLG>@~&f4?g>TG%e=F zTmhEENCt-2MbTMVW%E|uy?3olXu*lrCDTv7W%IuKPk4V+(dr;8m-`&kSku}UpU!!= z?aTLX(R&*i7#NNhPW4(EppjxU6Lh3!D^nxG@j?;TK#`>yU5PUi3|@TxxhHP@?YCuC zbHi3o&CYuCu%gFn>Vm5(ZkeT0ymf)6+jlO0IeYuO&$FuIcI7`^e0rKo*(oVd)qk)- zo}0OT3tRK#>>s&#M%%YU>^QwwqD@s*_2t*9b*JUZBMp1@{W>gd_+YNz^L4Si|9xFw zU$}GL>^a+OuE}mc8#7PFmY3nd*Q&K)tFLA~eJ7W;F@g!?;KKn+gO-GK@4Q?xHOeMs z`!~kNHV^d06q?hmW@X=!I#*&c|7FIj&EJ_BIGDUWLe$h(3ky%Nn(L(T=;oSx>-3^y z_ilVSXXY}=i5?-4)^ZdGocem@_U82S!Tz?X-+w%_|DE=%>Gs~gY31?#_iv@Y&3T!h zziFHKO{-Ze5*Qd3OmJPQCcadCddiY1smrEuvMzq};<%MepRg(W{r_(m85}&nElPh^ z?_cmVF?RZuV>8%moWr-b^SLfR7Qc({!J~73{Fbj=R`z`5thaAvuQIqkt#p0#M{=)T z(%0P6i$f2`u6n+swr=v_#6pYQyzO`27XI3^&tXDZ+q)y|3<BINK??&kr)sDQt&Le1 zdg7|lO@o87Tx{R!Kh0lW_IH2RojG6o?PrO|Zp>s)Jm4(I!d#~llbIuNeaZb>S(%v| zw``BRee2iVcMJ>+u7T@<&C62_H8nL24Grz={zX{{$7(*%6+7K0YrQS^cG-^)iIY@5 zFB8?#i88U?>~t=;K>3=*osQynEOU3)tPAQ4)tcy|w`Y~`3{H^`%{T6xJ2r3IvU}&m zoWrBz%ctMWD79vrC(2c6G_&DBqRG)8HA}8bFVSFg6j&MJ6*%Smb7dEy#t^wLJ3Q7` zKZq6DsN^<#QTJJop3{C^=Y9Lm2WmcAm$lYu;e?wxMl*dH9S%Hv_2+bWKLf)v(e)Ks zSFIQ8B)(z(=Tptzsd($j4e#rWJeE=CAHG;^xp(ujvh?a|Q|=opw%qx%v-{HN{At<A z`t=__G^J=bOj4Y+EJKQ+VWCFjV;d&%PZb<ZEgQqP%(K~({C9QF`LB;oRm(^2`teBf z>0vfzxh@5X56OvNHt&vDd+%FWcKGzQt509Mn)&)=;g_#F+1iRcRVFpQ?v7eJZT55T zg#jm?7InHPO+Vf0q}YF4xYK32|EY%`D_EEsFJ|ztFy(FEy>H*Y4-XHk`^|ar>J<}% zPw?_*F3*>qx>U*2Z&|<S@bkw(GadAVPdq&|-)fh3%k=M;c4-NlKhS^9`-9hP^TDib zyXJ~5Kl`w7=ij*e1Mhi%Xtwc9+;Uv_3%e780@KD>0@^N2Gh^0WTvdAUmP>5TEIqYQ zl_{6Li27@{AKbL&aH9FlGiAGZ85T_QN)BCBSAF~P|8h==?~L`Umhy6NmL6)g`+u0_ z55w%M6&3fN@2ypzZRLM~M|AF_sc~U5!>shxRJmOiO|;pwSLs2i{EyqWw^sk3IepHT zXNR-X($ZreXB}v0SK?s%6R~5OwTmH7w$aWWx9Ka-r@krv`n_5wZTs10o1<*YcF$Ki zyx-ZZEunMM5+C2Px){GHPO4&`Tb$&~f5j+0^j^v&Xa8xt;(Q-Q`<{7u$NTNeZoIX7 zy5-4_mq&HnDr_9rPybTYY!