From 0cb5c0d4c9971921c6d2b0218cbae9ceee1e3790 Mon Sep 17 00:00:00 2001
From: Francesco Sabatini <francesco.sabatini@idiv.de>
Date: Wed, 2 Dec 2020 12:26:41 +0100
Subject: [PATCH] Updated selection, based on sPlot3.0_v1.1

---
 01_Extract_data_Project_31.Rmd          |   41 +-
 _public/01_Extract_data_Project_31.html | 2793 +++++++++++------------
 2 files changed, 1412 insertions(+), 1422 deletions(-)

diff --git a/01_Extract_data_Project_31.Rmd b/01_Extract_data_Project_31.Rmd
index 734d443..8be86a9 100755
--- a/01_Extract_data_Project_31.Rmd
+++ b/01_Extract_data_Project_31.Rmd
@@ -63,7 +63,7 @@ Extract all plots containing at least one species in the xylem list.
 ```{r, message=F, results=F, warning=F}
 species_list <- xylem_data$Species
 plot.sel <- DT2 %>%
-  filter(DT2$species %in% species_list) %>%
+  filter(DT2$Species %in% species_list) %>%
   dplyr::select(PlotObservationID) %>%
   distinct() %>%
   pull(PlotObservationID)
@@ -76,19 +76,19 @@ header.xylem <- header %>%
 plot.sel <- header.xylem$PlotObservationID
 
 DT.xylem <- DT2 %>% 
-  filter(taxon_group %in% c("Vascular plant", "Unknown")) %>% 
+  filter(Taxon_group %in% c("Vascular plant", "Unknown")) %>% 
   filter(PlotObservationID %in% plot.sel)
 
 ```
 
-Out of the `r length(species_list)` species in the sRoot list, `r sum(unique(DT2$species) %in% species_list)` species are present in sPlot, for a total of `r nrow(DT.xylem %>% filter(species %in% species_list))` records, across `r length(plot.sel)` plots.
+Out of the `r length(species_list)` species in the sRoot list, `r sum(unique(DT2$Species) %in% species_list)` species are present in sPlot, for a total of `r nrow(DT.xylem %>% filter(Species %in% species_list))` records, across `r length(plot.sel)` plots.
 
 # 2 Extract woody species
 This is partial selection, as we don't have information on the growth form of all species in sPlot
 ```{r}
 #Select all woody species and extract relevant traits from TRY
 woody_species_traits <- sPlot.traits %>%
-  dplyr::select(species, GrowthForm, is.tree.or.tall.shrub, n,
+  dplyr::select(Species, GrowthForm, is.tree.or.tall.shrub, n,
                 starts_with("StemDens"),
                 starts_with("Stem.cond.dens"), 
                 starts_with("StemConduitDiameter"),
@@ -97,7 +97,7 @@ woody_species_traits <- sPlot.traits %>%
                 starts_with("PlantHeight"), 
                 starts_with("Wood"), 
                 starts_with("SpecificRootLength_mean")) %>%
-  filter( (species %in% species_list) |
+  filter( (Species %in% species_list) |
           grepl(pattern = "tree|shrub", x = GrowthForm) |
           is.tree.or.tall.shrub==T
               ) %>% 
@@ -133,7 +133,7 @@ Codes correspond to those reported in [TRY](https://www.try-db.org/TryWeb/Home.p
 ```{r}
 #subset DT.xylem to only retain woody species
 DT.xylem <- DT.xylem %>% 
-  filter(species %in% (woody_species_traits$species))
+  filter(Species %in% (woody_species_traits$Species))
 nrow(DT.xylem)
 ```
 
@@ -149,23 +149,23 @@ combine.cover <- function(x){
 }
 
 DT.xylem <- DT.xylem %>%
-  dplyr::select(PlotObservationID, species,Layer, Relative.cover) %>%
+  dplyr::select(PlotObservationID, Species,Layer, Relative_cover) %>%
   # normalize relative cover to 1 for each plot x layer combination
   left_join({.} %>% 
               group_by(PlotObservationID, Layer) %>% 
-              summarize(Tot.Cover=sum(Relative.cover), .groups="drop"), 
+              summarize(Tot.Cover=sum(Relative_cover), .groups="drop"), 
             by=c("PlotObservationID", "Layer")) %>% 
-  mutate(Relative.cover=Relative.cover/Tot.Cover) %>% 
-  group_by(PlotObservationID, species) %>%
+  mutate(Relative_cover=Relative_cover/Tot.Cover) %>% 
+  group_by(PlotObservationID, Species) %>%
   # merge layers together
-  summarize(Relative.cover=combine.cover(Relative.cover), .groups="drop") %>%
+  summarize(Relative_cover=combine.cover(Relative_cover), .groups="drop") %>%
   ungroup() %>% 
   # normalize relative cover to 1 after merging layers together
   left_join({.} %>% 
               group_by(PlotObservationID) %>% 
-              summarize(Tot.Cover=sum(Relative.cover), .groups="drop"), 
+              summarize(Tot.Cover=sum(Relative_cover), .groups="drop"), 
             by="PlotObservationID") %>% 
-  mutate(Relative.cover=Relative.cover/Tot.Cover) 
+  mutate(Relative_cover=Relative_cover/Tot.Cover) 
 
 nrow(DT.xylem)
 ```
@@ -174,7 +174,7 @@ double check that covers are properly standardized
 DT.xylem %>% 
   filter(PlotObservationID %in% sample(header.xylem$PlotObservationID, 10, replace=F)) %>% 
   group_by(PlotObservationID) %>% 
-  summarize(tot.cover=sum(Relative.cover), .groups="drop")
