diff --git a/R_Scripts/lmer_Q64_1.R b/R_Scripts/lmer_Q64_1.R new file mode 100644 index 0000000000000000000000000000000000000000..c9120c6c7d6b68e5c22277f50445f64d66f3aeb9 --- /dev/null +++ b/R_Scripts/lmer_Q64_1.R @@ -0,0 +1,60 @@ +####Model 6 ###### + +load("./Data/ECHOES_raw_data_int_survey.rdata") +database <- ECHOES_raw_data_int_survey +######################## +# PMI # +######################## +database$Q53_1.z<-z_st(database$Q53_1) +database$Q54_1.z<-z_st(database$Q54_1) +database$Q61_1.z<-z_st(database$Q61_1) +database$Q62.z <-z_st(database$Q62) +database$Q31_1.z<-z_st(database$Q31_1) +database$Q49_1.z<-z_st(database$Q49_1) +database$Q33_1.z<-z_st(database$Q33_1) +database$Q34.z<-z_st(database$Q34) +database$PMI<-(database$Q53_1.z+database$Q54_1.z+database$Q61_1.z+database$Q62.z+database$Q31_1.z+database$Q49_1.z+database$Q33_1.z+database$Q34.z)/8 + +######################## +# CMI # +######################## +database$Q36_1.z<-z_st(database$Q36_1) +database$Q37_1.z<-z_st(database$Q37_1) +database$Q38_1.z<-z_st(database$Q38_1) +database$Q39_1.z<-z_st(database$Q39_1) +database$Q48_1.z<-z_st(database$Q48_1) +database$CMI<-((database$Q36_1.z+database$Q37_1.z+database$Q38_1.z+database$Q39_1.z)/4+ database$Q48_1.z)/2 +database$ID<- as.numeric(database$Q35_1) +database$Acceptance<- as.numeric(database$Q64_1) + +fit <- lmer(Acceptance ~ 1 + CMI + ID + PMI + CMI:ID+( 1 + CMI + PMI | country_sample ), data = database, REML = TRUE) +summary(fit) +mean(database$ID)+sd(database$ID) +mean(database$ID)-sd(database$ID) +min<-min(database$CMI) +max<-max(database$CMI) + +plot_model(fit, type = "pred", terms = c("CMI", "ID [2.352634,4.390395]"),ci.lvl=0.95 , title = "") + + scale_color_discrete(labels = c("-1 SD", "+1 SD")) + +ggsave("Graphs/Q64.png") +ggsave("Graphs/Figure_6.tiff") + + +hist_PMI<-ggplot(data = database, aes(x = PMI)) + + geom_histogram(binwidth = 0.3, fill = "#00BFC4", color = "#00BFC4", alpha = 0.2) + + xlab("PMI") + + ylab("Frequency") + + +hist_CMI<-ggplot(data = database, aes(x = CMI)) + + geom_histogram(binwidth = 0.3, fill = "#F8766D", color = "#F8766D", alpha = 0.2) + + xlab("CMI") + + ylab("Frequency") +hist_PMI + +ggarrange( hist_PMI, hist_CMI, + labels = c("A", "B"), + ncol = 2, nrow = 1) +ggsave("Graphs/Histogram.png") +ggsave("Graphs/Histogram.tiff")