}bLAm$plGDK^lhpNy<7bV%hqLTf`b2onZ{yo}h;e-k2 z`@^&riE=R=XJlAwn?A3unu+Dl$Kta#J0m2^6|3EZKj@q;o1Z&ZOjcJs@%ZcSe=Ewq zuPnaL>M`GCsju!z56yXVV*<{Jx7rK+jr!L0?$;|@`M(!0-Q1J(?acqpuf#PsKD^Js z$z~(s_#w^sv22&p#*LqD+*m06{BPZ*mpmXxnoE3W-xFt4^72TH&gogc@A~+n)0c1E zecLf`OVlEb^E#_8Ob>Z7O(Ru^Wp2gxG|BTkd(XXkl{fjM>ZKLNVrK>2|CY3bu5$63 z%E55pg3k4}_n%vR)ROb{%_SN9iyCJrv}H6rv~pl+W|TR+rKoa>lb&erg~q&^MHx{A zU*9@#G(BLE<7rh<`s#c6{hrKUb5%rbZWn#2_<QfwWcIA@IgW-pddl@tiIqYBdUo{K ze34o<d3O}&uSe|vi;LgRTVIy<??ZgQ{mxg@X4lm|@8XD?(Z1lrfrj}vTAbzuSXl66 z%*xC%x_<4;9ILCfuR{87%RYGM;u&>r?&<00&*`1%nQtcee!JPZjXbw6CR!ISyPous zL!@iUshyu%DhxtQ7fUEj{G=LW*OsJnnyq=^=k#y)?!~c}*R~vg+<7!<q6Z6u5D#0d zp13EQp-AxQC9`H|EKTY7eb7flv1^&6)brNjCkHuf3NBid%AM0cw@T;SDi($>v!Yj@ zuMIC=_v*(q-gdM41Hv7TzPfV$deky!(u^xPf2{7z%@+_k+$DB*Zt%`8Kd$-P-~aV; z`ER~Emg(P;x9e)|usi%zF~cO`fWMGf_wt4JBEs*NfAh(AcAkG<{*a-KzUAM0H&371 z{HgnLQHzaTSKR%wmn%=c<uWm!eSWU-@0ukMt36lh><ik$-}xYsYhJ)Y5hex(Zl=Zw zx8HuRV6vNk`Qe7*+~*t)EjIf?R75y`a5yw6dN~Lz{@+n}RGx>4q2S+&svrDKpF0-R zznJ-~Byi=f6<1P4`2$N<to(fC<+S(bx5-%lI{Lpxyh>cTVq@m79X)$)e7SSuON{H5 zceBhAB5WEnzTM^bkKgs`$~yh+xqrWOzhC8LY%KTVrtbFhvrhW*@Hi%Ovi)gs3G@kH zzIN^2{X1`7x|3p6elBNoB_jjZMw9xeXSe2`)%LqA?sHls=D+ZC&C_qWO3H5Cy1h1S zv-D8|*P<XNw_P66=SsHmoSmTJIVr_Jf@hNBv_wv(i5(n_{RaZ(a52_T_{5&M{eE(x z)y~&XHJZ47+9>wxKl#jJGjGCi>8A^JNS_nuVPfbgV7~WQ=Ha#T7H%(sPkqr$O<-K` zBEb9m%eHTidu7#U^S$}?ads~QL!*n><Vmt~CoT2$yRNn@Qz&S|X}yjZ<$WG8`yL(K zbo-rkc}o7*bNce}{~sF5|1C|-Jo#znQ+sW_CQts}nT6sXN=r-S>wYXe{dCoe6%{WQ zwqNk*v6*>6qHSx0ja&2P<?XZC?%%tZ`1a+-U=e190I!spA1~+4k6YsJbJqKmN6)TT z8=Wt_VEv;w`DCt%Rduy2U%R}cfM<@+qct+AK}=S^B!eOaxLTb;I+ndqkmQ-Dn0Lxv z#I?dgQMil6rpaAE{M>m~2fe3r>$N#1l_+?yH-$`C^4D?x;n&N~eLq~j>-Vyw(-&|k zi5)GOty?2^P@O}r?