+  summarize(tot.cover=sum(Relative_cover), .groups="drop")
 
 ```
 
@@ -185,24 +185,23 @@ Calculate CWM and trait coverage for each trait and each plot. Select plots havi
 # Merge species data table with traits
 CWM.xylem0 <- DT.xylem %>%
   as_tibble() %>%
-  dplyr::select(PlotObservationID, species, Relative.cover) %>%
+  dplyr::select(PlotObservationID, Species, Relative_cover) %>%
   left_join(xylem_data %>%
-              dplyr::rename(species=Species) %>%
-              dplyr::select(species, P50, Ks), 
-            by="species")
+              dplyr::select(Species, P50, Ks), 
+            by="Species")
 
 # Calculate CWM for each trait in each plot
 CWM.xylem1 <- CWM.xylem0 %>%
   group_by(PlotObservationID) %>%
   summarize_at(.vars= vars(P50:Ks),
-               .funs = list(~weighted.mean(., Relative.cover, na.rm=T)), 
+               .funs = list(~weighted.mean(., Relative_cover, na.rm=T)), 
                .groups="drop") %>%
   dplyr::select(PlotObservationID, order(colnames(.))) %>%
   pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.value")
 
 # Calculate coverage for each trait in each plot
 CWM.xylem2 <- CWM.xylem0 %>%
-  mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative.cover), 
+  mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative_cover), 
             .vars = vars(P50:Ks)) %>%
   group_by(PlotObservationID) %>%
   summarize_at(.vars= vars(P50:Ks),
@@ -232,7 +231,7 @@ variance2.fun <- function(trait, abu){
 CWM.xylem3 <- CWM.xylem0 %>%
   group_by(PlotObservationID) %>%
   summarize_at(.vars= vars(P50:Ks),
-               .funs = list(~variance2.fun(., Relative.cover))) %>%
+               .funs = list(~variance2.fun(., Relative_cover))) %>%
   dplyr::select(PlotObservationID, order(colnames(.))) %>%
   pivot_longer(-PlotObservationID, names_to="trait", values_to="trait.variance")
 
diff --git a/_public/01_Extract_data_Project_31.html b/_public/01_Extract_data_Project_31.html
index c2a51c9..e35362b 100644
--- a/_public/01_Extract_data_Project_31.html
+++ b/_public/01_Extract_data_Project_31.html
@@ -641,7 +641,7 @@ summary {
 <center>
 <img src="" title="sPlot Logo" />
 </center>
-<p><strong>Timestamp:</strong> Fri Nov 13 17:37:07 2020<br />
+<p><strong>Timestamp:</strong> Wed Dec 2 11:00:50 2020<br />
 <strong>Drafted:</strong> Francesco Maria Sabatini<br />
 <strong>Version:</strong> 1.1</p>
 <p>This report documents the data extraction for <strong>sPlot project proposal #31</strong> - <em>The adaptive value of xylem physiology within and across global ecoregions</em> as requested by Daniel Laughlin and Jesse Robert Fleri</p>
@@ -676,7 +676,7 @@ load(&quot;/data/sPlot/releases/sPlot3.0/SoilClim_sPlot3.RData&quot;)</code></pr
 <p>Extract all plots containing at least one species in the xylem list.</p>
 <pre class="r"><code>species_list &lt;- xylem_data$Species
 plot.sel &lt;- DT2 %&gt;%
-  filter(DT2$species %in% species_list) %&gt;%
+  filter(DT2$Species %in% species_list) %&gt;%
   dplyr::select(PlotObservationID) %&gt;%
   distinct() %&gt;%
   pull(PlotObservationID)
@@ -689,16 +689,16 @@ header.xylem &lt;- header %&gt;%
 plot.sel &lt;- header.xylem$PlotObservationID
 
 DT.xylem &lt;- DT2 %&gt;% 
-  filter(taxon_group %in% c(&quot;Vascular plant&quot;, &quot;Unknown&quot;)) %&gt;% 
+  filter(Taxon_group %in% c(&quot;Vascular plant&quot;, &quot;Unknown&quot;)) %&gt;% 
   filter(PlotObservationID %in% plot.sel)</code></pre>
-<p>Out of the 1841 species in the sRoot list, 1306 species are present in sPlot, for a total of 5510382 records, across 1243968 plots.</p>
+<p>Out of the 1841 species in the sRoot list, 1306 species are present in sPlot, for a total of 5510288 records, across 1243899 plots.</p>
 </div>
 <div id="extract-woody-species" class="section level1">
 <h1>2 Extract woody species</h1>
 <p>This is partial selection, as we don’t have information on the growth form of all species in sPlot</p>
 <pre class="r"><code>#Select all woody species and extract relevant traits from TRY
 woody_species_traits &lt;- sPlot.traits %&gt;%
-  dplyr::select(species, GrowthForm, is.tree.or.tall.shrub, n,
+  dplyr::select(Species, GrowthForm, is.tree.or.tall.shrub, n,
                 starts_with(&quot;StemDens&quot;),
                 starts_with(&quot;Stem.cond.dens&quot;), 
                 starts_with(&quot;StemConduitDiameter&quot;),
@@ -707,7 +707,7 @@ woody_species_traits &lt;- sPlot.traits %&gt;%
                 starts_with(&quot;PlantHeight&quot;), 
                 starts_with(&quot;Wood&quot;), 
                 starts_with(&quot;SpecificRootLength_mean&quot;)) %&gt;%
-  filter( (species %in% species_list) |
+  filter( (Species %in% species_list) |
           grepl(pattern = &quot;tree|shrub&quot;, x = GrowthForm) |
