From 0cb5c0d4c9971921c6d2b0218cbae9ceee1e3790 Mon Sep 17 00:00:00 2001 From: Francesco Sabatini <francesco.sabatini@idiv.de> Date: Wed, 2 Dec 2020 12:26:41 +0100 Subject: [PATCH] Updated selection, based on sPlot3.0_v1.1 --- 01_Extract_data_Project_31.Rmd | 41 +- _public/01_Extract_data_Project_31.html | 2793 +++++++++++------------ 2 files changed, 1412 insertions(+), 1422 deletions(-) diff --git a/01_Extract_data_Project_31.Rmd b/01_Extract_data_Project_31.Rmd index 734d443..8be86a9 100755 --- a/01_Extract_data_Project_31.Rmd +++ b/01_Extract_data_Project_31.Rmd @@ -63,7 +63,7 @@ Extract all plots containing at least one species in the xylem list. ```{r, message=F, results=F, warning=F} species_list <- xylem_data$Species plot.sel <- DT2 %>% - filter(DT2$species %in% species_list) %>% + filter(DT2$Species %in% species_list) %>% dplyr::select(PlotObservationID) %>% distinct() %>% pull(PlotObservationID) @@ -76,19 +76,19 @@ header.xylem <- header %>% plot.sel <- header.xylem$PlotObservationID DT.xylem <- DT2 %>% - filter(taxon_group %in% c("Vascular plant", "Unknown")) %>% + filter(Taxon_group %in% c("Vascular plant", "Unknown")) %>% filter(PlotObservationID %in% plot.sel) ``` -Out of the `r length(species_list)` species in the sRoot list, `r sum(unique(DT2$species) %in% species_list)` species are present in sPlot, for a total of `r nrow(DT.xylem %>% filter(species %in% species_list))` records, across `r length(plot.sel)` plots. +Out of the `r length(species_list)` species in the sRoot list, `r sum(unique(DT2$Species) %in% species_list)` species are present in sPlot, for a total of `r nrow(DT.xylem %>% filter(Species %in% species_list))` records, across `r length(plot.sel)` plots. # 2 Extract woody species This is partial selection, as we don't have information on the growth form of all species in sPlot ```{r} #Select all woody species and extract relevant traits from TRY woody_species_traits <- sPlot.traits %>% - dplyr::select(species, GrowthForm, is.tree.or.tall.shrub, n, + dplyr::select(Species, GrowthForm, is.tree.or.tall.shrub, n, starts_with("StemDens"), starts_with("Stem.cond.dens"), starts_with("StemConduitDiameter"), @@ -97,7 +97,7 @@ woody_species_traits <- sPlot.traits %>% starts_with("PlantHeight"), starts_with("Wood"), starts_with("SpecificRootLength_mean")) %>% - filter( (species %in% species_list) | + filter( (Species %in% species_list) | grepl(pattern = "tree|shrub", x = GrowthForm) | is.tree.or.tall.shrub==T ) %>% @@ -133,7 +133,7 @@ Codes correspond to those reported in [TRY](https://www.try-db.org/TryWeb/Home.p ```{r} #subset DT.xylem to only retain woody species DT.xylem <- DT.xylem %>% - filter(species %in% (woody_species_traits$species)) + filter(Species %in% (woody_species_traits$Species)) nrow(DT.xylem) ``` @@ -149,23 +149,23 @@ combine.cover <- function(x){ } DT.xylem <- DT.xylem %>% - dplyr::select(PlotObservationID, species,Layer, Relative.cover) %>% + dplyr::select(PlotObservationID, Species,Layer, Relative_cover) %>% # normalize relative cover to 1 for each plot x layer combination left_join({.} %>% group_by(PlotObservationID, Layer) %>% - summarize(Tot.Cover=sum(Relative.cover), .groups="drop"), + summarize(Tot.Cover=sum(Relative_cover), .groups="drop"), by=c("PlotObservationID", "Layer")) %>% - mutate(Relative.cover=Relative.cover/Tot.Cover) %>% - group_by(PlotObservationID, species) %>% + mutate(Relative_cover=Relative_cover/Tot.Cover) %>% + group_by(PlotObservationID, Species) %>% # merge layers together - summarize(Relative.cover=combine.cover(Relative.cover), .groups="drop") %>% + summarize(Relative_cover=combine.cover(Relative_cover), .groups="drop") %>% ungroup() %>% # normalize relative cover to 1 after merging layers together left_join({.} %>% group_by(PlotObservationID) %>% - summarize(Tot.Cover=sum(Relative.cover), .groups="drop"), + summarize(Tot.Cover=sum(Relative_cover), .groups="drop"), by="PlotObservationID") %>% - mutate(Relative.cover=Relative.cover/Tot.Cover) + mutate(Relative_cover=Relative_cover/Tot.Cover) nrow(DT.xylem) ``` @@ -174,7 +174,7 @@ double check that covers are properly standardized DT.xylem %>% filter(PlotObservationID %in% sample(header.xylem$PlotObservationID, 10, replace=F)) %>% group_by(PlotObservationID) %>% - summarize(tot.cover=sum(Relative.cover), .groups="drop") + summarize(tot.cover=sum(Relative_cover), .groups="drop") ``` @@ -185,24 +185,23 @@ Calculate CWM and trait coverage for each trait and each plot. Select plots havi # Merge species data table with traits CWM.xylem0 <- DT.xylem %>% as_tibble() %>% - dplyr::select(PlotObservationID, species, Relative.cover) %>% + dplyr::select(PlotObservationID, Species, Relative_cover) %>% left_join(xylem_data %>% - dplyr::rename(species=Species) %>% - dplyr::select(species, P50, Ks), - by="species") + dplyr::select(Species, P50, Ks), + by="Species") # Calculate CWM for each trait in each plot CWM.xylem1 <- CWM.xylem0 %>% group_by(PlotObservationID) %>% summarize_at(.vars= vars(P50:Ks), - .funs = list(~weighted.mean(., Relative.cover, na.rm=T)), + .funs = list(~weighted.mean(., Relative_cover, na.rm=T)), .groups="drop") %>% dplyr::select(PlotObservationID, order(colnames(.))) %>% pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.value") # Calculate coverage for each trait in each plot CWM.xylem2 <- CWM.xylem0 %>% - mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative.cover), + mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative_cover), .vars = vars(P50:Ks)) %>% group_by(PlotObservationID) %>% summarize_at(.vars= vars(P50:Ks), @@ -232,7 +231,7 @@ variance2.fun <- function(trait, abu){ CWM.xylem3 <- CWM.xylem0 %>% group_by(PlotObservationID) %>% summarize_at(.vars= vars(P50:Ks), - .funs = list(~variance2.fun(., Relative.cover))) %>% + .funs = list(~variance2.fun(., Relative_cover))) %>% dplyr::select(PlotObservationID, order(colnames(.))) %>% pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.variance") diff --git a/_public/01_Extract_data_Project_31.html b/_public/01_Extract_data_Project_31.html index c2a51c9..e35362b 100644 --- a/_public/01_Extract_data_Project_31.html +++ b/_public/01_Extract_data_Project_31.html @@ -641,7 +641,7 @@ summary { <center> <img src="" title="sPlot Logo" /> </center> -<p><strong>Timestamp:</strong> Fri Nov 13 17:37:07 2020<br /> +<p><strong>Timestamp:</strong> Wed Dec 2 11:00:50 2020<br /> <strong>Drafted:</strong> Francesco Maria Sabatini<br /> <strong>Version:</strong> 1.1</p> <p>This report documents the data extraction for <strong>sPlot project proposal #31</strong> - <em>The adaptive value of xylem physiology within and across global ecoregions</em> as requested by Daniel Laughlin and Jesse Robert Fleri</p> @@ -676,7 +676,7 @@ load("/data/sPlot/releases/sPlot3.0/SoilClim_sPlot3.RData")</code></pr <p>Extract all plots containing at least one species in the xylem list.</p> <pre class="r"><code>species_list <- xylem_data$Species plot.sel <- DT2 %>% - filter(DT2$species %in% species_list) %>% + filter(DT2$Species %in% species_list) %>% dplyr::select(PlotObservationID) %>% distinct() %>% pull(PlotObservationID) @@ -689,16 +689,16 @@ header.xylem <- header %>% plot.sel <- header.xylem$PlotObservationID DT.xylem <- DT2 %>% - filter(taxon_group %in% c("Vascular plant", "Unknown")) %>% + filter(Taxon_group %in% c("Vascular plant", "Unknown")) %>% filter(PlotObservationID %in% plot.sel)</code></pre> -<p>Out of the 1841 species in the sRoot list, 1306 species are present in sPlot, for a total of 5510382 records, across 1243968 plots.</p> +<p>Out of the 1841 species in the sRoot list, 1306 species are present in sPlot, for a total of 5510288 records, across 1243899 plots.</p> </div> <div id="extract-woody-species" class="section level1"> <h1>2 Extract woody species</h1> <p>This is partial selection, as we don’t have information on the growth form of all species in sPlot</p> <pre class="r"><code>#Select all woody species and extract relevant traits from TRY woody_species_traits <- sPlot.traits %>% - dplyr::select(species, GrowthForm, is.tree.or.tall.shrub, n, + dplyr::select(Species, GrowthForm, is.tree.or.tall.shrub, n, starts_with("StemDens"), starts_with("Stem.cond.dens"), starts_with("StemConduitDiameter"), @@ -707,7 +707,7 @@ woody_species_traits <- sPlot.traits %>% starts_with("PlantHeight"), starts_with("Wood"), starts_with("SpecificRootLength_mean")) %>% - filter( (species %in% species_list) | + filter( (Species %in% species_list) | grepl(pattern = "tree|shrub", x = GrowthForm) | is.tree.or.tall.shrub==T ) %>% @@ -716,10 +716,10 @@ woody_species_traits <- sPlot.traits %>% table(woody_species_traits$GrowthForm, exclude=NULL)</code></pre> <pre><code>## -## herb/shrub herb\\shrub herb/shrub/tree other shrub -## 40 8 2 58 7928 -## shrub/tree shrub\\tree tree <NA> -## 105 29 13555 92</code></pre> +## herb herb/shrub herb/shrub/tree other shrub shrub/tree tree +## 0 48 2 55 7826 133 13458 +## <NA> +## 66</code></pre> <pre class="r"><code># # MEMO for FMS: some standardization needed in sPlot 3.0 for GF names</code></pre> <table class="table table-striped table-hover table-condensed table-responsive" style="width: auto !important; margin-left: auto; margin-right: auto;"> @@ -729,7 +729,7 @@ Example of gap-filled trait data from TRY (20 randomly selected species) <thead> <tr> <th style="text-align:left;"> -species +Species </th> <th style="text-align:left;"> GrowthForm @@ -790,66 +790,66 @@ SpecificRootLength_mean <tbody> <tr> <td style="text-align:left;"> -Kunzea ericifolia +Guarea montana </td> <td style="text-align:left;"> -shrub +tree </td> <td style="text-align:left;"> -FALSE +TRUE </td> <td style="text-align:right;"> -1 +8 </td> <td style="text-align:right;"> -0.7283649 +0.5858742 </td> <td style="text-align:right;"> -NA +0.0301498 </td> <td style="text-align:right;"> -61.990281 +10.979643 </td> <td style="text-align:right;"> -NA +0.2196957 </td> <td style="text-align:right;"> -31.98463 +50.41260 </td> <td style="text-align:right;"> -NA +1.855087 </td> <td style="text-align:right;"> -10.605079 +18.916034 </td> <td style="text-align:right;"> -NA +6.5206777 </td> <td style="text-align:right;"> -0.5061563 +15.665458 </td> <td style="text-align:right;"> -NA +0.3536615 </td> <td style="text-align:right;"> -195.2870 +611.9516 </td> <td style="text-align:right;"> -543.5571 +1333.5654 </td> <td style="text-align:right;"> -NA +11.211612 </td> <td style="text-align:right;"> -NA +15.10079 </td> <td style="text-align:right;"> -3554.2440 +736.6293 </td> </tr> <tr> <td style="text-align:left;"> -Epacris paludosa +Memecylon pauciflorum </td> <td style="text-align:left;"> shrub @@ -861,40 +861,40 @@ FALSE 1 </td> <td style="text-align:right;"> -0.6180130 +0.7556743 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -188.437623 +13.621478 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -15.30076 +34.84398 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -8.228136 +9.740907 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -0.6297734 +7.055767 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -368.1810 +595.8648 </td> <td style="text-align:right;"> -686.6200 +1122.8055 </td> <td style="text-align:right;"> NA @@ -903,12 +903,12 @@ NA NA </td> <td style="text-align:right;"> -1615.6063 +654.5461 </td> </tr> <tr> <td style="text-align:left;"> -Codia jaffrei +Lyonia squamulosa </td> <td style="text-align:left;"> tree @@ -917,6 +917,65 @@ tree TRUE </td> <td style="text-align:right;"> +4 +</td> +<td style="text-align:right;"> +0.6367331 +</td> +<td style="text-align:right;"> +0.0073622 +</td> +<td style="text-align:right;"> +133.937835 +</td> +<td style="text-align:right;"> +36.2900546 +</td> +<td style="text-align:right;"> +40.48682 +</td> +<td style="text-align:right;"> +10.335838 +</td> +<td style="text-align:right;"> +8.960477 +</td> +<td style="text-align:right;"> +0.1550139 +</td> +<td style="text-align:right;"> +2.092577 +</td> +<td style="text-align:right;"> +0.0547571 +</td> +<td style="text-align:right;"> +614.5808 +</td> +<td style="text-align:right;"> +836.4237 +</td> +<td style="text-align:right;"> +156.854966 +</td> +<td style="text-align:right;"> +122.75599 +</td> +<td style="text-align:right;"> +3277.9704 +</td> +</tr> +<tr> +<td style="text-align:left;"> +Croton carpostellatus +</td> +<td style="text-align:left;"> +shrub +</td> +<td style="text-align:left;"> +NA +</td> +<td style="text-align:right;"> NA </td> <td style="text-align:right;"> @@ -967,7 +1026,7 @@ NA </tr> <tr> <td style="text-align:left;"> -Mortoniella pittieri +Symplocos corymboclados </td> <td style="text-align:left;"> tree @@ -1026,66 +1085,66 @@ NA </tr> <tr> <td style="text-align:left;"> -Trophis +Racosperma inceanum </td> <td style="text-align:left;"> -tree +shrub </td> <td style="text-align:left;"> -TRUE +FALSE </td> <td style="text-align:right;"> -160 +1 </td> <td style="text-align:right;"> -0.5799697 +0.9173548 </td> <td style="text-align:right;"> -0.0778658 +NA </td> <td style="text-align:right;"> -9.840891 +32.034694 </td> <td style="text-align:right;"> -1.1314241 +NA </td> <td style="text-align:right;"> -50.44614 +33.08760 </td> <td style="text-align:right;"> -11.1199527 +NA </td> <td style="text-align:right;"> -21.133250 +5.842977 </td> <td style="text-align:right;"> -6.0488715 +NA </td> <td style="text-align:right;"> -15.1032393 +2.630325 </td> <td style="text-align:right;"> -3.8993275 +NA </td> <td style="text-align:right;"> -327.6145 +260.0648 </td> <td style="text-align:right;"> -801.9136 +815.4001 </td> <td style="text-align:right;"> -30.6755155 +NA </td> <td style="text-align:right;"> -50.3768197 +NA </td> <td style="text-align:right;"> -1720.2909 +1044.3426 </td> </tr> <tr> <td style="text-align:left;"> -Planchonella glauca +Syzygium yunnanense </td> <td style="text-align:left;"> tree @@ -1094,43 +1153,43 @@ tree TRUE </td> <td style="text-align:right;"> -NA +1 </td> <td style="text-align:right;"> -NA +0.6709237 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -NA +29.838787 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -NA +37.67867 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -NA +9.101109 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -NA +15.211761 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -NA +393.3089 </td> <td style="text-align:right;"> -NA +904.2242 </td> <td style="text-align:right;"> NA @@ -1139,12 +1198,12 @@ NA NA </td> <td style="text-align:right;"> -NA +2510.9743 </td> </tr> <tr> <td style="text-align:left;"> -Cotyledon velutina +Conyza incana </td> <td style="text-align:left;"> shrub @@ -1156,40 +1215,40 @@ FALSE 1 </td> <td style="text-align:right;"> -0.3137810 +0.5512409 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -620.284468 +87.853476 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -21.22847 +31.59114 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -16.053577 +17.406322 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -1.1066924 +0.778091 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -450.2601 +424.5068 </td> <td style="text-align:right;"> -512.9229 +671.1083 </td> <td style="text-align:right;"> NA @@ -1198,77 +1257,77 @@ NA NA </td> <td style="text-align:right;"> -2530.9735 +6694.7860 </td> </tr> <tr> <td style="text-align:left;"> -Mitrephora teysmannii +Diphysa </td> <td style="text-align:left;"> -tree +shrub </td> <td style="text-align:left;"> -TRUE +NA </td> <td style="text-align:right;"> -3 +15 </td> <td style="text-align:right;"> -0.7483330 +0.7794898 </td> <td style="text-align:right;"> -0.0090990 +0.1593987 </td> <td style="text-align:right;"> -20.357402 +5.273908 </td> <td style="text-align:right;"> -0.5531617 +1.1312733 </td> <td style="text-align:right;"> -94.16796 +41.98475 </td> <td style="text-align:right;"> -3.9737192 +2.886195 </td> <td style="text-align:right;"> -19.631506 +14.589393 </td> <td style="text-align:right;"> -0.5069761 +1.3170600 </td> <td style="text-align:right;"> -12.5924995 +2.974295 </td> <td style="text-align:right;"> -0.5909462 +0.2077748 </td> <td style="text-align:right;"> -493.0227 +245.6972 </td> <td style="text-align:right;"> -1171.1943 +825.3600 </td> <td style="text-align:right;"> -14.5568411 +11.708001 </td> <td style="text-align:right;"> -17.6612858 +32.31287 </td> <td style="text-align:right;"> -1268.6842 +1221.5094 </td> </tr> <tr> <td style="text-align:left;"> -Neisosperma mianum +Ribes hirtum </td> <td style="text-align:left;"> -tree +shrub </td> <td style="text-align:left;"> -TRUE +NA </td> <td style="text-align:right;"> NA @@ -1321,7 +1380,7 @@ NA </tr> <tr> <td style="text-align:left;"> -Oxandra +Styrax grandiflorus </td> <td style="text-align:left;"> tree @@ -1330,57 +1389,57 @@ tree TRUE </td> <td style="text-align:right;"> -508 +1 </td> <td style="text-align:right;"> -0.7439664 +0.4671375 </td> <td style="text-align:right;"> -0.0279287 +NA </td> <td style="text-align:right;"> -46.542459 +33.840797 </td> <td style="text-align:right;"> -11.2841074 +NA </td> <td style="text-align:right;"> -66.58668 +43.94415 </td> <td style="text-align:right;"> -3.3169535 +NA </td> <td style="text-align:right;"> -11.912526 +14.145716 </td> <td style="text-align:right;"> -1.9821599 +NA </td> <td style="text-align:right;"> -14.3297582 +14.963317 </td> <td style="text-align:right;"> -2.5364250 +NA </td> <td style="text-align:right;"> -489.8337 +498.1904 </td> <td style="text-align:right;"> -1049.0371 +772.8494 </td> <td style="text-align:right;"> -25.3409824 +NA </td> <td style="text-align:right;"> -46.4265455 +NA </td> <td style="text-align:right;"> -1158.0969 +1297.9105 </td> </tr> <tr> <td style="text-align:left;"> -Rhus typhina +Eschweilera apiculata </td> <td style="text-align:left;"> tree @@ -1389,57 +1448,57 @@ tree TRUE </td> <td style="text-align:right;"> -61 +9 </td> <td style="text-align:right;"> -0.4527526 +0.7505803 </td> <td style="text-align:right;"> -0.0069034 +0.0041541 </td> <td style="text-align:right;"> -53.477904 +10.576050 </td> <td style="text-align:right;"> -5.7865638 +0.2951158 </td> <td style="text-align:right;"> -90.87015 +78.31194 </td> <td style="text-align:right;"> -6.9805694 +2.146229 </td> <td style="text-align:right;"> -16.845202 +11.589964 </td> <td style="text-align:right;"> -4.3542703 +0.3951154 </td> <td style="text-align:right;"> -6.3294372 +27.429864 </td> <td style="text-align:right;"> -2.1204912 +1.0287612 </td> <td style="text-align:right;"> -1441.3973 +468.7105 </td> <td style="text-align:right;"> -1983.9657 +1503.2446 </td> <td style="text-align:right;"> -110.9144264 +7.704811 </td> <td style="text-align:right;"> -116.2715236 +13.52139 </td> <td style="text-align:right;"> -757.1311 +778.2581 </td> </tr> <tr> <td style="text-align:left;"> -Abies nephrolepis +Persea schiedeana </td> <td style="text-align:left;"> tree @@ -1448,57 +1507,57 @@ tree TRUE </td> <td style="text-align:right;"> -27 +1 </td> <td style="text-align:right;"> -0.3512129 +0.5007033 </td> <td style="text-align:right;"> -0.0114178 +NA </td> <td style="text-align:right;"> -407.180257 +17.566846 </td> <td style="text-align:right;"> -33.9504526 +NA </td> <td style="text-align:right;"> -13.67868 +55.56977 </td> <td style="text-align:right;"> -0.4732980 +NA </td> <td style="text-align:right;"> -9.892645 +10.261233 </td> <td style="text-align:right;"> -1.5514761 +NA </td> <td style="text-align:right;"> -33.9981397 +9.211625 </td> <td style="text-align:right;"> -5.3546088 +NA </td> <td style="text-align:right;"> -712.9564 +480.6575 </td> <td style="text-align:right;"> -1296.2292 +1133.4095 </td> <td style="text-align:right;"> -35.6846481 +NA </td> <td style="text-align:right;"> -38.7653154 +NA </td> <td style="text-align:right;"> -2597.8812 +1928.6155 </td> </tr> <tr> <td style="text-align:left;"> -Iryanthera +Coelocaryon preussii </td> <td style="text-align:left;"> tree @@ -1507,57 +1566,57 @@ tree TRUE </td> <td style="text-align:right;"> -872 +35 </td> <td style="text-align:right;"> -0.5788963 +0.4905614 </td> <td style="text-align:right;"> -0.0214108 +0.0484178 </td> <td style="text-align:right;"> -11.691323 +7.421855 </td> <td style="text-align:right;"> -2.6742994 +0.7438196 </td> <td style="text-align:right;"> -69.60219 +31.85978 </td> <td style="text-align:right;"> -10.3527934 +2.145381 </td> <td style="text-align:right;"> -11.394669 +15.679578 </td> <td style="text-align:right;"> -1.7863227 +2.9380295 </td> <td style="text-align:right;"> -18.2076192 +12.746193 </td> <td style="text-align:right;"> -2.6997193 +1.6766921 </td> <td style="text-align:right;"> -615.3043 +360.9284 </td> <td style="text-align:right;"> -1615.3044 +1200.7816 </td> <td style="text-align:right;"> -38.6066697 +14.194417 </td> <td style="text-align:right;"> -102.6116320 +88.54092 </td> <td style="text-align:right;"> -1203.0586 +3094.0897 </td> </tr> <tr> <td style="text-align:left;"> -Licaria pucheri +Hibiscus peripteroides </td> <td style="text-align:left;"> tree @@ -1616,66 +1675,7 @@ NA </tr> <tr> <td style="text-align:left;"> -Ficus palmata -</td> -<td style="text-align:left;"> -shrub -</td> -<td style="text-align:left;"> -TRUE -</td> -<td style="text-align:right;"> -3 -</td> -<td style="text-align:right;"> -0.4166359 -</td> -<td style="text-align:right;"> -0.0059615 -</td> -<td style="text-align:right;"> -17.196187 -</td> -<td style="text-align:right;"> -5.9575747 -</td> -<td style="text-align:right;"> -43.09359 -</td> -<td style="text-align:right;"> -1.5349340 -</td> -<td style="text-align:right;"> -18.205922 -</td> -<td style="text-align:right;"> -0.4136751 -</td> -<td style="text-align:right;"> -11.8499790 -</td> -<td style="text-align:right;"> -0.4458733 -</td> -<td style="text-align:right;"> -298.8537 -</td> -<td style="text-align:right;"> -572.8625 -</td> -<td style="text-align:right;"> -11.1446281 -</td> -<td style="text-align:right;"> -10.4592304 -</td> -<td style="text-align:right;"> -1377.5573 -</td> -</tr> -<tr> -<td style="text-align:left;"> -Santalum paniculatum +Dendropanax caucanus </td> <td style="text-align:left;"> tree @@ -1684,57 +1684,57 @@ tree TRUE </td> <td style="text-align:right;"> -2 +20 </td> <td style="text-align:right;"> -0.7417319 +0.4402174 </td> <td style="text-align:right;"> -0.0000636 +0.0135227 </td> <td style="text-align:right;"> -19.537087 +31.876560 </td> <td style="text-align:right;"> -0.9933779 +1.7936267 </td> <td style="text-align:right;"> -24.31650 +23.63052 </td> <td style="text-align:right;"> -0.0772736 +1.159723 </td> <td style="text-align:right;"> -5.509882 +15.625599 </td> <td style="text-align:right;"> -0.0290659 +2.7468579 </td> <td style="text-align:right;"> -4.9944134 +13.059134 </td> <td style="text-align:right;"> -0.0294042 +1.4795529 </td> <td style="text-align:right;"> -240.6449 +649.5451 </td> <td style="text-align:right;"> -616.3328 +1304.9038 </td> <td style="text-align:right;"> -0.0361808 +31.320617 </td> <td style="text-align:right;"> -0.9732207 +38.60228 </td> <td style="text-align:right;"> -554.3731 +2356.5024 </td> </tr> <tr> <td style="text-align:left;"> -Diospyros cinnabarina +Combretaceae </td> <td style="text-align:left;"> tree @@ -1743,116 +1743,116 @@ tree TRUE </td> <td style="text-align:right;"> -2 +NA </td> <td style="text-align:right;"> -0.6610894 +NA </td> <td style="text-align:right;"> -0.0035850 +NA </td> <td style="text-align:right;"> -14.580362 +NA </td> <td style="text-align:right;"> -0.9772326 +NA </td> <td style="text-align:right;"> -55.77311 +NA </td> <td style="text-align:right;"> -1.9367853 +NA </td> <td style="text-align:right;"> -11.881875 +NA </td> <td style="text-align:right;"> -0.1371734 +NA </td> <td style="text-align:right;"> -10.9291313 +NA </td> <td style="text-align:right;"> -0.7287004 +NA </td> <td style="text-align:right;"> -431.2067 +NA </td> <td style="text-align:right;"> -1151.1902 +NA </td> <td style="text-align:right;"> -12.7213760 +NA </td> <td style="text-align:right;"> -14.2037536 +NA </td> <td style="text-align:right;"> -1452.2787 +NA </td> </tr> <tr> <td style="text-align:left;"> -Protium altsonii +Ozoroa homblei </td> <td style="text-align:left;"> -tree +shrub </td> <td style="text-align:left;"> -TRUE +FALSE </td> <td style="text-align:right;"> -39 +7 </td> <td style="text-align:right;"> -0.6128564 +0.6785542 </td> <td style="text-align:right;"> -0.0255524 +0.0110582 </td> <td style="text-align:right;"> -12.230485 +11.194790 </td> <td style="text-align:right;"> -0.9091390 +0.4246382 </td> <td style="text-align:right;"> -43.51911 +86.76049 </td> <td style="text-align:right;"> -2.2129142 +2.857780 </td> <td style="text-align:right;"> -14.697606 +8.225762 </td> <td style="text-align:right;"> -2.1798936 +0.2473602 </td> <td