=xr8pFgrcn;m(MU)*pk>48mCT85F!$BsbR9R)ony!1|b={>A_ zTP`tccXssd^IN`NGkt&mXY=d#3=Ax;q8F`7Yr3rTJZ0^D#blRv^i9u9TK8ATuIu4V z(e6#!VwS&lz20}b?#J)D@%8`B_>Z49GJYodB=pHsv1Q9R)K6SD%4m{`-}@qSR^0Bg zx0C(tW=@>=@zZJj`&F;kPMtc{d0)|_uZzA{dCoqYz5REN+4`f8UcUbxbtZ4}$yB4A zXVbnPFtFU}Gf_x*zRX(hUQds1?^734GoLQrn{V5s@OWWo9n;rE=^5AF@>$5#wI5F3 zTJ`()-a9(1Edd(6y%S$1r4|<6n0nqNa@tbOS!o%wtp4-2FWYhNkw(|2f;k5a<@`Qy z%;7K(%xL4CR5D?S=On&12_u)uift;H&lcI|^0-#AI3`$p?_~Kd{8;XRMAIV+v5ARy zl&vn`6Lh(;Vv6^zlkS(h<ro}VHJqKRqheytXgu2`Iq`P(djqqQucoE5XYo!mYhHTy zmC3&=4o!(cp;LUMwJ#s@2n`gP8n)<C*Ho#AKAK@GSSA@PU%WxmD!Q-!df;#8^4e03 z2kHhs^XG)jFw!-*v{bg!i(P&>^U4NsTM@^{+7DK*UTy#X&u9C;FZ~%B4!85azq|YU z)bKdTPg5W3K5$mF65wEDu$iZDctc%%$0CXK<{qsX>!+tMzWT@#qc{J!^RJpE*M+}S zH06~ac*?aSrmp?)`MG_?0W5*1r(EPJ-Qpy>yss<R{pFQF&RH{9a@Rx%)IFBt`N7EH zAi*{vr9)+9K!=*AmBf-JM=b%4pMMqS&;L^8(XamC^Ta#y>|KwUT4PoObzbqB=;qvU zRHwW+xGgcFEj8j<kcqRg$>A82e5ob{i?+i5LK1C{@A%7Xc=Po)^AgEvJcbJeWEV*o z9SJZIUL?`=sBY7A|JQ8{EQbSRju!A7HV|<>|Gzs?qp6@@kmaDE2*W$|0|7ja3|))v zl&od`?)ZFK{JF>9uW#A5^3h_|Ro?Gj+MQ}(XP6OHRiQI!{-he)U6O4p796~kx9#hf zo4d|zdso+f@s&Z;T(|b!^V9Tt++7WQG(tI4j24ER6Zd9K(u`Mm$a$2hvqxP(kV)~N z_@@>nk;AM)noSF8HnK3dC`@BwFlciBz{=zMb?cSyW^)bA=9+FbzttPd<IBvzVxy#K zWfix$GfXQfRBLU_x=CJQHa|;lm>+9pv_IOrUae~L%{db$9I*BC@YoQc!|Z=EXPbC@ z&BW?G2?v{0y{GkT^69ajG|#;H+ndSi{ybj~Y0Jg5Su(|6Jvg)dBgd5EhbwC4=pSHV ziqSf}^<vFLgE);tu1ZcSYDbcsbd-*06#a`i#qYpx@P&cd;4gzu_{YTH8w>txGIO5# zTfXCesz%oX8;1`9P3%X4LR1|poLm%GY#ccn1Q^yaFxciX+-bgdyp^};-^HKu7T@Q0 zFX~`zU{d(Al6#$OlY$M?V?l<7`TJrw=p-<HZ%B<iz+mMOn8UH*!SY?nkqi+B`jl$h z{~hVBV&2riD)B1GNpE#-!ov^6JL97o8w5Y!5qo~|m)n<LyzgBeZ=F@~*7f9xO>6WM zzW<Vq+kf}<_TS8U^#`8v?