           is.tree.or.tall.shrub==T
               ) %&gt;% 
@@ -716,10 +716,10 @@ woody_species_traits &lt;- sPlot.traits %&gt;%
 
 table(woody_species_traits$GrowthForm, exclude=NULL)</code></pre>
 <pre><code>## 
-##      herb/shrub     herb\\shrub herb/shrub/tree           other           shrub 
-##              40               8               2              58            7928 
-##      shrub/tree     shrub\\tree            tree            &lt;NA&gt; 
-##             105              29           13555              92</code></pre>
+##            herb      herb/shrub herb/shrub/tree           other           shrub      shrub/tree            tree 
+##               0              48               2              55            7826             133           13458 
+##            &lt;NA&gt; 
+##              66</code></pre>
 <pre class="r"><code>#
 # MEMO for FMS: some standardization needed in sPlot 3.0 for GF names</code></pre>
 <table class="table table-striped table-hover table-condensed table-responsive" style="width: auto !important; margin-left: auto; margin-right: auto;">
@@ -729,7 +729,7 @@ Example of gap-filled trait data from TRY (20 randomly selected species)
 <thead>
 <tr>
 <th style="text-align:left;">
-species
+Species
 </th>
 <th style="text-align:left;">
 GrowthForm
@@ -790,66 +790,66 @@ SpecificRootLength_mean
 <tbody>
 <tr>
 <td style="text-align:left;">
-Kunzea ericifolia
+Guarea montana
 </td>
 <td style="text-align:left;">
-shrub
+tree
 </td>
 <td style="text-align:left;">
-FALSE
+TRUE
 </td>
 <td style="text-align:right;">
-1
+8
 </td>
 <td style="text-align:right;">
-0.7283649
+0.5858742
 </td>
 <td style="text-align:right;">
-NA
+0.0301498
 </td>
 <td style="text-align:right;">
-61.990281
+10.979643
 </td>
 <td style="text-align:right;">
-NA
+0.2196957
 </td>
 <td style="text-align:right;">
-31.98463
+50.41260
 </td>
 <td style="text-align:right;">
-NA
+1.855087
 </td>
 <td style="text-align:right;">
-10.605079
+18.916034
 </td>
 <td style="text-align:right;">
-NA
+6.5206777
 </td>
 <td style="text-align:right;">
-0.5061563
+15.665458
 </td>
 <td style="text-align:right;">
-NA
+0.3536615
 </td>
 <td style="text-align:right;">
-195.2870
+611.9516
 </td>
 <td style="text-align:right;">
-543.5571
+1333.5654
 </td>
 <td style="text-align:right;">
-NA
+11.211612
 </td>
 <td style="text-align:right;">
-NA
+15.10079
 </td>
 <td style="text-align:right;">
-3554.2440
+736.6293
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Epacris paludosa
+Memecylon pauciflorum
 </td>
 <td style="text-align:left;">
 shrub
@@ -861,40 +861,40 @@ FALSE
 1
 </td>
 <td style="text-align:right;">
-0.6180130
+0.7556743
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-188.437623
+13.621478
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-15.30076
+34.84398
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-8.228136
+9.740907
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-0.6297734
+7.055767
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-368.1810
+595.8648
 </td>
 <td style="text-align:right;">
-686.6200
+1122.8055
 </td>
 <td style="text-align:right;">
 NA
@@ -903,12 +903,12 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-1615.6063
+654.5461
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Codia jaffrei
+Lyonia squamulosa
 </td>
 <td style="text-align:left;">
 tree
@@ -917,6 +917,65 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
+4
+</td>
+<td style="text-align:right;">
+0.6367331
+</td>
+<td style="text-align:right;">
+0.0073622
+</td>
+<td style="text-align:right;">
+133.937835
+</td>
+<td style="text-align:right;">
+36.2900546
+</td>
+<td style="text-align:right;">
+40.48682
+</td>
+<td style="text-align:right;">
+10.335838
+</td>
+<td style="text-align:right;">
+8.960477
+</td>
+<td style="text-align:right;">
+0.1550139
+</td>
+<td style="text-align:right;">
+2.092577
+</td>
+<td style="text-align:right;">
+0.0547571
+</td>
+<td style="text-align:right;">
+614.5808
+</td>
+<td style="text-align:right;">
+836.4237
+</td>
+<td style="text-align:right;">
+156.854966
+</td>
+<td style="text-align:right;">
+122.75599
+</td>
+<td style="text-align:right;">
+3277.9704
+</td>
+</tr>
+<tr>
+<td style="text-align:left;">
+Croton carpostellatus
+</td>
+<td style="text-align:left;">
+shrub
+</td>
+<td style="text-align:left;">
+NA
+</td>
+<td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
@@ -967,7 +1026,7 @@ NA
 </tr>
 <tr>
 <td style="text-align:left;">
-Mortoniella pittieri
+Symplocos corymboclados
 </td>
 <td style="text-align:left;">
 tree
@@ -1026,66 +1085,66 @@ NA
 </tr>
 <tr>
 <td style="text-align:left;">
-Trophis
+Racosperma inceanum
 </td>
 <td style="text-align:left;">
-tree
+shrub
 </td>