style="text-align:right;"> -20.4438840 +2.071787 </td> <td style="text-align:right;"> -1.7465118 +0.3695247 </td> <td style="text-align:right;"> -404.9270 +444.9354 </td> <td style="text-align:right;"> -971.3543 +1017.9627 </td> <td style="text-align:right;"> -13.3303058 +27.544033 </td> <td style="text-align:right;"> -26.8407913 +50.02243 </td> <td style="text-align:right;"> -765.7623 +785.7581 </td> </tr> <tr> <td style="text-align:left;"> -Litsea glutinosa +Acacia sulcata </td> <td style="text-align:left;"> tree @@ -1861,102 +1861,102 @@ tree TRUE </td> <td style="text-align:right;"> -6 +NA </td> <td style="text-align:right;"> -0.5487119 +NA </td> <td style="text-align:right;"> -0.0540633 +NA </td> <td style="text-align:right;"> -15.661711 +NA </td> <td style="text-align:right;"> -0.3416939 +NA </td> <td style="text-align:right;"> -22.81439 +NA </td> <td style="text-align:right;"> -0.7334361 +NA </td> <td style="text-align:right;"> -13.030198 +NA </td> <td style="text-align:right;"> -0.3315966 +NA </td> <td style="text-align:right;"> -14.1280203 +NA </td> <td style="text-align:right;"> -0.4921995 +NA </td> <td style="text-align:right;"> -454.1707 +NA </td> <td style="text-align:right;"> -811.2948 +NA </td> <td style="text-align:right;"> -11.0344099 +NA </td> <td style="text-align:right;"> -7.2770561 +NA </td> <td style="text-align:right;"> -534.8413 +NA </td> </tr> <tr> <td style="text-align:left;"> -Anabasis elatior +Benthamina alyxifolia </td> <td style="text-align:left;"> shrub </td> <td style="text-align:left;"> -FALSE +NA </td> <td style="text-align:right;"> -1 +NA </td> <td style="text-align:right;"> -0.5692733 +NA </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -60.585659 +NA </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -33.58964 +NA </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -4.135293 +NA </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -0.2021352 +NA </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -488.6956 +NA </td> <td style="text-align:right;"> -1010.9334 +NA </td> <td style="text-align:right;"> NA @@ -1965,7 +1965,7 @@ NA NA </td> <td style="text-align:right;"> -2705.0498 +NA </td> </tr> </tbody> @@ -1993,9 +1993,9 @@ NA <p>Codes correspond to those reported in <a href="https://www.try-db.org/TryWeb/Home.php">TRY</a></p> <pre class="r"><code>#subset DT.xylem to only retain woody species DT.xylem <- DT.xylem %>% - filter(species %in% (woody_species_traits$species)) + filter(Species %in% (woody_species_traits$Species)) nrow(DT.xylem)</code></pre> -<pre><code>## [1] 8547337</code></pre> +<pre><code>## [1] 8547026</code></pre> <p>Merge relative cover across vegetation layers, if needed, and normalize to 1 (=100%)</p> <pre class="r"><code>###combine cover values across layers combine.cover <- function(x){ @@ -2007,39 +2007,42 @@ combine.cover <- function(x){ } DT.xylem <- DT.xylem %>% - dplyr::select(PlotObservationID, species,Layer, Relative.cover) %>% + dplyr::select(PlotObservationID, Species,Layer, Relative_cover) %>% # normalize relative cover to 1 for each plot x layer combination left_join({.} %>% group_by(PlotObservationID, Layer) %>% - summarize(Tot.Cover=sum(Relative.cover), .groups="drop"), + summarize(Tot.Cover=sum(Relative_cover), .groups="drop"), by=c("PlotObservationID", "Layer")) %>% - mutate(Relative.cover=Relative.cover/Tot.Cover) %>% - group_by(PlotObservationID, species) %>% + mutate(Relative_cover=Relative_cover/Tot.Cover) %>% + group_by(PlotObservationID, Species) %>% # merge layers together - summarize(Relative.cover=combine.cover(Relative.cover), .groups="drop") %>% + summarize(Relative_cover=combine.cover(Relative_cover), .groups="drop") %>% ungroup() %>% # normalize relative cover to 1 after merging layers together left_join({.} %>% group_by(PlotObservationID) %>% - summarize(Tot.Cover=sum(Relative.cover), .groups="drop"), + summarize(Tot.Cover=sum(Relative_cover), .groups="drop"), by="PlotObservationID") %>% - mutate(Relative.cover=Relative.cover/Tot.Cover) + mutate(Relative_cover=Relative_cover/Tot.Cover) nrow(DT.xylem)</code></pre> -<pre><code>## [1] 7304230</code></pre> +<pre><code>## [1] 7303930</code></pre> <p>double check that covers are properly standardized</p> <pre class="r"><code>DT.xylem %>% filter(PlotObservationID %in% sample(header.xylem$PlotObservationID, 10, replace=F)) %>% group_by(PlotObservationID) %>% - summarize(tot.cover=sum(Relative.cover), .groups="drop")</code></pre> -<pre><code>## # A tibble: 5 x 2 + summarize(tot.cover=sum(Relative_cover), .groups="drop")</code></pre> +<pre><code>## # A tibble: 8 x 2 ## PlotObservationID tot.cover ## <dbl> <dbl> -## 1 143374 1 -## 2 451004 1 -## 3 685954 1 -## 4 746410 1 -## 5 1133820 1</code></pre> +## 1 25202 1 +## 2 41158 1 +## 3 709456 1 +## 4 751505 1 +## 5 1590085 1 +## 6 1912386 1 +## 7 1916127 1 +## 8 1968921 1</code></pre> </div> <div id="calculate-cwms-and-trait-coverage" class="section level1"> <h1>3 Calculate CWMs and trait coverage</h1> @@ -2047,24 +2050,23 @@ nrow(DT.xylem)</code></pre> <pre class="r"><code># Merge species data table with traits CWM.xylem0 <- DT.xylem %>% as_tibble() %>% - dplyr::select(PlotObservationID, species, Relative.cover) %>% + dplyr::select(PlotObservationID, Species, Relative_cover) %>% left_join(xylem_data %>% - dplyr::rename(species=Species) %>% - dplyr::select(species, P50, Ks), - by="species") + dplyr::select(Species, P50, Ks), + by="Species") # Calculate CWM for each trait in each plot CWM.xylem1 <- CWM.xylem0 %>% group_by(PlotObservationID) %>% summarize_at(.vars= vars(P50:Ks), - .funs = list(~weighted.mean(., Relative.cover, na.rm=T)), + .funs = list(~weighted.mean(., Relative_cover, na.rm=T)), .groups="drop") %>% dplyr::select(PlotObservationID, order(colnames(.))) %>% pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.value") # Calculate coverage for each trait in each plot CWM.xylem2 <- CWM.xylem0 %>% - mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative.cover), + mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative_cover), .vars = vars(P50:Ks)) %>% group_by(PlotObservationID) %>% summarize_at(.vars= vars(P50:Ks), @@ -2094,7 +2096,7 @@ variance2.fun <- function(trait, abu){ CWM.xylem3 <- CWM.xylem0 %>% group_by(PlotObservationID) %>% summarize_at(.vars= vars(P50:Ks), - .funs = list(~variance2.fun(., Relative.cover))) %>% + .funs = list(~variance2.fun(., Relative_cover))) %>% dplyr::select(PlotObservationID, order(colnames(.))) %>% pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.variance") @@ -2696,7 +2698,7 @@ num.plots Ks </td> <td style="text-align:right;"> -92391 +92390 </td> </tr> <tr> @@ -2704,7 +2706,7 @@ Ks P50 </td> <td style="text-align:right;"> -328855 +328854 </td> </tr> </tbody> @@ -2740,7 +2742,7 @@ Completeness_perc GIVD ID </td> <td style="text-align:right;"> -99.9944532 +100.0000000 </td> </tr> <tr> @@ -2756,7 +2758,7 @@ TV2 relevé number ORIG_NUM </td> <td style="text-align:right;"> -0.0047429 +0.0000000 </td> </tr> <tr> @@ -2788,7 +2790,7 @@ Latitude Location uncertainty (m) </td> <td style="text-align:right;"> -95.2326748 +95.2332143 </td> </tr> <tr> @@ -2796,7 +2798,7 @@ Location uncertainty (m) Country </td> <td style="text-align:right;"> -99.9040972 +99.9024840 </td> </tr> <tr> @@ -2812,7 +2814,7 @@ CONTINENT sBiome </td> <td style="text-align:right;"> -99.2994997 +100.0000000 </td> </tr> <tr> @@ -2820,7 +2822,7 @@ sBiome sBiomeID </td> <td style="text-align:right;"> -99.2994997 +100.0000000 </td> </tr> <tr> @@ -2828,7 +2830,7 @@ sBiomeID Ecoregion </td> <td style="text-align:right;"> -99.2824574 +100.0000000 </td> </tr> <tr> @@ -2836,7 +2838,7 @@ Ecoregion EcoregionID </td> <td style="text-align:right;"> -99.2824574 +100.0000000 </td> </tr> <tr> @@ -2844,7 +2846,7 @@ EcoregionID Locality </td> <td style="text-align:right;"> -60.0678635 +60.0711955 </td> </tr> <tr> @@ -2852,7 +2854,7 @@ Locality Relevé area (m²) </td> <td style="text-align:right;"> -72.9285641 +72.9304389 </td> </tr> <tr> @@ -2868,7 +2870,7 @@ Cover abundance scale Date of recording </td> <td style="text-align:right;"> -87.1815834 +87.1848920 </td> </tr> <tr> @@ -2876,7 +2878,7 @@ Date of recording Plants recorded </td> <td style="text-align:right;"> -99.9995177 +99.9995176 </td> </tr> <tr> @@ -2884,7 +2886,7 @@ Plants recorded Herbs identified (y/n) </td> <td style="text-align:right;"> -2.7118865 +2.7120369 </td> </tr> <tr> @@ -2892,7 +2894,7 @@ Herbs identified (y/n) Mosses identified (y/n) </td> <td style="text-align:right;"> -28.1309487 +28.1317052 </td> </tr> <tr> @@ -2900,7 +2902,7 @@ Mosses identified (y/n) Lichens identified (y/n) </td> <td style="text-align:right;"> -16.5480141 +16.5481281 </td> </tr> <tr> @@ -2908,7 +2910,7 @@ Lichens identified (y/n) elevation_dem </td> <td style="text-align:right;"> -76.7620228 +76.7635475 </td> </tr> <tr> @@ -2916,7 +2918,7 @@ elevation_dem Altitude (m) </td> <td style="text-align:right;"> -84.2275686 +84.2278995 </td> </tr> <tr> @@ -2924,7 +2926,7 @@ Altitude (m) Aspect (°) </td> <td style="text-align:right;"> -32.4671535 +32.4683917 </td> </tr> <tr> @@ -2932,7 +2934,7 @@ Aspect (°) Slope (°) </td> <td style="text-align:right;"> -42.1329970 +42.1346910 </td> </tr> <tr> @@ -2940,7 +2942,7 @@ Slope (°) Forest </td> <td style="text-align:right;"> -74.7368903 +74.7359713 </td> </tr> <tr> @@ -2948,7 +2950,7 @@ Forest Shrubland </td> <td style="text-align:right;"> -74.7368903 +74.7359713 </td> </tr> <tr> @@ -2956,7 +2958,7 @@ Shrubland Grassland </td> <td style="text-align:right;"> -74.7368903 +74.7359713 </td> </tr> <tr> @@ -2964,7 +2966,7 @@ Grassland Wetland </td> <td style="text-align:right;"> -74.7368903 +74.7359713 </td> </tr> <tr> @@ -2972,7 +2974,7 @@ Wetland Sparse.vegetation </td> <td style="text-align:right;"> -74.7368903 +74.7359713 </td> </tr> <tr> @@ -2980,7 +2982,7 @@ Sparse.vegetation Naturalness </td> <td style="text-align:right;"> -47.8299281 +47.8286420 </td> </tr> <tr> @@ -2988,7 +2990,7 @@ Naturalness ESY </td> <td style="text-align:right;"> -72.6619977 +72.6604813 </td> </tr> <tr> @@ -2996,7 +2998,7 @@ ESY Cover total (%) </td> <td style="text-align:right;"> -21.1678275 +21.1663487 </td> </tr> <tr> @@ -3004,7 +3006,7 @@ Cover total (%) Cover tree layer (%) </td> <td style="text-align:right;"> -17.0949735 +17.0958414 </td> </tr> <tr> @@ -3012,7 +3014,7 @@ Cover tree layer (%) Cover shrub layer (%) </td> <td style="text-align:right;"> -18.6166364 +18.6167848 </td> </tr> <tr> @@ -3020,7 +3022,7 @@ Cover shrub layer (%) Cover herb layer (%) </td> <td style="text-align:right;"> -36.1539847 +36.1548647 </td> </tr> <tr> @@ -3028,7 +3030,7 @@ Cover herb layer (%) Cover moss layer (%) </td> <td style="text-align:right;"> -18.1638113 +18.1640149 </td> </tr> <tr> @@ -3036,7 +3038,7 @@ Cover moss layer (%) Cover lichen layer (%) </td> <td style="text-align:right;"> -0.3121463 +0.3121636 </td> </tr> <tr> @@ -3044,7 +3046,7 @@ Cover lichen layer (%) Cover algae layer (%) </td> <td style="text-align:right;"> -0.0567539 +0.0567570 </td> </tr> <tr> @@ -3052,7 +3054,7 @@ Cover algae layer (%) Cover litter layer (%) </td> <td style="text-align:right;"> -4.5210166 +4.5212674 </td> </tr> <tr> @@ -3060,7 +3062,7 @@ Cover litter layer (%) Cover open water (%) </td> <td style="text-align:right;"> -0.1392319 +0.1392396 </td> </tr> <tr> @@ -3068,7 +3070,7 @@ Cover open water (%) Cover bare rock (%) </td> <td style="text-align:right;"> -1.7043043 +1.7043988 </td> </tr> <tr> @@ -3076,7 +3078,7 @@ Cover bare rock (%) Height (highest) trees (m) </td> <td style="text-align:right;"> -7.5995524 +7.5998936 </td> </tr> <tr> @@ -3084,7 +3086,7 @@ Height (highest) trees (m) Height lowest trees (m) </td> <td style="text-align:right;"> -0.4962346 +0.4962622 </td> </tr> <tr> @@ -3092,7 +3094,7 @@ Height lowest trees (m) Height (highest) shrubs (m) </td> <td style="text-align:right;"> -5.0405637 +5.0408433 </td> </tr> <tr> @@ -3100,7 +3102,7 @@ Height (highest) shrubs (m) Height lowest shrubs (m) </td> <td style="text-align:right;"> -0.5556413 +0.5556721 </td> </tr> <tr> @@ -3108,7 +3110,7 @@ Height lowest shrubs (m) Aver. height (high) herbs (cm) </td> <td style="text-align:right;"> -9.5914847 +9.5916148 </td> </tr> <tr> @@ -3116,7 +3118,7 @@ Aver. height (high) herbs (cm) Aver. height lowest herbs (cm) </td> <td style="text-align:right;"> -2.7044104 +2.7043996 </td> </tr> <tr> @@ -3124,7 +3126,7 @@ Aver. height lowest herbs (cm) Maximum height herbs (cm) </td> <td style="text-align:right;"> -2.4628447 +2.4629813 </td> </tr> <tr> @@ -3132,12 +3134,12 @@ Maximum height herbs (cm) Maximum height cryptogams (mm) </td> <td style="text-align:right;"> -0.1219485 +0.1219552 </td> </tr> </tbody> </table> -<p>The process results in 1243968 plots selected, for a total of 1932708 trait * plot combinations.