_zcgKk#(p#AgaGRh|C@oRH`F>GoSwqA%gO{_77%IT#ue zn{@78Nw-WlVLrgr#>m6VaAV(tYd=3fcQ4^yxH74Rb<gd$ayz(}2WXV+j1m0LA>w-Q z!r%V&6?-H;{V+bmd1S$Iwz^bC?<NILcH1uxS{l|}d-~Nr<K)rsx$N_t&M`9-n9Dwt zGP96q<K4r3*x+629VZsY0vUIKmfxbTfilMpd8EI5{g`E*7_)VLFPraWp2HVR&Ti8A zK7*OzL6uMe|Bknh;w(SJy}PD=^ypEgAQpxXRePDgr@01B*}KB<@WTS0VB^1k|K7cO z*KU6Q&QEtfHSBgVN_!hB@gT85U7({eA;I~^=L4$ujr4ztG8{1ANjS&P>%h>>#2~;R z(6I2%$H=vO%b%;UG=3EOAk=vz<=0D_tM9)To4<OnB4pL~`}Oq?u5XzAV*lT7w>j3n z3B8bEBK)iFgP@7rDkj&!i5?|~S39i@`(0xfA<7VT)U|C5*YeAfahV%B>$;@%YqKpc zUc9(>@7_Df%?AZ!Wo`ewR^(_>;E=lXgX>3A6Vu|0H?CbfW^m@*T<hoO=2kDh4w7tA zTk`R$OMl{x&*$wy>ws9A4{qADX?EVOmu~9?SsVped_5j(KVW2tjEsE0$M}|XqN4zd zqksuW6F-O<;Bug$U4f%%fhPx>4U4Z(X=&+8FaRBM*c&I#(UiBRu$)(}X~Bm8k*5U~ z3=DSnS3D1HR>=6&l>Py17Uw}E6F@dP89V?vJVU675p2g~0iFtwTW7T-9B>w3alD|y z!YtRMz|o|pC;>G>QRno%7o{`)Tw5P+U;XXPp+kqH_bQp+`~7~ueett1ixw?{apU9S z;$mWCRx<tm_3Pii@B5h<zEu6)lzLhz^o_)i2hIFxXJ!Z<Ts32d-JcJKFI~DcY0@O= zy-F8S7?!V+<pv!&rZv^z0V9L7dES)MPeH8tb-z}IX!RznI(p=Y&G$RS6SZ=6YQNn~ zPueKKX2Xzhd6_R$BLka_h~S1!G$$X-{*Zhy!Qe!SQKw7M;_xTOnnMj4!j3XDA5@s? zwKV8uZ`?#_{xDV%M|f!Xeu0Kp+?R)|SFis4;V^%!Ubw64QD=VJmPIc*&hzaoxVx*= z*Vp&X?rA!apH|2J&3d!_sZ?vA=p1GDzA4kD39%T?DpG6l2t9h`j&`4{^|zbp^Ka&C zyK?1<`n(FK)mQr>&b0`vTs4EGn$=`kgociY>)N=zyS8n+_Wry5?>C#-`D7$M-qhav zbl>lH#XDnEJSVAm240ECKWWOnSj)oJ7IYkE|Ml0hzLvsHOI9__omAa=GG*8EdDWmK z_x<<%>i2s==Y<>rJAu{u<9Du%9^XCh4?T9t&0XuZ_~iNX;v6ier|DW(e0Tuzje!6M z1H+OaO;AEhkTCmpyQufj3ND5N()oKnKAG(Qt7c!|G-E}VRa(oQ#RbO4&!0bk{=|uj z0vyxy<Llnt*(rE>rhrnY=;Va;4aX#M7V%HMnd9f-@jy;pMI}OKn&5odqQv-kd4>n~ z|Np(eHY~fW>|1ib?XnQ9<2l+&N<FI>7z%<n-6_2uyI3dPsUsxR=j`4^d-l})`ttJ5 zp=;N!UAb}v#R8jV{>iuBigC5xNnRN6qG+dEP1%Xog9!oaukZhKN?Y12N1)T?|KI!n zZOd*8C?