 <td style="text-align:left;">
-TRUE
+FALSE
 </td>
 <td style="text-align:right;">
-160
+1
 </td>
 <td style="text-align:right;">
-0.5799697
+0.9173548
 </td>
 <td style="text-align:right;">
-0.0778658
+NA
 </td>
 <td style="text-align:right;">
-9.840891
+32.034694
 </td>
 <td style="text-align:right;">
-1.1314241
+NA
 </td>
 <td style="text-align:right;">
-50.44614
+33.08760
 </td>
 <td style="text-align:right;">
-11.1199527
+NA
 </td>
 <td style="text-align:right;">
-21.133250
+5.842977
 </td>
 <td style="text-align:right;">
-6.0488715
+NA
 </td>
 <td style="text-align:right;">
-15.1032393
+2.630325
 </td>
 <td style="text-align:right;">
-3.8993275
+NA
 </td>
 <td style="text-align:right;">
-327.6145
+260.0648
 </td>
 <td style="text-align:right;">
-801.9136
+815.4001
 </td>
 <td style="text-align:right;">
-30.6755155
+NA
 </td>
 <td style="text-align:right;">
-50.3768197
+NA
 </td>
 <td style="text-align:right;">
-1720.2909
+1044.3426
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Planchonella glauca
+Syzygium yunnanense
 </td>
 <td style="text-align:left;">
 tree
@@ -1094,43 +1153,43 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-NA
+1
 </td>
 <td style="text-align:right;">
-NA
+0.6709237
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-NA
+29.838787
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-NA
+37.67867
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-NA
+9.101109
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-NA
+15.211761
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-NA
+393.3089
 </td>
 <td style="text-align:right;">
-NA
+904.2242
 </td>
 <td style="text-align:right;">
 NA
@@ -1139,12 +1198,12 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-NA
+2510.9743
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Cotyledon velutina
+Conyza incana
 </td>
 <td style="text-align:left;">
 shrub
@@ -1156,40 +1215,40 @@ FALSE
 1
 </td>
 <td style="text-align:right;">
-0.3137810
+0.5512409
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-620.284468
+87.853476
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-21.22847
+31.59114
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-16.053577
+17.406322
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-1.1066924
+0.778091
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-450.2601
+424.5068
 </td>
 <td style="text-align:right;">
-512.9229
+671.1083
 </td>
 <td style="text-align:right;">
 NA
@@ -1198,77 +1257,77 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-2530.9735
+6694.7860
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Mitrephora teysmannii
+Diphysa
 </td>
 <td style="text-align:left;">
-tree
+shrub
 </td>
 <td style="text-align:left;">
-TRUE
+NA
 </td>
 <td style="text-align:right;">
-3
+15
 </td>
 <td style="text-align:right;">
-0.7483330
+0.7794898
 </td>
 <td style="text-align:right;">
-0.0090990
+0.1593987
 </td>
 <td style="text-align:right;">
-20.357402
+5.273908
 </td>
 <td style="text-align:right;">
-0.5531617
+1.1312733
 </td>
 <td style="text-align:right;">
-94.16796
+41.98475
 </td>
 <td style="text-align:right;">
-3.9737192
+2.886195
 </td>
 <td style="text-align:right;">
-19.631506
+14.589393
 </td>
 <td style="text-align:right;">
-0.5069761
+1.3170600
 </td>
 <td style="text-align:right;">
-12.5924995
+2.974295
 </td>
 <td style="text-align:right;">
-0.5909462
+0.2077748
 </td>
 <td style="text-align:right;">
-493.0227
+245.6972
 </td>
 <td style="text-align:right;">
-1171.1943
+825.3600
 </td>
 <td style="text-align:right;">
-14.5568411
+11.708001
 </td>
 <td style="text-align:right;">
-17.6612858
+32.31287
 </td>
 <td style="text-align:right;">
-1268.6842
+1221.5094
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Neisosperma mianum
+Ribes hirtum
 </td>
 <td style="text-align:left;">
-tree
+shrub
 </td>
 <td style="text-align:left;">
-TRUE
+NA
 </td>
 <td style="text-align:right;">
 NA
@@ -1321,7 +1380,7 @@ NA
 </tr>
 <tr>
 <td style="text-align:left;">
-Oxandra
+Styrax grandiflorus
 </td>
 <td style="text-align:left;">
 tree
@@ -1330,57 +1389,57 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-508
+1
 </td>
 <td style="text-align:right;">
-0.7439664
+0.4671375
 </td>
 <td style="text-align:right;">
-0.0279287
+NA
 </td>
 <td style="text-align:right;">
-46.542459
+33.840797
 </td>
 <td style="text-align:right;">
-11.2841074
+NA
 </td>
 <td style="text-align:right;">
-66.58668
+43.94415
 </td>
 <td style="text-align:right;">
-3.3169535
+NA
 </td>
 <td style="text-align:right;">
-11.912526
+14.145716
 </td>
 <td style="text-align:right;">
-1.9821599
+NA
 </td>
 <td style="text-align:right;">
-14.3297582
+14.963317
 </td>
 <td style="text-align:right;">
-2.5364250
+NA
 </td>