</p> +<p>The process results in 1243899 plots selected, for a total of 1932574 trait * plot combinations.</p> <p>Geographical distribution of plots</p> <pre class="r"><code>countries <- map_data("world") ggworld <- ggplot(countries, aes(x=long, y=lat, group = group)) + @@ -3145,7 +3147,7 @@ ggworld <- ggplot(countries, aes(x=long, y=lat, group = group)) + geom_point(data=header.xylem, aes(x=Longitude, y=Latitude, group=1), col="red", alpha=0.5, cex=0.7, shape="+") + theme_bw() ggworld</code></pre> -<p><img src="" width="576" style="display: block; margin: auto;" /></p> +<p><img src="" width="576" style="display: block; margin: auto;" /></p> <p>Summarize data across data sets in sPlot, and create list of data custodians</p> <pre class="r"><code>db.out <- read_csv("/data/sPlot/users/Francesco/_sPlot_Management/Consortium/Databases.out.csv") %>% dplyr::select(`GIVD ID`, Custodian) @@ -3223,7 +3225,7 @@ Anne D. Bjorkman 1100 </td> <td style="text-align:left;"> -Vassiliy Martynenko +Vasiliy Martynenko </td> </tr> <tr> @@ -3366,7 +3368,7 @@ AF-00-011 93 </td> <td style="text-align:left;"> -Bruno Herault +Bruno Hérault </td> </tr> <tr> @@ -3828,7 +3830,7 @@ AU-NZ-001 15738 </td> <td style="text-align:left;"> -Susan Wiser +Susan K. Wiser </td> </tr> <tr> @@ -4876,20 +4878,9 @@ SA-EC-002 Gonzalo Rivas-Torres </td> </tr> -<tr> -<td style="text-align:left;"> -NA -</td> -<td style="text-align:right;"> -69 -</td> -<td style="text-align:left;"> -NA -</td> -</tr> </tbody> </table> -<p>The data derive from 156 datasets.</p> +<p>The data derive from 155 datasets.</p> </div> <div id="extract-climate-and-soils-data" class="section level1"> <h1>4 Extract climate and soils data</h1> @@ -5076,407 +5067,407 @@ SNDPPTsd <tbody> <tr> <td style="text-align:right;"> -1055814 +1762681 </td> <td style="text-align:right;"> -0 +121 </td> <td style="text-align:right;"> -104.00000 +106.00000 </td> <td style="text-align:right;"> -60.00000 +43.00000 </td> <td style="text-align:right;"> -288.0000 +155.0000 </td> <td style="text-align:right;"> -5231.667 +8104.000 </td> <td style="text-align:right;"> -217.0000 +252.0000 </td> <td style="text-align:right;"> -8.166667 +-28.0000000 </td> <td style="text-align:right;"> -208.3333 +280.0000 </td> <td style="text-align:right;"> -54.00000 +3.00000 </td> <td style="text-align:right;"> -82.000000 +113.000000 </td> <td style="text-align:right;"> -178.0000 +223.0000 </td> <td style="text-align:right;"> -34.000000 +-4.000000 </td> <td style="text-align:right;"> -814.1667 +1461.0000 </td> <td style="text-align:right;"> -79.00000 +164.00000 </td> <td style="text-align:right;"> -47.00000 +87.00000 </td> <td style="text-align:right;"> -15.83333 +22.00000 </td> <td style="text-align:right;"> -234.3333 +478.0000 </td> <td style="text-align:right;"> -154.00000 +267.00000 </td> <td style="text-align:right;"> -231.0000 +363.00000 </td> <td style="text-align:right;"> -174.0000 +406.00000 </td> <td style="text-align:right;"> -0.000000 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -3.265986 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -0.4082483 +NA </td> <td style="text-align:right;"> -0.5163978 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -0.000000 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -0.9831921 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -0.0000000 +NA </td> <td style="text-align:right;"> -0.4082483 +NA </td> <td style="text-align:right;"> -0.8164966 +NA </td> <td style="text-align:right;"> -0.000000 +NA </td> <td style="text-align:right;"> -0.000000 +NA </td> <td style="text-align:right;"> -0.000000 +NA </td> <td style="text-align:right;"> -500.9677 +792.3333 </td> <td style="text-align:right;"> -26.01613 +29.00000 </td> <td style="text-align:right;"> -29.258064 +16.83333 </td> <td style="text-align:right;"> -6.806452 +13.8333333 </td> <td style="text-align:right;"> -64.22581 +119.33333 </td> <td style="text-align:right;"> -65.66129 +47.66667 </td> <td style="text-align:right;"> -37.290323 +37.33333 </td> <td style="text-align:right;"> -33.54839 +46.16667 </td> <td style="text-align:right;"> -44.646505 +27.339837 </td> <td style="text-align:right;"> -4.0265184 +1.0954451 </td> <td style="text-align:right;"> -3.6839727 +0.7527727 </td> <td style="text-align:right;"> -1.4467455 +0.9831921 </td> <td style="text-align:right;"> -26.123552 +10.405127 </td> <td style="text-align:right;"> -1.6980563 +0.8164966 </td> <td style="text-align:right;"> -2.5310342 +0.5163978 </td> <td style="text-align:right;"> -3.4720307 +0.7527727 </td> </tr> <tr> <td style="text-align:right;"> -14866 +145165 </td> <td style="text-align:right;"> -509 +101 </td> <td style="text-align:right;"> -83.96739 +3.00000 </td> <td style="text-align:right;"> -77.72826 +58.00000 </td> <td style="text-align:right;"> -276.5435 +172.0000 </td> <td style="text-align:right;"> -7176.413 +9222.000 </td> <td style="text-align:right;"> -230.1304 +185.0000 </td> <td style="text-align:right;"> --50.184783 +-151.0000000 </td> <td style="text-align:right;"> -280.4348 +336.0000 </td> <td style="text-align:right;"> -176.94565 +89.00000 </td> <td style="text-align:right;"> --9.423913 +-32.000000 </td> <td style="text-align:right;"> -180.4239 +134.0000 </td> <td style="text-align:right;"> --13.391304 +-121.000000 </td> <td style="text-align:right;"> -640.8913 +484.0000 </td> <td style="text-align:right;"> -87.08696 +58.00000 </td> <td style="text-align:right;"> -32.33696 +25.00000 </td> <td style="text-align:right;"> -36.25000 +29.00000 </td> <td style="text-align:right;"> -259.3696 +165.0000 </td> <td style="text-align:right;"> -99.84783 +80.00000 </td> <td style="text-align:right;"> -233.3370 +164.00000 </td> <td style="text-align:right;"> -108.9022 +83.00000 </td> <td style="text-align:right;"> -8.772398 +NA </td> <td style="text-align:right;"> -0.4472937 +NA </td> <td style="text-align:right;"> -1.1617819 +NA </td> <td style="text-align:right;"> -46.601927 +NA </td> <td style="text-align:right;"> -9.2916332 +NA </td> <td style="text-align:right;"> -8.0122562 +NA </td> <td style="text-align:right;"> -1.2692851 +NA </td> <td style="text-align:right;"> -9.3083492 +NA </td> <td style="text-align:right;"> -8.164832 +NA </td> <td style="text-align:right;"> -9.2275670 +NA </td> <td style="text-align:right;"> -8.1158596 +NA </td> <td style="text-align:right;"> -87.2503606 +NA </td> <td style="text-align:right;"> -12.0745415 +NA </td> <td style="text-align:right;"> -4.5241165 +NA </td> <td style="text-align:right;"> -1.8905491 +NA </td> <td style="text-align:right;"> -36.3274840 +NA </td> <td style="text-align:right;"> -14.101621 +NA </td> <td style="text-align:right;"> -32.983938 +NA </td> <td style="text-align:right;"> -15.855155 +NA </td> <td style="text-align:right;"> -799.4233 +501.3000 </td> <td style="text-align:right;"> -20.34871 +27.70000 </td> <td style="text-align:right;"> -17.803935 +12.70000 </td> <td style="text-align:right;"> -18.152646 +5.8000000 </td> <td style="text-align:right;"> -49.68385 +177.60000 </td> <td style="text-align:right;"> -53.77001 +50.30000 </td> <td style="text-align:right;"> -41.138399 +36.20000 </td> <td style="text-align:right;"> -41.04071 +51.20000 </td> <td style="text-align:right;"> -77.252901 +34.919113 </td> <td style="text-align:right;"> -2.9640025 +0.8232726 </td> <td style="text-align:right;"> -2.3305197 +0.6749486 </td> <td style="text-align:right;"> -1.8310616 +0.4216370 </td> <td style="text-align:right;"> -15.822520 +14.982953 </td> <td style="text-align:right;"> -3.9467806 +0.4830459 </td> <td style="text-align:right;"> -2.0002998 +0.7888106 </td> <td style="text-align:right;"> -3.2557389 +0.9189366 </td> </tr> <tr> <td style="text-align:right;"> -859556 +1758161 </td> <td style="text-align:right;"> -NA +1202 </td> <td style="text-align:right;"> -92.00000 +79.00000 </td> <td style="text-align:right;"> -66.00000 +67.00000 </td> <td style="text-align:right;"> -278.0000 +220.0000 </td> <td style="text-align:right;"> -6061.000 +8280.000 </td> <td style="text-align:right;"> -222.0000 +235.0000 </td> <td style="text-align:right;"> --15.000000 +-68.0000000 </td> <td style="text-align:right;"> -236.0000 +303.0000 </td> <td style="text-align:right;"> -171.00000 +198.00000 </td> <td style="text-align:right;"> -35.000000 +-26.000000 </td> <td style="text-align:right;"> -177.0000 +198.0000 </td> <td style="text-align:right;"> -12.000000 +-32.000000 </td> <td style="text-align:right;"> -758.0000 +1975.0000 </td> <td style="text-align:right;"> -76.00000 +277.00000 </td> <td style="text-align:right;"> -50.00000 +72.00000 </td> <td style="text-align:right;"> -13.00000 +46.00000 </td> <td style="text-align:right;"> -221.0000 +828.0000 </td> <td style="text-align:right;"> -164.00000 +228.00000 </td> <td style="text-align:right;"> -213.0000 +828.00000 </td> <td style="text-align:right;"> -168.0000 +244.00000 </td> <td style="text-align:right;"> NA @@ -5536,287 +5527,287 @@ NA NA </td> <td style="text-align:right;"> -673.6000 +817.2500 </td> <td style="text-align:right;"> -19.40000 +35.50000 </td> <td style="text-align:right;"> -21.600000 +19.00000 </td> <td style="text-align:right;"> -12.200000 +19.2500000 </td> <td style="text-align:right;"> -43.80000 +152.75000 </td> <td style="text-align:right;"> -57.80000 +49.75000 </td> <td style="text-align:right;"> -55.000000 +36.50000 </td> <td style="text-align:right;"> -23.60000 +44.75000 </td> <td style="text-align:right;"> -25.822471 +26.170913 </td> <td style="text-align:right;"> -1.6733201 +1.2909944 </td> <td style="text-align:right;"> -0.5477226 +0.8164966 </td> <td style="text-align:right;"> -0.4472136 +0.5000000 </td> <td style="text-align:right;"> -11.541230 +6.652067 </td> <td style="text-align:right;"> -2.2803509 +0.5000000 </td> <td style="text-align:right;"> -1.8708287 +0.5773503 </td> <td style="text-align:right;"> -2.1908902 +0.5000000 </td> </tr> <tr> <td style="text-align:right;"> -1605521 +923129 </td> <td style="text-align:right;"> -107 +NA </td> <td style="text-align:right;"> -98.00000 +160.35976 </td> <td style="text-align:right;"> -64.00000 +62.17378 </td> <td style="text-align:right;"> -328.0000 +247.9451 </td> <td style="text-align:right;"> -4570.000 +6664.412 </td> <td style="text-align:right;"> -209.0000 +295.7256 </td> <td style="text-align:right;"> -13.000000 +45.0670732 </td> <td style="text-align:right;"> -196.0000 +250.6646 </td> <td style="text-align:right;"> -54.00000 +101.67683 </td> <td style="text-align:right;"> -41.000000 +254.064024 </td> <td style="text-align:right;"> -165.0000 +254.3689 </td> <td style="text-align:right;"> -41.000000 +75.533537 </td> <td style="text-align:right;"> -634.0000 +557.5000 </td> <td style="text-align:right;"> -59.00000 +76.22561 </td> <td style="text-align:right;"> -41.00000 +15.90549 </td> <td style="text-align:right;"> -9.00000 +45.33537 </td> <td style="text-align:right;"> -175.0000 +222.6768 </td> <td style="text-align:right;"> -135.00000 +49.41463 </td> <td style="text-align:right;"> -169.0000 +49.42683 </td> <td style="text-align:right;"> -135.0000 +178.37500 </td> <td style="text-align:right;"> -NA +8.9711649 </td> <td style="text-align:right;"> -NA +2.870867 </td> <td style="text-align:right;"> -NA +7.4499373 </td> <td style="text-align:right;"> -NA +47.364145 </td> <td style="text-align:right;"> -NA +8.9427853 </td> <td style="text-align:right;"> -NA +9.0965807 </td> <td style="text-align:right;"> -NA +4.2155638 </td> <td style="text-align:right;"> -NA +13.1423335 </td> <td style="text-align:right;"> -NA +9.121949 </td> <td style="text-align:right;"> -NA +9.1378105 </td> <td style="text-align:right;"> -NA +8.7429537 </td> <td style="text-align:right;"> -NA +64.541384 </td> <td style="text-align:right;"> -NA +9.356890 </td> <td style="text-align:right;"> -NA +2.2079022 </td> <td style="text-align:right;"> -NA +1.5013855 </td> <td style="text-align:right;"> -NA +26.146713 </td> <td style="text-align:right;"> -NA +6.597565 </td> <td style="text-align:right;"> -NA +6.599565 </td> <td style="text-align:right;"> -NA +21.939371 </td> <td style="text-align:right;"> -917.1667 +1245.3117 </td> <td style="text-align:right;"> -20.66667 +23.49298 </td> <td style="text-align:right;"> -26.333333 +23.87862 </td> <td style="text-align:right;"> -13.000000 +18.8700615 </td> <td style="text-align:right;"> -36.00000 +33.66001 </td> <td style="text-align:right;"> -63.50000 +72.37094 </td> <td style="text-align:right;"> -39.500000 +36.21291 </td> <td style="text-align:right;"> -34.33333 +39.93371 </td> <td style="text-align:right;"> -20.778996 +145.216224 </td> <td style="text-align:right;"> -1.2110601 +2.8967136 </td> <td style="text-align:right;"> -1.3662601 +1.8436039 </td> <td style="text-align:right;"> -0.6324555 +3.5358312 </td> <td style="text-align:right;"> -2.280351 +17.995757 </td> <td style="text-align:right;"> -0.8366600 +3.3922852 </td> <td style="text-align:right;"> -1.0488088 +2.2528178 </td> <td style="text-align:right;"> -0.8164966 +2.5691739 </td> </tr> <tr> <td style="text-align:right;"> -1316079 +1986320 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> -59.00000 +164.00000 </td> <td style="text-align:right;"> -73.00000 +38.00000 </td> <td style="text-align:right;"> -265.0000 +361.0000 </td> <td style="text-align:right;"> -7245.000 +2284.000 </td> <td style="text-align:right;"> -204.0000 +223.0000 </td> <td style="text-align:right;"> --73.000000 +116.0000000 </td> <td style="text-align:right;"> -277.0000 +107.0000 </td> <td style="text-align:right;"> -153.00000 +137.00000 </td> <td style="text-align:right;"> --36.000000 +196.000000 </td> <td style="text-align:right;"> -156.0000 +196.0000 </td> <td style="text-align:right;"> --39.000000 +134.000000 </td> <td style="text-align:right;"> -1045.0000 +1289.0000 </td> <td style="text-align:right;"> -160.00000 +236.00000 </td> <td style="text-align:right;"> -48.00000 +18.00000 </td> <td style="text-align:right;"> -48.00000 +72.00000 </td> <td style="text-align:right;"> -480.0000 +693.0000 </td> <td style="text-align:right;"> -149.00000 +56.00000 </td> <td style="text-align:right;"> -434.0000 +56.00000 </td> <td style="text-align:right;"> -160.0000 +618.00000 </td> <td style="text-align:right;"> NA @@ -5876,28 +5867,28 @@ NA NA </td> <td style="text-align:right;"> -762.0000 +842.0000 </td> <td style="text-align:right;"> -25.00000 +24.00000 </td> <td style="text-align:right;"> -18.000000 +25.00000 </td> <td style="text-align:right;"> -14.000000 +13.0000000 </td> <td style="text-align:right;"> -102.00000 +84.00000 </td> <td style="text-align:right;"> -52.00000 +63.00000 </td> <td style="text-align:right;"> -46.000000 +21.00000 </td> <td style="text-align:right;"> -37.00000 +54.00000 </td> <td style="text-align:right;"> NA @@ -5926,407 +5917,407 @@ NA </tr> <tr> <td style="text-align:right;"> -951628 +1373162 </td> <td style="text-align:right;"> -183 +197 </td> <td style="text-align:right;"> -97.27670 +100.13636 </td> <td style="text-align:right;"> -38.69660 +79.00000 </td> <td style="text-align:right;"> -303.1675 +259.2727 </td> <td style="text-align:right;"> -3181.583 +8036.545 </td> <td style="text-align:right;"> -167.3617 +254.9545 </td> <td style="text-align:right;"> -39.783981 +-50.0000000 </td> <td style="text-align:right;"> -127.5655 +304.8636 </td> <td style="text-align:right;"> -68.44903 +181.59091 </td> <td style="text-align:right;"> -97.684466 +31.090909 </td> <td style="text-align:right;"> -144.5801 +204.0000 </td> <td style="text-align:right;"> -58.339806 +-12.000000 </td> <td style="text-align:right;"> -1440.9320 +726.9545 </td> <td style="text-align:right;"> -158.89320 +104.68182 </td> <td style="text-align:right;"> -81.16990 +39.00000 </td> <td style="text-align:right;"> -22.96359 +32.90909 </td> <td style="text-align:right;"> -465.4199 +284.7727 </td> <td style="text-align:right;"> -246.85922 +118.00000 </td> <td style="text-align:right;"> -335.3762 +242.13636 </td> <td style="text-align:right;"> -376.3786 +150.40909 </td> <td style="text-align:right;"> -4.773318 +1.1668213 </td> <td style="text-align:right;"> -1.7585905 +0.000000 </td> <td style="text-align:right;"> -6.6904886 +0.4558423 </td> <td style="text-align:right;"> -36.133848 +9.470391 </td> <td style="text-align:right;"> -4.6085486 +1.2140947 </td> <td style="text-align:right;"> -5.1709873 +1.0235326 </td> <td style="text-align:right;"> -2.8758710 +0.3512501 </td> <td style="text-align:right;"> -5.6097607 +1.2595952 </td> <td style="text-align:right;"> -4.820622 +1.108800 </td> <td style="text-align:right;"> -4.5956599 +1.2724180 </td> <td style="text-align:right;"> -4.9357002 +1.0235326 </td> <td style="text-align:right;"> -171.3306737 +12.021716 </td> <td style="text-align:right;"> -18.7292984 +2.233647 </td> <td style="text-align:right;"> -8.3564313 +0.6172134 </td> <td style="text-align:right;"> -1.1698294 +0.9714540 </td> <td style="text-align:right;"> -56.6295074 +5.698219 </td> <td style="text-align:right;"> -25.623696 +1.877181 </td> <td style="text-align:right;"> -41.839826 +5.138978 </td> <td style="text-align:right;"> -46.861626 +3.018342 </td> <td style="text-align:right;"> -468.7101 +1145.9222 </td> <td style="text-align:right;"> -23.93448 +21.72622 </td> <td style="text-align:right;"> -17.202994 +23.94524 </td> <td style="text-align:right;"> -16.852865 +3.4841499 </td> <td style="text-align:right;"> -149.33999 +32.28818 </td> <td style="text-align:right;"> -54.55216 +60.15274 </td> <td style="text-align:right;"> -36.391983 +39.85014 </td> <td style="text-align:right;"> -46.41243 +36.19308 </td> <td style="text-align:right;"> -83.179353 +64.361131 </td> <td style="text-align:right;"> -2.7960323 +1.5272017 </td> <td style="text-align:right;"> -2.4750250 +2.2437837 </td> <td style="text-align:right;"> -2.5543684 +0.7985949 </td> <td style="text-align:right;"> -38.508144 +10.864268 </td> <td style="text-align:right;"> -2.7762622 +3.6961568 </td> <td style="text-align:right;"> -2.5714244 +1.5321294 </td> <td style="text-align:right;"> -3.6287941 +2.0960074 </td> </tr> <tr> <td style="text-align:right;"> -1665327 +1717768 </td> <td style="text-align:right;"> -1025 +NA </td> <td style="text-align:right;"> -102.75000 +206.00000 </td> <td style="text-align:right;"> -69.46875 +103.00000 </td> <td style="text-align:right;"> -282.3125 +422.0000 </td> <td style="text-align:right;"> -6071.531 +4999.000 </td> <td style="text-align:right;"> -237.4375 +331.0000 </td> <td style="text-align:right;"> --8.562500 +89.0000000 </td> <td style="text-align:right;"> -246.0625 +243.0000 </td> <td style="text-align:right;"> -47.90625 +139.00000 </td> <td style="text-align:right;"> -191.625000 +266.000000 </td> <td style="text-align:right;"> -192.4688 +272.0000 </td> <td style="text-align:right;"> -25.343750 +138.000000 </td> <td style="text-align:right;"> -854.7188 +56.0000 </td> <td style="text-align:right;"> -110.37500 +15.00000 </td> <td style="text-align:right;"> -51.03125 +0.00000 </td> <td style="text-align:right;"> -25.87500 +107.00000 </td> <td style="text-align:right;"> -319.8750 +41.0000 </td> <td style="text-align:right;"> -153.68750 +0.00000 </td> <td style="text-align:right;"> -153.6875 +0.00000 </td> <td style="text-align:right;"> -213.0625 +37.00000 </td> <td style="text-align:right;"> -9.801251 +NA </td> <td style="text-align:right;"> -0.5070073 +NA </td> <td style="text-align:right;"> -1.6932027 +NA </td> <td style="text-align:right;"> -29.491370 +NA </td> <td style="text-align:right;"> -10.1566362 +NA </td> <td style="text-align:right;"> -9.6283771 +NA </td> <td style="text-align:right;"> -0.7156094 +NA </td> <td style="text-align:right;"> -9.4232361 +NA </td> <td style="text-align:right;"> -10.742589 +NA </td> <td style="text-align:right;"> -10.3112353 +NA </td> <td style="text-align:right;"> -9.4684855 +NA </td> <td style="text-align:right;"> -67.8243625 +NA </td> <td style="text-align:right;"> -8.7611680 +NA </td> <td style="text-align:right;"> -4.4029636 +NA </td> <td style="text-align:right;"> -1.4756081 +NA </td> <td style="text-align:right;"> -26.1086440 +NA </td> <td style="text-align:right;"> -13.294281 +NA </td> <td style="text-align:right;"> -13.294281 +NA </td> <td style="text-align:right;"> -17.159475 +NA </td> <td style="text-align:right;"> -860.7004 +1332.0000 </td> <td style="text-align:right;"> -28.14372 +24.00000 </td> <td style="text-align:right;"> -24.400810 +36.25000 </td> <td style="text-align:right;"> -18.368421 +7.2500000 </td> <td style="text-align:right;"> -49.91498 +27.75000 </td> <td style="text-align:right;"> -62.89676 +77.50000 </td> <td style="text-align:right;"> -39.336032 +31.25000 </td> <td style="text-align:right;"> -36.29757 +33.00000 </td> <td style="text-align:right;"> -61.672393 +9.273618 </td> <td style="text-align:right;"> -2.3604223 +1.6329932 </td> <td style="text-align:right;"> -2.6132133 +1.2583057 </td> <td style="text-align:right;"> -2.2478059 +0.5000000 </td> <td style="text-align:right;"> -17.741234 +3.304038 </td> <td style="text-align:right;"> -2.4683534 +0.5773503 </td> <td style="text-align:right;"> -1.5693687 +0.9574271 </td> <td style="text-align:right;"> -3.2293209 +1.1547005 </td> </tr> <tr> <td style="text-align:right;"> -1985908 +69713 </td> <td style="text-align:right;"> -NA +222 </td> <td style="text-align:right;"> -184.00000 +127.00000 </td> <td style="text-align:right;"> -71.00000 +88.00000 </td> <td style="text-align:right;"> -378.0000 +290.0000 </td> <td style="text-align:right;"> -3881.000 +7605.000 </td> <td style="text-align:right;"> -292.0000 +286.0000 </td> <td style="text-align:right;"> -103.000000 +-18.0000000 </td> <td style="text-align:right;"> -189.0000 +304.0000 </td> <td style="text-align:right;"> -136.00000 +53.00000 </td> <td style="text-align:right;"> 233.000000 </td> <td style="text-align:right;"> -240.0000 +233.0000 </td> <td style="text-align:right;"> -135.000000 +27.000000 </td> <td style="text-align:right;"> -953.0000 +645.0000 </td> <td style="text-align:right;"> -197.00000 +72.00000 </td> <td style="text-align:right;"> -9.00000 +35.00000 </td> <td style="text-align:right;"> -86.00000 +19.00000 </td> <td style="text-align:right;"> -590.0000 +202.0000 </td> <td style="text-align:right;"> -30.00000 +113.00000 </td> <td style="text-align:right;"> -35.0000 +113.00000 </td> <td style="text-align:right;"> -499.0000 +179.00000 </td> <td style="text-align:right;"> NA @@ -6386,287 +6377,287 @@ NA NA </td> <td style="text-align:right;"> -1017.0000 +1302.2000 </td> <td style="text-align:right;"> -12.00000 +24.20000 </td> <td style="text-align:right;"> -16.000000 +23.20000 </td> <td style="text-align:right;"> -20.000000 +9.8000000 </td> <td style="text-align:right;"> -20.00000 +23.60000 </td> <td style="text-align:right;"> -60.00000 +66.60000 </td> <td style="text-align:right;"> -9.000000 +35.20000 </td> <td style="text-align:right;"> -75.00000 +42.20000 </td> <td style="text-align:right;"> -NA +21.522082 </td> <td style="text-align:right;"> -NA +0.8366600 </td> <td style="text-align:right;"> -NA +0.4472136 </td> <td style="text-align:right;"> -NA +1.0954451 </td> <td style="text-align:right;"> -NA +2.408319 </td> <td style="text-align:right;"> -NA +0.5477226 </td> <td style="text-align:right;"> -NA +0.8366600 </td> <td style="text-align:right;"> -NA +0.4472136 </td> </tr> <tr> <td style="text-align:right;"> -1803757 +1192205 </td> <td style="text-align:right;"> -687 +38 </td> <td style="text-align:right;"> -83.80000 +105.00000 </td> <td style="text-align:right;"> -59.60000 +68.00000 </td> <td style="text-align:right;"> -186.2000 +299.0000 </td> <td style="text-align:right;"> -9002.800 +5587.000 </td> <td style="text-align:right;"> -235.4000 +229.0000 </td> <td style="text-align:right;"> --84.800000 +2.0000000 </td> <td style="text-align:right;"> -320.4000 +227.0000 </td> <td style="text-align:right;"> -207.80000 +183.00000 </td> <td style="text-align:right;"> --43.800000 +85.000000 </td> <td style="text-align:right;"> -207.8000 +183.0000 </td> <td style="text-align:right;"> --43.800000 +31.000000 </td> <td style="text-align:right;"> -1329.2000 +727.0000 </td> <td style="text-align:right;"> -254.20000 +69.00000 </td> <td style="text-align:right;"> -38.40000 +46.00000 </td> <td style="text-align:right;"> -64.80000 +11.00000 </td> <td style="text-align:right;"> -736.6000 +205.0000 </td> <td style="text-align:right;"> -134.00000 +148.00000 </td> <td style="text-align:right;"> -736.6000 +205.00000 </td> <td style="text-align:right;"> -134.0000 +166.00000 </td> <td style="text-align:right;"> -4.324350 +NA </td> <td style="text-align:right;"> -0.5477226 +NA </td> <td style="text-align:right;"> -0.4472136 +NA </td> <td style="text-align:right;"> -24.488773 +NA </td> <td style="text-align:right;"> -4.5607017 +NA </td> <td style="text-align:right;"> -3.9623226 +NA </td> <td style="text-align:right;"> -0.8944272 +NA </td> <td style="text-align:right;"> -4.3243497 +NA </td> <td style="text-align:right;"> -3.962323 +NA </td> <td style="text-align:right;"> -4.3243497 +NA </td> <td style="text-align:right;"> -3.9623226 +NA </td> <td style="text-align:right;"> -87.7251389 +NA </td> <td style="text-align:right;"> -16.2388423 +NA </td> <td style="text-align:right;"> -3.1304952 +NA </td> <td style="text-align:right;"> -1.6431677 +NA </td> <td style="text-align:right;"> -48.9826500 +NA </td> <td style="text-align:right;"> -10.246951 +NA </td> <td style="text-align:right;"> -48.982650 +NA </td> <td style="text-align:right;"> -10.246951 +NA </td> <td style="text-align:right;"> -890.0000 +606.4000 </td> <td style="text-align:right;"> -27.71233 +15.40000 </td> <td style="text-align:right;"> -16.767123 +16.20000 </td> <td style="text-align:right;"> -14.726027 +6.6000000 </td> <td style="text-align:right;"> -107.89041 +26.20000 </td> <td style="text-align:right;"> -54.00000 +64.00000 </td> <td style="text-align:right;"> -37.383562 +47.20000 </td> <td style="text-align:right;"> -46.06849 +36.40000 </td> <td style="text-align:right;"> -34.460525 +20.132064 </td> <td style="text-align:right;"> -1.6706573 +1.3416408 </td> <td style="text-align:right;"> -1.0995018 +0.8366600 </td> <td style="text-align:right;"> -1.6688342 +0.5477226 </td> <td style="text-align:right;"> -12.763404 +1.483240 </td> <td style="text-align:right;"> -0.9279607 +1.2247449 </td> <td style="text-align:right;"> -1.4398123 +1.7888544 </td> <td style="text-align:right;"> -1.1344206 +1.8165902 </td> </tr> <tr> <td style="text-align:right;"> -490220 +843257 </td> <td style="text-align:right;"> -33 +522 </td> <td style="text-align:right;"> -85.00000 +77.00000 </td> <td style="text-align:right;"> -26.00000 +69.00000 </td> <td style="text-align:right;"> -136.0000 +296.0000 </td> <td style="text-align:right;"> -5928.000 +5745.000 </td> <td style="text-align:right;"> -187.0000 +205.0000 </td> <td style="text-align:right;"> --7.000000 +-29.0000000 </td> <td style="text-align:right;"> -194.0000 +234.0000 </td> <td style="text-align:right;"> -170.00000 +20.00000 </td> <td style="text-align:right;"> -18.000000 +97.000000 </td> <td style="text-align:right;"> -170.0000 +157.0000 </td> <td style="text-align:right;"> -7.000000 +1.000000 </td> <td style="text-align:right;"> -588.0000 +862.0000 </td> <td style="text-align:right;"> -60.00000 +91.00000 </td> <td style="text-align:right;"> -31.00000 +62.00000 </td> <td style="text-align:right;"> -20.00000 +11.00000 </td> <td style="text-align:right;"> -178.0000 +259.0000 </td> <td style="text-align:right;"> -107.00000 +192.00000 </td> <td style="text-align:right;"> -178.0000 +205.00000 </td> <td style="text-align:right;"> -108.0000 +224.00000 </td> <td style="text-align:right;"> NA @@ -6726,457 +6717,457 @@ NA NA </td> <td style="text-align:right;"> -629.7143 +707.6000 </td> <td style="text-align:right;"> -20.71429 +20.40000 </td> <td style="text-align:right;"> -10.142857 +21.60000 </td> <td style="text-align:right;"> -6.000000 +14.2000000 </td> <td style="text-align:right;"> -107.00000 +38.00000 </td> <td style="text-align:right;"> -50.00000 +64.60000 </td> <td style="text-align:right;"> -21.571429 +55.80000 </td> <td style="text-align:right;"> -68.14286 +22.80000 </td> <td style="text-align:right;"> -44.865407 +26.005769 </td> <td style="text-align:right;"> -0.4879500 +1.1401754 </td> <td style="text-align:right;"> -0.8997354 +0.5477226 </td> <td style="text-align:right;"> -0.5773503 +0.4472136 </td> <td style="text-align:right;"> -7.461010 +2.345208 </td> <td style="text-align:right;"> -2.0000000 +0.5477226 </td> <td style="text-align:right;"> -0.9759001 +0.8366600 </td> <td style="text-align:right;"> -1.4638501 +0.4472136 </td> </tr> <tr> <td style="text-align:right;"> -1796030 +145488 </td> <td style="text-align:right;"> -382 +180 </td> <td style="text-align:right;"> -115.00000 +52.16667 </td> <td style="text-align:right;"> -49.00000 +68.00000 </td> <td style="text-align:right;"> -173.0000 +199.0000 </td> <td style="text-align:right;"> -8093.000 +9675.333 </td> <td style="text-align:right;"> -266.0000 +232.8333 </td> <td style="text-align:right;"> --17.000000 +-110.1666667 </td> <td style="text-align:right;"> -283.0000 +343.0000 </td> <td style="text-align:right;"> -50.00000 +182.83333 </td> <td style="text-align:right;"> -123.000000 +-42.000000 </td> <td style="text-align:right;"> -234.0000 +182.8333 </td> <td style="text-align:right;"> -7.000000 +-78.333333 </td> <td style="text-align:right;"> -1920.0000 +695.1667 </td> <td style="text-align:right;"> -239.00000 +91.00000 </td> <td style="text-align:right;"> -90.00000 +35.50000 </td> <td style="text-align:right;"> -29.00000 +29.50000 </td> <td style="text-align:right;"> -690.0000 +259.8333 </td> <td style="text-align:right;"> -273.00000 +107.66667 </td> <td style="text-align:right;"> -528.0000 +259.83333 </td> <td style="text-align:right;"> -479.0000 +119.00000 </td> <td style="text-align:right;"> -NA +0.4082483 </td> <td style="text-align:right;"> -NA +0.000000 </td> <td style="text-align:right;"> -NA +0.0000000 </td> <td style="text-align:right;"> -NA +1.966384 </td> <td style="text-align:right;"> -NA +0.4082483 </td> <td style="text-align:right;"> -NA +0.4082483 </td> <td style="text-align:right;"> -NA +0.0000000 </td> <td style="text-align:right;"> -NA +0.4082483 </td> <td style="text-align:right;"> -NA +0.000000 </td> <td style="text-align:right;"> -NA +0.4082483 </td> <td style="text-align:right;"> -NA +0.5163978 </td> <td style="text-align:right;"> -NA +9.968283 </td> <td style="text-align:right;"> -NA +1.414214 </td> <td style="text-align:right;"> -NA +0.5477226 </td> <td style="text-align:right;"> -NA +0.5477226 </td> <td style="text-align:right;"> -NA +3.970726 </td> <td style="text-align:right;"> -NA +1.505545 </td> <td style="text-align:right;"> -NA +3.970726 </td> <td style="text-align:right;"> -NA +1.549193 </td> <td style="text-align:right;"> -893.0000 +873.0865 </td> <td style="text-align:right;"> -30.75000 +28.91346 </td> <td style="text-align:right;"> -25.000000 +14.77885 </td> <td style="text-align:right;"> -16.750000 +4.0384615 </td> <td style="text-align:right;"> -137.50000 +134.70192 </td> <td style="text-align:right;"> -52.25000 +54.99038 </td> <td style="text-align:right;"> -36.750000 +38.80769 </td> <td style="text-align:right;"> -38.75000 +46.50000 </td> <td style="text-align:right;"> -12.884099 +32.696638 </td> <td style="text-align:right;"> -0.5000000 +2.5508825 </td> <td style="text-align:right;"> -0.0000000 +1.1983543 </td> <td style="text-align:right;"> -0.9574271 +0.7363394 </td> <td style="text-align:right;"> -5.259911 +28.825851 </td> <td style="text-align:right;"> -0.9574271 +1.9131390 </td> <td style="text-align:right;"> -0.5000000 +2.4695305 </td> <td style="text-align:right;"> -0.5000000 +3.1221103 </td> </tr> <tr> <td style="text-align:right;"> -998764 +1581132 </td> <td style="text-align:right;"> -50 +117 </td> <td style="text-align:right;"> -190.00000 +37.71429 </td> <td style="text-align:right;"> -29.00000 +75.00000 </td> <td style="text-align:right;"> -162.0000 +191.1429 </td> <td style="text-align:right;"> -5140.000 +11188.714 </td> <td style="text-align:right;"> -286.0000 +244.0000 </td> <td style="text-align:right;"> -109.000000 +-147.2857143 </td> <td style="text-align:right;"> -177.0000 +391.2857 </td> <td style="text-align:right;"> -187.00000 +188.00000 </td> <td style="text-align:right;"> -253.000000 +-69.285714 </td> <td style="text-align:right;"> -267.0000 +188.0000 </td> <td style="text-align:right;"> -125.000000 +-114.142857 </td> <td style="text-align:right;"> -415.0000 +509.8571 </td> <td style="text-align:right;"> -83.00000 +69.71429 </td> <td style="text-align:right;"> -1.00000 +23.28571 </td> <td style="text-align:right;"> -76.00000 +34.42857 </td> <td style="text-align:right;"> -201.0000 +197.1429 </td> <td style="text-align:right;"> -5.00000 +70.71429 </td> <td style="text-align:right;"> -15.0000 +197.14286 </td> <td style="text-align:right;"> -133.0000 +76.42857 </td> <td style="text-align:right;"> -NA +1.1126973 </td> <td style="text-align:right;"> -NA +0.000000 </td> <td style="text-align:right;"> -NA +0.3779645 </td> <td style="text-align:right;"> -NA +12.311435 </td> <td style="text-align:right;"> -NA +1.4142136 </td> <td style="text-align:right;"> -NA +1.1126973 </td> <td style="text-align:right;"> -NA +0.4879500 </td> <td style="text-align:right;"> -NA +1.4142136 </td> <td style="text-align:right;"> -NA +1.112697 </td> <td style="text-align:right;"> -NA +1.4142136 </td> <td style="text-align:right;"> -NA +1.0690450 </td> <td style="text-align:right;"> -NA +32.364737 </td> <td style="text-align:right;"> -NA +4.151878 </td> <td style="text-align:right;"> -NA +1.1126973 </td> <td style="text-align:right;"> -NA +0.7867958 </td> <td style="text-align:right;"> -NA +11.781745 </td> <td style="text-align:right;"> -NA +4.309458 </td> <td style="text-align:right;"> -NA +11.781745 </td> <td style="text-align:right;"> -NA +4.076647 </td> <td style="text-align:right;"> -1321.1667 +826.4057 </td> <td style="text-align:right;"> -23.58333 +32.88679 </td> <td style="text-align:right;"> -32.833333 +20.57547 </td> <td style="text-align:right;"> -10.666667 +0.9150943 </td> <td style="text-align:right;"> -18.75000 +92.36792 </td> <td style="text-align:right;"> -77.83333 +61.25472 </td> <td style="text-align:right;"> -39.166667 +42.41509 </td> <td style="text-align:right;"> -28.00000 +37.00943 </td> <td style="text-align:right;"> -41.908631 +57.202194 </td> <td style="text-align:right;"> -1.0836247 +2.0485570 </td> <td style="text-align:right;"> -1.1146409 +1.1376510 </td> <td style="text-align:right;"> -0.7784989 +1.0430534 </td> <td style="text-align:right;"> -1.422226 +8.579406 </td> <td style="text-align:right;"> -0.7177406 +1.4609933 </td> <td style="text-align:right;"> -0.8348471 +1.5173155 </td> <td style="text-align:right;"> -0.9534626 +2.0447158 </td> </tr> <tr> <td style="text-align:right;"> -1203804 +389930 </td> <td style="text-align:right;"> -27 +NA </td> <td style="text-align:right;"> -99.00000 +84.00000 </td> <td style="text-align:right;"> -62.00000 +33.00000 </td> <td style="text-align:right;"> -287.0000 +165.0000 </td> <td style="text-align:right;"> -5399.000 +5841.000 </td> <td style="text-align:right;"> -215.0000 +191.0000 </td> <td style="text-align:right;"> -1.000000 +-8.0000000 </td> <td style="text-align:right;"> -214.0000 +198.0000 </td> <td style="text-align:right;"> -175.00000 +168.00000 </td> <td style="text-align:right;"> -77.000000 +8.000000 </td> <td style="text-align:right;"> -175.0000 +168.0000 </td> <td style="text-align:right;"> -27.000000 +8.000000 </td> <td style="text-align:right;"> -802.0000 +556.0000 </td> <td style="text-align:right;"> -79.00000 +56.00000 </td> <td style="text-align:right;"> -48.00000 +31.00000 </td> <td style="text-align:right;"> -15.00000 +18.00000 </td> <td style="text-align:right;"> -231.0000 +166.0000 </td> <td style="text-align:right;"> -155.00000 +105.00000 </td> <td style="text-align:right;"> -231.0000 +166.00000 </td> <td style="text-align:right;"> -169.0000 +105.00000 </td> <td style="text-align:right;"> NA @@ -7236,287 +7227,287 @@ NA NA </td> <td style="text-align:right;"> -432.8333 +824.7500 </td> <td style="text-align:right;"> -19.00000 +19.50000 </td> <td style="text-align:right;"> -2.166667 +18.50000 </td> <td style="text-align:right;"> -5.500000 +8.5000000 </td> <td style="text-align:right;"> -79.83333 +65.50000 </td> <td style="text-align:right;"> -44.16667 +61.75000 </td> <td style="text-align:right;"> -9.666667 +25.25000 </td> <td style="text-align:right;"> -88.16667 +56.00000 </td> <td style="text-align:right;"> -59.334363 +43.851074 </td> <td style="text-align:right;"> -1.4142136 +1.0000000 </td> <td style="text-align:right;"> -0.4082483 +0.5773503 </td> <td style="text-align:right;"> -0.5477226 +1.0000000 </td> <td style="text-align:right;"> -10.048217 +4.123106 </td> <td style="text-align:right;"> -0.7527727 +0.5000000 </td> <td style="text-align:right;"> -0.8164966 +1.5000000 </td> <td style="text-align:right;"> -0.9831921 +1.4142136 </td> </tr> <tr> <td style="text-align:right;"> -775535 +718409 </td> <td style="text-align:right;"> -NA +562 </td> <td style="text-align:right;"> -97.00000 +103.00000 </td> <td style="text-align:right;"> -36.65556 +77.00000 </td> <td style="text-align:right;"> -198.7667 +309.0000 </td> <td style="text-align:right;"> -5202.522 +5944.000 </td> <td style="text-align:right;"> -195.7222 +244.0000 </td> <td style="text-align:right;"> -10.944444 +-6.0000000 </td> <td style="text-align:right;"> -184.8667 +250.0000 </td> <td style="text-align:right;"> -156.55556 +117.00000 </td> <td style="text-align:right;"> -69.000000 +29.000000 </td> <td style="text-align:right;"> -172.1111 +189.0000 </td> <td style="text-align:right;"> -28.055556 +27.000000 </td> <td style="text-align:right;"> -771.8111 +709.0000 </td> <td style="text-align:right;"> -80.72222 +83.00000 </td> <td style="text-align:right;"> -41.41111 +40.00000 </td> <td style="text-align:right;"> -22.55556 +20.00000 </td> <td style="text-align:right;"> -240.1556 +223.0000 </td> <td style="text-align:right;"> -133.45556 +126.00000 </td> <td style="text-align:right;"> -233.9222 +195.00000 </td> <td style="text-align:right;"> -147.4889 +148.00000 </td> <td style="text-align:right;"> -0.000000 +NA </td> <td style="text-align:right;"> -0.7667399 +NA </td> <td style="text-align:right;"> -3.1159250 +NA </td> <td style="text-align:right;"> -14.984807 +NA </td> <td style="text-align:right;"> -0.5614543 +NA </td> <td style="text-align:right;"> -0.2303447 +NA </td> <td style="text-align:right;"> -0.6902206 +NA </td> <td style="text-align:right;"> -0.4996878 +NA </td> <td style="text-align:right;"> -0.000000 +NA </td> <td style="text-align:right;"> -0.3160303 +NA </td> <td style="text-align:right;"> -0.2303447 +NA </td> <td style="text-align:right;"> -7.6465377 +NA </td> <td style="text-align:right;"> -0.4747034 +NA </td> <td style="text-align:right;"> -0.6852285 +NA </td> <td style="text-align:right;"> -0.4996878 +NA </td> <td style="text-align:right;"> -1.4371563 +NA </td> <td style="text-align:right;"> -1.703672 +NA </td> <td style="text-align:right;"> -1.559514 +NA </td> <td style="text-align:right;"> -1.921168 +NA </td> <td style="text-align:right;"> -781.9368 +830.0000 </td> <td style="text-align:right;"> -21.41214 +19.20000 </td> <td style="text-align:right;"> -19.503161 +19.60000 </td> <td style="text-align:right;"> -11.867257 +14.6000000 </td> <td style="text-align:right;"> -76.05815 +33.40000 </td> <td style="text-align:right;"> -66.99621 +60.20000 </td> <td style="text-align:right;"> -32.236410 +33.00000 </td> <td style="text-align:right;"> -48.23388 +47.40000 </td> <td style="text-align:right;"> -65.897185 +9.137833 </td> <td style="text-align:right;"> -3.5719802 +0.8366600 </td> <td style="text-align:right;"> -2.6851071 +1.8165902 </td> <td style="text-align:right;"> -3.4668524 +1.1401754 </td> <td style="text-align:right;"> -22.104222 +1.816590 </td> <td style="text-align:right;"> -1.5779287 +1.4832397 </td> <td style="text-align:right;"> -3.1867589 +1.4142136 </td> <td style="text-align:right;"> -4.5277949 +1.3416408 </td> </tr> <tr> <td style="text-align:right;"> -1947920 +1013996 </td> <td style="text-align:right;"> -NA +222 </td> <td style="text-align:right;"> -95.00000 +54.00000 </td> <td style="text-align:right;"> -113.00000 +63.00000 </td> <td style="text-align:right;"> -277.0000 +212.0000 </td> <td style="text-align:right;"> -9919.000 +7983.000 </td> <td style="text-align:right;"> -316.0000 +212.0000 </td> <td style="text-align:right;"> --92.000000 +-86.0000000 </td> <td style="text-align:right;"> -409.0000 +297.0000 </td> <td style="text-align:right;"> -125.00000 +161.00000 </td> <td style="text-align:right;"> --25.000000 +-55.000000 </td> <td style="text-align:right;"> -235.0000 +162.0000 </td> <td style="text-align:right;"> --40.000000 +-55.000000 </td> <td style="text-align:right;"> -176.0000 +706.0000 </td> <td style="text-align:right;"> -22.00000 +85.00000 </td> <td style="text-align:right;"> -8.00000 +30.00000 </td> <td style="text-align:right;"> -31.00000 +30.00000 </td> <td style="text-align:right;"> -62.0000 +255.0000 </td> <td style="text-align:right;"> -26.00000 +102.00000 </td> <td style="text-align:right;"> -40.0000 +237.00000 </td> <td style="text-align:right;"> -26.0000 +102.00000 </td> <td style="text-align:right;"> NA @@ -7576,627 +7567,627 @@ NA NA </td> <td style="text-align:right;"> -1403.2000 +638.0000 </td> <td style="text-align:right;"> -19.00000 +24.66667 </td> <td style="text-align:right;"> -15.400000 +11.00000 </td> <td style="text-align:right;"> -14.800000 +9.0000000 </td> <td style="text-align:right;"> -11.00000 +80.50000 </td> <td style="text-align:right;"> -79.20000 +54.50000 </td> <td style="text-align:right;"> -35.600000 +33.33333 </td> <td style="text-align:right;"> -48.80000 +55.50000 </td> <td style="text-align:right;"> -4.658326 +37.459311 </td> <td style="text-align:right;"> -0.7071068 +1.0327956 </td> <td style="text-align:right;"> 0.8944272 </td> <td style="text-align:right;"> -1.7888544 +0.6324555 </td> <td style="text-align:right;"> -0.000000 +5.128353 </td> <td style="text-align:right;"> -0.4472136 +0.5477226 </td> <td style="text-align:right;"> -0.5477226 +0.5163978 </td> <td style="text-align:right;"> -0.4472136 +1.0488088 </td> </tr> <tr> <td style="text-align:right;"> -1456091 +117514 </td> <td style="text-align:right;"> -592 +NA </td> <td style="text-align:right;"> -69.00000 +100.05199 </td> <td style="text-align:right;"> -75.00000 +68.87348 </td> <td style="text-align:right;"> -263.0000 +307.4922 </td> <td style="text-align:right;"> -7444.000 +5434.270 </td> <td style="text-align:right;"> -219.0000 +222.9445 </td> <td style="text-align:right;"> --67.000000 +-0.3414211 </td> <td style="text-align:right;"> -286.0000 +223.3085 </td> <td style="text-align:right;"> -166.00000 +91.71231 </td> <td style="text-align:right;"> --28.000000 +80.187175 </td> <td style="text-align:right;"> -169.0000 +176.7868 </td> <td style="text-align:right;"> --32.000000 +28.663778 </td> <td style="text-align:right;"> -808.0000 +806.6915 </td> <td style="text-align:right;"> -99.00000 +75.59099 </td> <td style="text-align:right;"> -47.00000 +51.86482 </td> <td style="text-align:right;"> -24.00000 +10.01040 </td> <td style="text-align:right;"> -281.0000 +223.3778 </td> <td style="text-align:right;"> -147.00000 +169.99133 </td> <td style="text-align:right;"> -253.0000 +218.50953 </td> <td style="text-align:right;"> -174.0000 +186.29636 </td> <td style="text-align:right;"> -NA +1.5955886 </td> <td style="text-align:right;"> -NA +0.332719 </td> <td style="text-align:right;"> -NA +0.5003730 </td> <td style="text-align:right;"> -NA +14.062967 </td> <td style="text-align:right;"> -NA +1.3477253 </td> <td style="text-align:right;"> -NA +1.7528449 </td> <td style="text-align:right;"> -NA +0.5668633 </td> <td style="text-align:right;"> -NA +62.1180027 </td> <td style="text-align:right;"> -NA +1.585407 </td> <td style="text-align:right;"> -NA +1.4806506 </td> <td style="text-align:right;"> -NA +1.7132921 </td> <td style="text-align:right;"> -NA +41.571121 </td> <td style="text-align:right;"> -NA +3.985972 </td> <td style="text-align:right;"> -NA +2.6677914 </td> <td style="text-align:right;"> -NA +0.3534002 </td> <td style="text-align:right;"> -NA +11.605766 </td> <td style="text-align:right;"> -NA +9.059119 </td> <td style="text-align:right;"> -NA +12.453399 </td> <td style="text-align:right;"> -NA +9.849944 </td> <td style="text-align:right;"> -732.3333 +675.8064 </td> <td style="text-align:right;"> -21.50000 +13.91451 </td> <td style="text-align:right;"> -18.666667 +13.87350 </td> <td style="text-align:right;"> -16.000000 +8.4245160 </td> <td style="text-align:right;"> -45.33333 +19.73961 </td> <td style="text-align:right;"> -53.83333 +62.81977 </td> <td style="text-align:right;"> -44.666667 +64.22330 </td> <td style="text-align:right;"> -36.83333 +21.87242 </td> <td style="text-align:right;"> -26.409594 +84.695727 </td> <td style="text-align:right;"> -1.7606817 +1.4642037 </td> <td style="text-align:right;"> -0.8164966 +1.5854461 </td> <td style="text-align:right;"> -0.6324555 +1.2474760 </td> <td style="text-align:right;"> -7.840068 +4.989717 </td> <td style="text-align:right;"> -0.7527727 +5.4984385 </td> <td style="text-align:right;"> -0.8164966 +8.4684489 </td> <td style="text-align:right;"> -1.1690452 +9.3935629 </td> </tr> <tr> <td style="text-align:right;"> -466498 +950578 </td> <td style="text-align:right;"> -84 +199 </td> <td style="text-align:right;"> -80.00000 +95.28571 </td> <td style="text-align:right;"> -49.00000 +23.00000 </td> <td style="text-align:right;"> -236.0000 +222.7143 </td> <td style="text-align:right;"> -5644.000 +2855.429 </td> <td style="text-align:right;"> -194.0000 +150.4286 </td> <td style="text-align:right;"> --15.000000 +47.4285714 </td> <td style="text-align:right;"> -209.0000 +102.8571 </td> <td style="text-align:right;"> -64.00000 +89.28571 </td> <td style="text-align:right;"> -50.000000 +93.142857 </td> <td style="text-align:right;"> -161.0000 +138.2857 </td> <td style="text-align:right;"> -6.000000 +60.428571 </td> <td style="text-align:right;"> -819.0000 +1751.2857 </td> <td style="text-align:right;"> -91.00000 +193.85714 </td> <td style="text-align:right;"> -45.00000 +99.00000 </td> <td style="text-align:right;"> -22.00000 +22.28571 </td> <td style="text-align:right;"> -271.0000 +576.8571 </td> <td style="text-align:right;"> -146.00000 +308.28571 </td> <td style="text-align:right;"> -217.0000 +401.14286 </td> <td style="text-align:right;"> -166.0000 +460.85714 </td> <td style="text-align:right;"> -NA +3.1471832 </td> <td style="text-align:right;"> -NA +0.000000 </td> <td style="text-align:right;"> -NA +0.7559289 </td> <td style="text-align:right;"> -NA +7.849780 </td> <td style="text-align:right;"> -NA +2.8784917 </td> <td style="text-align:right;"> -NA +3.2586880 </td> <td style="text-align:right;"> -NA +0.3779645 </td> <td style="text-align:right;"> -NA +3.1471832 </td> <td style="text-align:right;"> -NA +3.023716 </td> <td style="text-align:right;"> -NA +3.1471832 </td> <td style="text-align:right;"> -NA +3.2586880 </td> <td style="text-align:right;"> -NA +94.547544 </td> <td style="text-align:right;"> -NA +10.286376 </td> <td style="text-align:right;"> -NA +4.3969687 </td> <td style="text-align:right;"> -NA +0.4879500 </td> <td style="text-align:right;"> -NA +30.721483 </td> <td style="text-align:right;"> -NA +13.659115 </td> <td style="text-align:right;"> -NA +22.835853 </td> <td style="text-align:right;"> -NA +26.397150 </td> <td style="text-align:right;"> -539.1429 +406.3402 </td> <td style="text-align:right;"> -11.42857 +29.03093 </td> <td style="text-align:right;"> -4.571429 +13.12371 </td> <td style="text-align:right;"> -7.428571 +16.8969072 </td> <td style="text-align:right;"> -64.57143 +275.49485 </td> <td style="text-align:right;"> -52.85714 +50.25773 </td> <td style="text-align:right;"> -13.857143 +35.22680 </td> <td style="text-align:right;"> -81.00000 +51.69072 </td> <td style="text-align:right;"> -22.341505 +29.958613 </td> <td style="text-align:right;"> -0.7867958 +2.2933491 </td> <td style="text-align:right;"> -0.5345225 +2.0271991 </td> <td style="text-align:right;"> -0.5345225 +1.6862467 </td> <td style="text-align:right;"> -3.552330 +18.086668 </td> <td style="text-align:right;"> -0.6900656 +1.1206244 </td> <td style="text-align:right;"> -1.0690450 +2.2707614 </td> <td style="text-align:right;"> -1.6329932 +2.2143510 </td> </tr> <tr> <td style="text-align:right;"> -910522 +782863 </td> <td style="text-align:right;"> -34 +253 </td> <td style="text-align:right;"> -89.96809 +86.95789 </td> <td style="text-align:right;"> -60.78723 +68.00000 </td> <td style="text-align:right;"> -257.8085 +277.7614 </td> <td style="text-align:right;"> -6233.691 +6239.361 </td> <td style="text-align:right;"> -219.3723 +219.5509 </td> <td style="text-align:right;"> --16.382979 +-24.2771930 </td> <td style="text-align:right;"> -235.8298 +243.8807 </td> <td style="text-align:right;"> -172.15957 +166.33333 </td> <td style="text-align:right;"> -9.500000 +4.694737 </td> <td style="text-align:right;"> -177.7340 +173.9053 </td> <td style="text-align:right;"> -8.648936 +4.694737 </td> <td style="text-align:right;"> -618.7872 +708.5053 </td> <td style="text-align:right;"> -68.40426 +80.55789 </td> <td style="text-align:right;"> -34.88298 +43.41404 </td> <td style="text-align:right;"> -18.46809 +17.39298 </td> <td style="text-align:right;"> -201.6596 +228.2456 </td> <td style="text-align:right;"> -119.74468 +140.49825 </td> <td style="text-align:right;"> -191.5106 +204.60702 </td> <td style="text-align:right;"> -119.7872 +140.49825 </td> <td style="text-align:right;"> -0.176716 +4.6137786 </td> <td style="text-align:right;"> -0.4114579 +0.000000 </td> <td style="text-align:right;"> -0.8585634 +0.6217180 </td> <td style="text-align:right;"> -6.864317 +20.046230 </td> <td style="text-align:right;"> -0.5676596 +4.8172637 </td> <td style="text-align:right;"> -0.4887197 +4.4258769 </td> <td style="text-align:right;"> -0.5799202 +0.6278284 </td> <td style="text-align:right;"> -0.4930308 +8.5866202 </td> <td style="text-align:right;"> -4.160102 +4.413664 </td> <td style="text-align:right;"> -0.4442108 +4.8128504 </td> <td style="text-align:right;"> -0.4798621 +4.4136640 </td> <td style="text-align:right;"> -9.2908469 +93.590343 </td> <td style="text-align:right;"> -1.1669199 +10.422128 </td> <td style="text-align:right;"> -0.6020821 +5.8397448 </td> <td style="text-align:right;"> -0.5016559 +1.1475417 </td> <td style="text-align:right;"> -3.3873680 +30.036527 </td> <td style="text-align:right;"> -1.911685 +19.164710 </td> <td style="text-align:right;"> -3.130649 +27.046126 </td> <td style="text-align:right;"> -1.905692 +19.164710 </td> <td style="text-align:right;"> -584.1868 +756.6105 </td> <td style="text-align:right;"> -19.19886 +19.62710 </td> <td style="text-align:right;"> -9.005682 +18.85049 </td> <td style="text-align:right;"> -7.257812 +13.4865574 </td> <td style="text-align:right;"> -81.09162 +43.06798 </td> <td style="text-align:right;"> -56.05043 +56.81290 </td> <td style="text-align:right;"> -18.286932 +48.21290 </td> <td style="text-align:right;"> -72.61861 +32.93202 </td> <td style="text-align:right;"> -91.020105 +90.716429 </td> <td style="text-align:right;"> -3.8092692 +2.6515227 </td> <td style="text-align:right;"> -2.7163924 +2.5869124 </td> <td style="text-align:right;"> -0.9720376 +2.8190946 </td> <td style="text-align:right;"> -23.877101 +15.007765 </td> <td style="text-align:right;"> -3.5887984 +5.7275224 </td> <td style="text-align:right;"> -2.6472391 +4.0282300 </td> <td style="text-align:right;"> -4.3236340 +5.4622739 </td> </tr> <tr> <td style="text-align:right;"> -1252128 +1919062 </td> <td style="text-align:right;"> -NA +2004 </td> <td style="text-align:right;"> -91.00000 +31.00000 </td> <td style="text-align:right;"> -66.00000 +109.00000 </td> <td style="text-align:right;"> -262.0000 +316.0000 </td> <td style="text-align:right;"> -6703.000 +7955.000 </td> <td style="text-align:right;"> -229.0000 +228.0000 </td> <td style="text-align:right;"> --23.000000 +-117.0000000 </td> <td style="text-align:right;"> -252.0000 +346.0000 </td> <td style="text-align:right;"> -180.00000 +93.00000 </td> <td style="text-align:right;"> -4.000000 +-63.000000 </td> <td style="text-align:right;"> -184.0000 +150.0000 </td> <td style="text-align:right;"> -4.000000 +-73.000000 </td> <td style="text-align:right;"> -513.0000 +441.0000 </td> <td style="text-align:right;"> -61.00000 +78.00000 </td> <td style="text-align:right;"> -29.00000 +20.00000 </td> <td style="text-align:right;"> -24.00000 +44.00000 </td> <td style="text-align:right;"> -182.0000 +217.0000 </td> <td style="text-align:right;"> -93.00000 +66.00000 </td> <td style="text-align:right;"> -165.0000 +117.00000 </td> <td style="text-align:right;"> -93.0000 +76.00000 </td> <td style="text-align:right;"> NA @@ -8256,222 +8247,222 @@ NA NA </td> <td style="text-align:right;"> -664.0000 +1131.0000 </td> <td style="text-align:right;"> -24.00000 +27.80000 </td> <td style="text-align:right;"> -15.000000 +12.00000 </td> <td style="text-align:right;"> -10.000000 +21.2000000 </td> <td style="text-align:right;"> -95.00000 +48.20000 </td> <td style="text-align:right;"> -58.00000 +58.60000 </td> <td style="text-align:right;"> -26.000000 +36.40000 </td> <td style="text-align:right;"> -59.00000 +51.60000 </td> <td style="text-align:right;"> -NA +35.454196 </td> <td style="text-align:right;"> -NA +0.8366600 </td> <td style="text-align:right;"> -NA +0.7071068 </td> <td style="text-align:right;"> -NA +2.9495762 </td> <td style="text-align:right;"> -NA +2.167948 </td> <td style="text-align:right;"> -NA +0.5477226 </td> <td style="text-align:right;"> -NA +0.5477226 </td> <td style="text-align:right;"> -NA +1.1401754 </td> </tr> <tr> <td style="text-align:right;"> -779809 +439645 </td> <td style="text-align:right;"> -87 +16 </td> <td style="text-align:right;"> -89.68977 +84.00000 </td> <td style="text-align:right;"> -64.75908 +24.00000 </td> <td style="text-align:right;"> -276.5330 +127.0000 </td> <td style="text-align:right;"> -6010.749 +5801.000 </td> <td style="text-align:right;"> -218.4373 +183.0000 </td> <td style="text-align:right;"> --15.191419 +-4.0000000 </td> <td style="text-align:right;"> -233.5974 +187.0000 </td> <td style="text-align:right;"> -171.05776 +108.00000 </td> <td style="text-align:right;"> -66.966997 +49.000000 </td> <td style="text-align:right;"> -174.1155 +167.0000 </td> <td style="text-align:right;"> -10.978548 +9.000000 </td> <td style="text-align:right;"> -788.2426 +699.0000 </td> <td style="text-align:right;"> -78.61716 +83.00000 </td> <td style="text-align:right;"> -49.20792 +38.00000 </td> <td style="text-align:right;"> -15.05281 +24.00000 </td> <td style="text-align:right;"> -233.3251 +239.0000 </td> <td style="text-align:right;"> -158.39274 +119.00000 </td> <td style="text-align:right;"> -232.7343 +198.00000 </td> <td style="text-align:right;"> -168.6700 +132.00000 </td> <td style="text-align:right;"> -1.372502 +NA </td> <td style="text-align:right;"> -0.4279976 +NA </td> <td style="text-align:right;"> -0.5123918 +NA </td> <td style="text-align:right;"> -14.772762 +NA </td> <td style="text-align:right;"> -1.3805719 +NA </td> <td style="text-align:right;"> -1.3964509 +NA </td> <td style="text-align:right;"> -0.5659130 +NA </td> <td style="text-align:right;"> -3.2643779 +NA </td> <td style="text-align:right;"> -6.024926 +NA </td> <td style="text-align:right;"> -1.4164991 +NA </td> <td style="text-align:right;"> -1.3586096 +NA </td> <td style="text-align:right;"> -61.0301557 +NA </td> <td style="text-align:right;"> -6.8021851 +NA </td> <td style="text-align:right;"> -3.5795106 +NA </td> <td style="text-align:right;"> -0.8235282 +NA </td> <td style="text-align:right;"> -19.6866762 +NA </td> <td style="text-align:right;"> -10.953133 +NA </td> <td style="text-align:right;"> -19.241837 +NA </td> <td style="text-align:right;"> -12.760864 +NA </td> <td style="text-align:right;"> -573.9951 +710.7500 </td> <td style="text-align:right;"> -15.82623 +20.37500 </td> <td style="text-align:right;"> -5.616689 +11.87500 </td> <td style="text-align:right;"> -7.527284 +7.2500000 </td> <td style="text-align:right;"> -57.46521 +125.00000 </td> <td style="text-align:right;"> -48.99538 +51.75000 </td> <td style="text-align:right;"> -22.357928 +20.12500 </td> <td style="text-align:right;"> -71.89888 +68.00000 </td> <td style="text-align:right;"> -58.083351 +42.811047 </td> <td style="text-align:right;"> -2.5895106 +0.7440238 </td> <td style="text-align:right;"> -2.2557509 +0.8345230 </td> <td style="text-align:right;"> -1.4731410 +0.8864053 </td> <td style="text-align:right;"> -17.054369 +14.362650 </td> <td style="text-align:right;"> -5.6925041 +0.8864053 </td> <td style="text-align:right;"> -6.8538879 +0.8345230 </td> <td style="text-align:right;"> -8.5774418 +0.7559289 </td> </tr> </tbody> @@ -8525,40 +8516,40 @@ sessionInfo()</code></pre> ## LAPACK: /usr/lib/libopenblasp-r0.2.18.so ## ## locale: -## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C -## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 -## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 -## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C -## [9] LC_ADDRESS=C LC_TELEPHONE=C -## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C +## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 +## [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 +## [7] LC_PAPER=en_US.UTF-8 LC_NAME=en_US.UTF-8 LC_ADDRESS=en_US.UTF-8 +## [10] LC_TELEPHONE=en_US.UTF-8 LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=en_US.UTF-8 ## ## attached base packages: -## [1] grid stats graphics grDevices utils datasets methods -## [8] base +## [1] grid stats graphics grDevices utils datasets methods base ## ## other attached packages: -## [1] rgeos_0.5-5 rgdal_1.5-18 sf_0.9-3 sp_1.4-4 -## [5] downloader_0.4 gridExtra_2.3 viridis_0.5.1 viridisLite_0.3.0 -## [9] kableExtra_1.3.1 knitr_1.30 forcats_0.5.0 stringr_1.4.0 -## [13] dplyr_1.0.2 purrr_0.3.4 readr_1.4.0 tidyr_1.1.2 -## [17] tibble_3.0.1 ggplot2_3.3.0 tidyverse_1.3.0 +## [1] downloader_0.4 gridExtra_2.3 dggridR_2.0.3 rnaturalearth_0.2.0 sf_0.9-3 +## [6] elevatr_0.2.0 rworldmap_1.3-6 raster_3.0-7 rgeos_0.5-5 rgdal_1.5-18 +## [11] sp_1.4-4 kableExtra_1.3.1 knitr_1.30 xlsx_0.6.5 viridis_0.5.1 +## [16] viridisLite_0.3.0 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2 purrr_0.3.4 +## [21] readr_1.4.0 tidyr_1.1.2 tibble_3.0.1 ggplot2_3.3.0 tidyverse_1.3.0 ## ## loaded via a namespace (and not attached): -## [1] Rcpp_1.0.5 lubridate_1.7.9 lattice_0.20-41 class_7.3-17 -## [5] utf8_1.1.4 assertthat_0.2.1 digest_0.6.25 R6_2.5.0 -## [9] cellranger_1.1.0 backports_1.2.0 reprex_0.3.0 evaluate_0.14 -## [13] e1071_1.7-4 highr_0.8 httr_1.4.2 pillar_1.4.3 -## [17] rlang_0.4.8 readxl_1.3.1 rstudioapi_0.11 rmarkdown_2.5 -## [21] labeling_0.4.2 webshot_0.5.2 munsell_0.5.0 broom_0.7.0 -## [25] compiler_3.6.3 modelr_0.1.6 xfun_0.19 pkgconfig_2.0.3 -## [29] htmltools_0.5.0 tidyselect_1.1.0 fansi_0.4.1 crayon_1.3.4 -## [33] dbplyr_2.0.0 withr_2.3.0 jsonlite_1.7.1 gtable_0.3.0 -## [37] lifecycle_0.2.0 DBI_1.1.0 magrittr_1.5 units_0.6-7 -## [41] scales_1.1.1 KernSmooth_2.23-18 cli_2.1.0 stringi_1.5.3 -## [45] farver_2.0.3 fs_1.5.0 xml2_1.3.2 ellipsis_0.3.1 -## [49] generics_0.1.0 vctrs_0.3.4 tools_3.6.3 glue_1.4.2 -## [53] maps_3.3.0 hms_0.5.3 yaml_2.2.1 colorspace_1.4-1 -## [57] classInt_0.4-3 rvest_0.3.6 haven_2.3.1</code></pre> +## [1] colorspace_2.0-0 ellipsis_0.3.1 class_7.3-17 fs_1.5.0 rstudioapi_0.13 +## [6] farver_2.0.3 prodlim_2019.11.13 fansi_0.4.1 lubridate_1.7.9.2 xml2_1.3.2 +## [11] codetools_0.2-18 splines_3.6.3 spam_2.5-1 jsonlite_1.7.1 caret_6.0-84 +## [16] rJava_0.9-13 broom_0.7.0 dbplyr_2.0.0 compiler_3.6.3 httr_1.4.2 +## [21] backports_1.2.0 assertthat_0.2.1 Matrix_1.2-18 cli_2.2.0 htmltools_0.5.0 +## [26] tools_3.6.3 dotCall64_1.0-0 gtable_0.3.0 glue_1.4.2 reshape2_1.4.4 +## [31] maps_3.3.0 Rcpp_1.0.5 cellranger_1.1.0 vctrs_0.3.5 nlme_3.1-150 +## [36] iterators_1.0.13 timeDate_3043.102 xfun_0.19 gower_0.2.2 xlsxjars_0.6.1 +## [41] rvest_0.3.6 lifecycle_0.2.0 MASS_7.3-53 scales_1.1.1 ipred_0.9-9 +## [46] hms_0.5.3 fields_11.6 yaml_2.2.1 rpart_4.1-15 stringi_1.5.3 +## [51] highr_0.8 maptools_1.0-2 foreach_1.5.1 e1071_1.7-4 lava_1.6.8.1 +## [56] rlang_0.4.9 pkgconfig_2.0.3 evaluate_0.14 lattice_0.20-41 recipes_0.1.15 +## [61] labeling_0.4.2 tidyselect_1.1.0 plyr_1.8.6 magrittr_2.0.1 R6_2.5.0 +## [66] generics_0.1.0 DBI_1.1.0 pillar_1.4.3 haven_2.3.1 foreign_0.8-76 +## [71] withr_2.3.0 units_0.6-7 survival_3.2-7 nnet_7.3-14 modelr_0.1.6 +## [76] crayon_1.3.4 KernSmooth_2.23-18 utf8_1.1.4 rworldxtra_1.01 rmarkdown_2.5 +## [81] readxl_1.3.1 data.table_1.13.2 ModelMetrics_1.2.2.2 reprex_0.3.0 digest_0.6.25 +## [86] classInt_0.4-3 webshot_0.5.2 stats4_3.6.3 munsell_0.5.0</code></pre> </div> -- GitLab