<xuN<8)9n7FEI<<4*p7N)!l4;DJNgVy{_)ec9Fg<}Z^+C7yf7U-riFzml? zpJDQO!g;=(2FAvpTgBr7R)$El>BjEbvTRw}n{A3thgNhMoC5nfxNLpF?z^BfDZ}Gy zzrI?%J}ou17b$W<#%fww?b^P5dUcM0#G=KE-9gUv_4Q@Gn^Y(x|H8$#u_aJ6aSAMW z1-V*5$FA<!u>*9(ucl_E3B>uH8^RrudDv=ZaB*?<xFttNOCL6{E`K-2x?FGjo|P+4 zzW>hu^UVZqU9r>h|9`k|zIn#r%=Y_r(Q$Eg%G<Sc5<`xLPBm_X#9-l<7l8`{eq3<o zSL85CvK01MvMNdFjpzl5X5*W!>o;!v*vxOo!PcCbnz}lC{j+}};cFs3{=Wa;&f2>A zM0$J7j?~lBWUb3uoE9EBbf{gvE<#1<?gQT4Rf!?2&)4mK_ef8JFZkRMp_Qv<G*ur3 zE%y3)J)VD0tlH$-UoV%3Yo#Z3hJ^Yw?PZek#>{Y}6i^qwCT)zckvrcT$Ia2SOhe*> zK*`=ag~w$-^eG6i+|@96ps4XlZ{JR97RL*`jLdRPY})$z|G%!UKWiJevq-f`L2WW8 z!-bnSI~6=aLqom2Pru!MUrtt5ck)RsZSCyr?49Du9G?#J+v~*a_#nRjhihi$%ZG>C zudj_Rf4z1)6GM#Nb>)7WNmHh%Og}wcH~QM;%f*Yg@ii^bWMZ>n;oVm7@K7^5e^Ecb zyj{=Z9}At^85lxCLyczUJUcUU``xnHr=Q;1Q~BBae$C-cZ*FbPX219QO0fUk`u~4l zUte!u_vgnP%i?=guh+_2moYGet%)dncV}m>wE4TcyTjEc>&EQ3@UY-cM{l!2#;ODP zU$`7D?AV-fanbeo`n!4Cci(;Y@83V`_j@+4TJ>t(?suzJt(s+DZ`b!Y``VhFkNd2b z`Oaozc=7V3q{Ur!2A$|_IagPOHgo-X*e=f}Yn5U)Ta=5HA>nWvuhraltJm*~+MISa zB2S#fF_?>|f<tP}nl(Op)8(y7PCWhyIvwg@6Knmy&+{2Uo_l?5t+T+BjmPC~?<##A z|NqzZW5<sD{rx>z!tBGnM~@zz=FZ8;;AnM<T3eRD=^Dt^oXE3{wP}GSHz>T?5^wzZ z`5AQb0SAkgme#Ygv$vPMz17y%wrtrl*KV;&n|WPbTr$T&cObCK*A(2`l=}MGTIq`Q zE=oK1IP8p(6BbT3kvd+WtiUnr)dSNC4k@N`Nzl+<@v}3YzP`QP-M<gZ|C=y*^5h8< z3LYG2{PpYC-QDH(pU)V3PuDy8apHc}=TDx@@LAT@#`f;|y?ggQefo5Hxqtlg-UfvX zuVzMmN9Twg1&O)2xyi|o&&)JtWSBa2>TI*zN52lQzM3^jWqZ!eOLy<?O+7vB{=aYA z?dGrFzyJRyrvQ=M{QPnY8A(Y=?XWdF{(id+I-0Nk|G&`HVU;%X=FFM1@tzh((=s8@ z!pN2%KPvXd&7VG9eX1AOcoSd!s4W}}2HDrv-2eNoTz}t>q{PIB&(6*+e|u}{lqp*( zK0Z3lz4QOS-}e9i6t7did#qPFf9KO_TeGj<t9(A!YiZH#ZMov{JKGgFx-42!Z%Xgw r1J!9Pt`auQh-L(tjR1^x#DDpfZ?d>+L$>CF?nw4@^>bP0l+XkKzEOB% literal 0 HcmV?d00001 -- GitLab