 <td style="text-align:right;">
-489.8337
+498.1904
 </td>
 <td style="text-align:right;">
-1049.0371
+772.8494
 </td>
 <td style="text-align:right;">
-25.3409824
+NA
 </td>
 <td style="text-align:right;">
-46.4265455
+NA
 </td>
 <td style="text-align:right;">
-1158.0969
+1297.9105
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Rhus typhina
+Eschweilera apiculata
 </td>
 <td style="text-align:left;">
 tree
@@ -1389,57 +1448,57 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-61
+9
 </td>
 <td style="text-align:right;">
-0.4527526
+0.7505803
 </td>
 <td style="text-align:right;">
-0.0069034
+0.0041541
 </td>
 <td style="text-align:right;">
-53.477904
+10.576050
 </td>
 <td style="text-align:right;">
-5.7865638
+0.2951158
 </td>
 <td style="text-align:right;">
-90.87015
+78.31194
 </td>
 <td style="text-align:right;">
-6.9805694
+2.146229
 </td>
 <td style="text-align:right;">
-16.845202
+11.589964
 </td>
 <td style="text-align:right;">
-4.3542703
+0.3951154
 </td>
 <td style="text-align:right;">
-6.3294372
+27.429864
 </td>
 <td style="text-align:right;">
-2.1204912
+1.0287612
 </td>
 <td style="text-align:right;">
-1441.3973
+468.7105
 </td>
 <td style="text-align:right;">
-1983.9657
+1503.2446
 </td>
 <td style="text-align:right;">
-110.9144264
+7.704811
 </td>
 <td style="text-align:right;">
-116.2715236
+13.52139
 </td>
 <td style="text-align:right;">
-757.1311
+778.2581
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Abies nephrolepis
+Persea schiedeana
 </td>
 <td style="text-align:left;">
 tree
@@ -1448,57 +1507,57 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-27
+1
 </td>
 <td style="text-align:right;">
-0.3512129
+0.5007033
 </td>
 <td style="text-align:right;">
-0.0114178
+NA
 </td>
 <td style="text-align:right;">
-407.180257
+17.566846
 </td>
 <td style="text-align:right;">
-33.9504526
+NA
 </td>
 <td style="text-align:right;">
-13.67868
+55.56977
 </td>
 <td style="text-align:right;">
-0.4732980
+NA
 </td>
 <td style="text-align:right;">
-9.892645
+10.261233
 </td>
 <td style="text-align:right;">
-1.5514761
+NA
 </td>
 <td style="text-align:right;">
-33.9981397
+9.211625
 </td>
 <td style="text-align:right;">
-5.3546088
+NA
 </td>
 <td style="text-align:right;">
-712.9564
+480.6575
 </td>
 <td style="text-align:right;">
-1296.2292
+1133.4095
 </td>
 <td style="text-align:right;">
-35.6846481
+NA
 </td>
 <td style="text-align:right;">
-38.7653154
+NA
 </td>
 <td style="text-align:right;">
-2597.8812
+1928.6155
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Iryanthera
+Coelocaryon preussii
 </td>
 <td style="text-align:left;">
 tree
@@ -1507,57 +1566,57 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-872
+35
 </td>
 <td style="text-align:right;">
-0.5788963
+0.4905614
 </td>
 <td style="text-align:right;">
-0.0214108
+0.0484178
 </td>
 <td style="text-align:right;">
-11.691323
+7.421855
 </td>
 <td style="text-align:right;">
-2.6742994
+0.7438196
 </td>
 <td style="text-align:right;">
-69.60219
+31.85978
 </td>
 <td style="text-align:right;">
-10.3527934
+2.145381
 </td>
 <td style="text-align:right;">
-11.394669
+15.679578
 </td>
 <td style="text-align:right;">
-1.7863227
+2.9380295
 </td>
 <td style="text-align:right;">
-18.2076192
+12.746193
 </td>
 <td style="text-align:right;">
-2.6997193
+1.6766921
 </td>
 <td style="text-align:right;">
-615.3043
+360.9284
 </td>
 <td style="text-align:right;">
-1615.3044
+1200.7816
 </td>
 <td style="text-align:right;">
-38.6066697
+14.194417
 </td>
 <td style="text-align:right;">
-102.6116320
+88.54092
 </td>
 <td style="text-align:right;">
-1203.0586
+3094.0897
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Licaria pucheri
+Hibiscus peripteroides
 </td>
 <td style="text-align:left;">
 tree
@@ -1616,66 +1675,7 @@ NA
 </tr>
 <tr>
 <td style="text-align:left;">
-Ficus palmata
-</td>
-<td style="text-align:left;">
-shrub
-</td>
-<td style="text-align:left;">
-TRUE
-</td>
-<td style="text-align:right;">
-3
-</td>
-<td style="text-align:right;">
-0.4166359
-</td>
-<td style="text-align:right;">
-0.0059615
-</td>
-<td style="text-align:right;">
-17.196187
-</td>
-<td style="text-align:right;">
-5.9575747
-</td>
-<td style="text-align:right;">
-43.09359
-</td>
-<td style="text-align:right;">
-1.5349340
-</td>
-<td style="text-align:right;">
-18.205922
-</td>
-<td style="text-align:right;">
-0.4136751
-</td>
-<td style="text-align:right;">
-11.8499790
-</td>
-<td style="text-align:right;">
-0.4458733
-</td>
-<td style="text-align:right;">
-298.8537
-</td>
-<td style="text-align:right;">
-572.8625
-</td>
-<td style="text-align:right;">
-11.1446281
-</td>
-<td style="text-align:right;">
-10.4592304
-</td>
-<td style="text-align:right;">
-1377.5573
-</td>
-</tr>
-<tr>
