sim_choice <- function(designfile, no_sim=10, respondents=330, mnl_U,utils=u[[1]] ,destype) { require("tictoc") require("readr") require("psych") require("dplyr") require("evd") require("tidyr") require("kableExtra") require("gridExtra") require("stringr") require("mixl") require("furrr") require("purrr") require("ggplot2") require("formula.tools") require("rlang") estimate_sim <- function(run=1) { #start loop cat("This is Run number ", run) database <- simulate_choices(datadet, utility = utils, setspp=setpp ) cat("This is the utility functions \n" , mnl_U) model<-mixl::estimate(model_spec,start_values = est, availabilities = availabilities, data= database,) return(model) } mnl_U <-paste(map_chr(utils,as.character,keep.source.attr = TRUE),collapse = "",";") %>% str_replace_all( c( "priors\\[\"" = "" , "\"\\]" = "" , "~" = "=", "\\." = "_" , " b" = " @b" , "V_"="U_", " alt"="$alt")) cat("mixl \n") cat(mnl_U) cat("\n Simulation \n") print(u) designs_all <- list() design<- readdesign(design = designfile) if (!exists("design$Block")) design$Block=1 nsets<-nrow(design) nblocks<-max(design$Block) setpp <- nsets/nblocks # Choice Sets per respondent; in this 'no blocks' design everyone sees all 24 sets replications <- respondents/nblocks datadet<- design %>% arrange(Block,Choice.situation) %>% slice(rep(row_number(), replications)) %>% ## replicate design according to number of replications mutate(ID = rep(1:respondents, each=setpp)) %>% # create Respondent ID. relocate(ID,`Choice.situation`) %>% as.data.frame() database <- simulate_choices(data=datadet, utility = utils, setspp = setpp) model_spec <- mixl::specify_model(mnl_U, database, disable_multicore=F) est=setNames(rep(0,length(model_spec$beta_names)), model_spec$beta_names) availabilities <- mixl::generate_default_availabilities( database, model_spec$num_utility_functions) output<- 1:no_sim %>% map(estimate_sim) coefs<-map(1:length(output),~summary(output[[.]])[["coefTable"]][c(1,8)] %>% tibble::rownames_to_column() %>% pivot_wider(names_from = rowname, values_from = c(est, rob_pval0)) ) %>% bind_rows(.id = "run") output[["summary"]] <-psych::describe(coefs[,-1], fast = TRUE) output[["coefs"]] <-coefs pvals <- output[["coefs"]] %>% dplyr::select(starts_with("rob_pval0")) output[["power"]] <- 100*table(apply(pvals,1, function(x) all(x<0.05)))/nrow(pvals) output[["metainfo"]] <- c(Path = designfile, NoSim = no_sim, NoResp =respondents) print(kable(output[["summary"]],digits = 2, format = "rst")) print(output[["power"]]) return(output) }