-<td style="text-align:left;">
-Santalum paniculatum
+Dendropanax caucanus
 </td>
 <td style="text-align:left;">
 tree
@@ -1684,57 +1684,57 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-2
+20
 </td>
 <td style="text-align:right;">
-0.7417319
+0.4402174
 </td>
 <td style="text-align:right;">
-0.0000636
+0.0135227
 </td>
 <td style="text-align:right;">
-19.537087
+31.876560
 </td>
 <td style="text-align:right;">
-0.9933779
+1.7936267
 </td>
 <td style="text-align:right;">
-24.31650
+23.63052
 </td>
 <td style="text-align:right;">
-0.0772736
+1.159723
 </td>
 <td style="text-align:right;">
-5.509882
+15.625599
 </td>
 <td style="text-align:right;">
-0.0290659
+2.7468579
 </td>
 <td style="text-align:right;">
-4.9944134
+13.059134
 </td>
 <td style="text-align:right;">
-0.0294042
+1.4795529
 </td>
 <td style="text-align:right;">
-240.6449
+649.5451
 </td>
 <td style="text-align:right;">
-616.3328
+1304.9038
 </td>
 <td style="text-align:right;">
-0.0361808
+31.320617
 </td>
 <td style="text-align:right;">
-0.9732207
+38.60228
 </td>
 <td style="text-align:right;">
-554.3731
+2356.5024
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Diospyros cinnabarina
+Combretaceae
 </td>
 <td style="text-align:left;">
 tree
@@ -1743,116 +1743,116 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-2
+NA
 </td>
 <td style="text-align:right;">
-0.6610894
+NA
 </td>
 <td style="text-align:right;">
-0.0035850
+NA
 </td>
 <td style="text-align:right;">
-14.580362
+NA
 </td>
 <td style="text-align:right;">
-0.9772326
+NA
 </td>
 <td style="text-align:right;">
-55.77311
+NA
 </td>
 <td style="text-align:right;">
-1.9367853
+NA
 </td>
 <td style="text-align:right;">
-11.881875
+NA
 </td>
 <td style="text-align:right;">
-0.1371734
+NA
 </td>
 <td style="text-align:right;">
-10.9291313
+NA
 </td>
 <td style="text-align:right;">
-0.7287004
+NA
 </td>
 <td style="text-align:right;">
-431.2067
+NA
 </td>
 <td style="text-align:right;">
-1151.1902
+NA
 </td>
 <td style="text-align:right;">
-12.7213760
+NA
 </td>
 <td style="text-align:right;">
-14.2037536
+NA
 </td>
 <td style="text-align:right;">
-1452.2787
+NA
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Protium altsonii
+Ozoroa homblei
 </td>
 <td style="text-align:left;">
-tree
+shrub
 </td>
 <td style="text-align:left;">
-TRUE
+FALSE
 </td>
 <td style="text-align:right;">
-39
+7
 </td>
 <td style="text-align:right;">
-0.6128564
+0.6785542
 </td>
 <td style="text-align:right;">
-0.0255524
+0.0110582
 </td>
 <td style="text-align:right;">
-12.230485
+11.194790
 </td>
 <td style="text-align:right;">
-0.9091390
+0.4246382
 </td>
 <td style="text-align:right;">
-43.51911
+86.76049
 </td>
 <td style="text-align:right;">
-2.2129142
+2.857780
 </td>
 <td style="text-align:right;">
-14.697606
+8.225762
 </td>
 <td style="text-align:right;">
-2.1798936
+0.2473602
 </td>
 <td style="text-align:right;">
-20.4438840
+2.071787
 </td>
 <td style="text-align:right;">
-1.7465118
+0.3695247
 </td>
 <td style="text-align:right;">
-404.9270
+444.9354
 </td>
 <td style="text-align:right;">
-971.3543
+1017.9627
 </td>
 <td style="text-align:right;">
-13.3303058
+27.544033
 </td>
 <td style="text-align:right;">
-26.8407913
+50.02243
 </td>
 <td style="text-align:right;">
-765.7623
+785.7581
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Litsea glutinosa
+Acacia sulcata
 </td>
 <td style="text-align:left;">
 tree
@@ -1861,102 +1861,102 @@ tree
 TRUE
 </td>
 <td style="text-align:right;">
-6
+NA
 </td>
 <td style="text-align:right;">
-0.5487119
+NA
 </td>
 <td style="text-align:right;">
-0.0540633
+NA
 </td>
 <td style="text-align:right;">
-15.661711
+NA
 </td>
 <td style="text-align:right;">
-0.3416939
+NA
 </td>
 <td style="text-align:right;">
-22.81439
+NA
 </td>
 <td style="text-align:right;">
-0.7334361
+NA
 </td>
 <td style="text-align:right;">
-13.030198
+NA
 </td>
 <td style="text-align:right;">
-0.3315966
+NA
 </td>
 <td style="text-align:right;">
-14.1280203
+NA
 </td>
 <td style="text-align:right;">
-0.4921995
+NA
 </td>
 <td style="text-align:right;">
-454.1707
+NA
 </td>
 <td style="text-align:right;">
-811.2948
+NA
 </td>
 <td style="text-align:right;">
-11.0344099
+NA
 </td>
 <td style="text-align:right;">
-7.2770561
+NA
 </td>
 <td style="text-align:right;">
-534.8413
+NA
 </td>
 </tr>
 <tr>
 <td style="text-align:left;">
-Anabasis elatior
+Benthamina alyxifolia
 </td>
 <td style="text-align:left;">
 shrub
 </td>
 <td style="text-align:left;">
-FALSE
+NA
 </td>
 <td style="text-align:right;">
-1
+NA
 </td>
 <td style="text-align:right;">
-0.5692733
+NA
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-60.585659
+NA
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-33.58964
+NA
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-4.135293
+NA
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-0.2021352
+NA
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-488.6956
+NA
 </td>
 <td style="text-align:right;">
-1010.9334
+NA
 </td>
 <td style="text-align:right;">
 NA
@@ -1965,7 +1965,7 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-2705.0498
+NA
 </td>
 </tr>
 </tbody>
@@ -1993,9 +1993,9 @@ NA
 <p>Codes correspond to those reported in <a href="https://www.try-db.org/TryWeb/Home.php">TRY</a></p>
 <pre class="r"><code>#subset DT.xylem to only retain woody species
 DT.xylem &lt;- DT.xylem %&gt;% 
-  filter(species %in% (woody_species_traits$species))
+  filter(Species %in% (woody_species_traits$Species))
 nrow(DT.xylem)</code></pre>
-<pre><code>## [1] 8547337</code></pre>
+<pre><code>## [1] 8547026</code></pre>
 <p>Merge relative cover across vegetation layers, if needed, and normalize to 1 (=100%)</p>
 <pre class="r"><code>###combine cover values across layers
 combine.cover &lt;- function(x){
@@ -2007,39 +2007,42 @@ combine.cover &lt;- function(x){
 }
 
 DT.xylem &lt;- DT.xylem %&gt;%
-  dplyr::select(PlotObservationID, species,Layer, Relative.cover) %&gt;%
+  dplyr::select(PlotObservationID, Species,Layer, Relative_cover) %&gt;%
   # normalize relative cover to 1 for each plot x layer combination
   left_join({.} %&gt;% 
               group_by(PlotObservationID, Layer) %&gt;% 
-              summarize(Tot.Cover=sum(Relative.cover), .groups=&quot;drop&quot;), 
+              summarize(Tot.Cover=sum(Relative_cover), .groups=&quot;drop&quot;), 
             by=c(&quot;PlotObservationID&quot;, &quot;Layer&quot;)) %&gt;% 
-  mutate(Relative.cover=Relative.cover/Tot.Cover) %&gt;% 
-  group_by(PlotObservationID, species) %&gt;%
+  mutate(Relative_cover=Relative_cover/Tot.Cover) %&gt;% 
+  group_by(PlotObservationID, Species) %&gt;%
   # merge layers together
-  summarize(Relative.cover=combine.cover(Relative.cover), .groups=&quot;drop&quot;) %&gt;%
+  summarize(Relative_cover=combine.cover(Relative_cover), .groups=&quot;drop&quot;) %&gt;%
   ungroup() %&gt;% 
   # normalize relative cover to 1 after merging layers together
   left_join({.} %&gt;% 
               group_by(PlotObservationID) %&gt;% 
-              summarize(Tot.Cover=sum(Relative.cover), .groups=&quot;drop&quot;), 
+              summarize(Tot.Cover=sum(Relative_cover), .groups=&quot;drop&quot;), 
             by=&quot;PlotObservationID&quot;) %&gt;% 
-  mutate(Relative.cover=Relative.cover/Tot.Cover) 
+  mutate(Relative_cover=Relative_cover/Tot.Cover) 
 
 nrow(DT.xylem)</code></pre>
-<pre><code>## [1] 7304230</code></pre>
+<pre><code>## [1] 7303930</code></pre>
 <p>double check that covers are properly standardized</p>
 <pre class="r"><code>DT.xylem %&gt;% 
   filter(PlotObservationID %in% sample(header.xylem$PlotObservationID, 10, replace=F)) %&gt;% 
   group_by(PlotObservationID) %&gt;% 
-  summarize(tot.cover=sum(Relative.cover), .groups=&quot;drop&quot;)</code></pre>
-<pre><code>## # A tibble: 5 x 2
+  summarize(tot.cover=sum(Relative_cover), .groups=&quot;drop&quot;)</code></pre>
+<pre><code>## # A tibble: 8 x 2
 ##   PlotObservationID tot.cover
 ##               &lt;dbl&gt;     &lt;dbl&gt;
-## 1            143374         1
-## 2            451004         1
-## 3            685954         1
-## 4            746410         1
-## 5           1133820         1</code></pre>
+## 1             25202         1
+## 2             41158         1
+## 3            709456         1
+## 4            751505         1
+## 5           1590085         1
+## 6           1912386         1
+## 7           1916127         1
+## 8           1968921         1</code></pre>
 </div>
 <div id="calculate-cwms-and-trait-coverage" class="section level1">
 <h1>3 Calculate CWMs and trait coverage</h1>
@@ -2047,24 +2050,23 @@ nrow(DT.xylem)</code></pre>
 <pre class="r"><code># Merge species data table with traits
 CWM.xylem0 &lt;- DT.xylem %&gt;%
   as_tibble() %&gt;%
-  dplyr::select(PlotObservationID, species, Relative.cover) %&gt;%
+  dplyr::select(PlotObservationID, Species, Relative_cover) %&gt;%
   left_join(xylem_data %&gt;%
-              dplyr::rename(species=Species) %&gt;%
-              dplyr::select(species, P50, Ks), 
-            by=&quot;species&quot;)
+              dplyr::select(Species, P50, Ks), 
+            by=&quot;Species&quot;)
 
 # Calculate CWM for each trait in each plot
 CWM.xylem1 &lt;- CWM.xylem0 %&gt;%
   group_by(PlotObservationID) %&gt;%
   summarize_at(.vars= vars(P50:Ks),
-               .funs = list(~weighted.mean(., Relative.cover, na.rm=T)), 
+               .funs = list(~weighted.mean(., Relative_cover, na.rm=T)), 
                .groups=&quot;drop&quot;) %&gt;%
   dplyr::select(PlotObservationID, order(colnames(.))) %&gt;%
   pivot_longer(-PlotObservationID, names_to=&quot;trait&quot;, values_to=&quot;trait.value&quot;)
 
 # Calculate coverage for each trait in each plot
 CWM.xylem2 &lt;- CWM.xylem0 %&gt;%
-  mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative.cover), 
+  mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative_cover), 
             .vars = vars(P50:Ks)) %&gt;%
   group_by(PlotObservationID) %&gt;%
   summarize_at(.vars= vars(P50:Ks),
@@ -2094,7 +2096,7 @@ variance2.fun &lt;- function(trait, abu){
 CWM.xylem3 &lt;- CWM.xylem0 %&gt;%
   group_by(PlotObservationID) %&gt;%
   summarize_at(.vars= vars(P50:Ks),
-               .funs = list(~variance2.fun(., Relative.cover))) %&gt;%
+               .funs = list(~variance2.fun(., Relative_cover))) %&gt;%
   dplyr::select(PlotObservationID, order(colnames(.))) %&gt;%
   pivot_longer(-PlotObservationID, names_to=&quot;trait&quot;, values_to=&quot;trait.variance&quot;)
 
@@ -2696,7 +2698,7 @@ num.plots
 Ks
 </td>
 <td style="text-align:right;">
-92391
+92390
 </td>
 </tr>
 <tr>
@@ -2704,7 +2706,7 @@ Ks
 P50
 </td>
 <td style="text-align:right;">
-328855
+328854
 </td>
 </tr>
 </tbody>
@@ -2740,7 +2742,7 @@ Completeness_perc
 GIVD ID
 </td>
 <td style="text-align:right;">
-99.9944532
+100.0000000
 </td>
 </tr>
 <tr>
@@ -2756,7 +2758,7 @@ TV2 relevé number
 ORIG_NUM
 </td>
 <td style="text-align:right;">
-0.0047429
+0.0000000
 </td>
 </tr>
 <tr>
@@ -2788,7 +2790,7 @@ Latitude
 Location uncertainty (m)
 </td>
 <td style="text-align:right;">
-95.2326748
+95.2332143
 </td>
 </tr>
 <tr>
@@ -2796,7 +2798,7 @@ Location uncertainty (m)
 Country
 </td>
 <td style="text-align:right;">
-99.9040972
+99.9024840
 </td>
 </tr>
 <tr>
@@ -2812,7 +2814,7 @@ CONTINENT
 sBiome
 </td>
 <td style="text-align:right;">
-99.2994997
+100.0000000
 </td>
 </tr>
 <tr>
@@ -2820,7 +2822,7 @@ sBiome
 sBiomeID
 </td>
 <td style="text-align:right;">
-99.2994997
+100.0000000
 </td>
 </tr>
 <tr>
@@ -2828,7 +2830,7 @@ sBiomeID
 Ecoregion
 </td>
 <td style="text-align:right;">
-99.2824574
+100.0000000
 </td>
 </tr>
 <tr>
@@ -2836,7 +2838,7 @@ Ecoregion
 EcoregionID
 </td>
 <td style="text-align:right;">
-99.2824574
+100.0000000
 </td>
 </tr>
 <tr>
@@ -2844,7 +2846,7 @@ EcoregionID
 Locality
 </td>
 <td style="text-align:right;">
-60.0678635
+60.0711955
 </td>
 </tr>
 <tr>
@@ -2852,7 +2854,7 @@ Locality
 Relevé area (m²)
 </td>
 <td style="text-align:right;">
-72.9285641
+72.9304389
 </td>
 </tr>
 <tr>
@@ -2868,7 +2870,7 @@ Cover abundance scale
 Date of recording
 </td>
 <td style="text-align:right;">
-87.1815834
+87.1848920
 </td>
 </tr>
 <tr>
@@ -2876,7 +2878,7 @@ Date of recording
 Plants recorded
 </td>
 <td style="text-align:right;">
-99.9995177
+99.9995176
 </td>
 </tr>
 <tr>
@@ -2884,7 +2886,7 @@ Plants recorded
 Herbs identified (y/n)
 </td>
 <td style="text-align:right;">
-2.7118865
+2.7120369
 </td>
 </tr>
 <tr>
@@ -2892,7 +2894,7 @@ Herbs identified (y/n)
 Mosses identified (y/n)
 </td>
 <td style="text-align:right;">
-28.1309487
+28.1317052
 </td>
 </tr>
 <tr>
@@ -2900,7 +2902,7 @@ Mosses identified (y/n)
 Lichens identified (y/n)
 </td>
 <td style="text-align:right;">
-16.5480141
+16.5481281
 </td>
 </tr>
 <tr>
@@ -2908,7 +2910,7 @@ Lichens identified (y/n)
 elevation_dem
 </td>
 <td style="text-align:right;">
-76.7620228
+76.7635475
 </td>
 </tr>
 <tr>
@@ -2916,7 +2918,7 @@ elevation_dem
 Altitude (m)
 </td>
 <td style="text-align:right;">
-84.2275686
+84.2278995
 </td>
 </tr>
 <tr>
@@ -2924,7 +2926,7 @@ Altitude (m)
 Aspect (°)
 </td>
 <td style="text-align:right;">
-32.4671535
+32.4683917
 </td>
 </tr>
 <tr>
@@ -2932,7 +2934,7 @@ Aspect (°)
 Slope (°)
 </td>
 <td style="text-align:right;">
-42.1329970
+42.1346910
 </td>
 </tr>
 <tr>
@@ -2940,7 +2942,7 @@ Slope (°)
 Forest
 </td>
 <td style="text-align:right;">
-74.7368903
+74.7359713
 </td>
 </tr>
 <tr>
@@ -2948,7 +2950,7 @@ Forest
 Shrubland
 </td>
 <td style="text-align:right;">
-74.7368903
+74.7359713
 </td>
 </tr>
 <tr>
@@ -2956,7 +2958,7 @@ Shrubland
 Grassland
 </td>
 <td style="text-align:right;">
-74.7368903
+74.7359713
 </td>
 </tr>
 <tr>
@@ -2964,7 +2966,7 @@ Grassland
 Wetland
 </td>
 <td style="text-align:right;">
-74.7368903
+74.7359713
 </td>
 </tr>
 <tr>
@@ -2972,7 +2974,7 @@ Wetland
 Sparse.vegetation
 </td>
 <td style="text-align:right;">
-74.7368903
+74.7359713
 </td>
 </tr>
 <tr>
@@ -2980,7 +2982,7 @@ Sparse.vegetation
 Naturalness
 </td>
 <td style="text-align:right;">
-47.8299281
+47.8286420
 </td>
 </tr>
 <tr>
@@ -2988,7 +2990,7 @@ Naturalness
 ESY
 </td>
 <td style="text-align:right;">
-72.6619977
+72.6604813
 </td>
 </tr>
 <tr>
@@ -2996,7 +2998,7 @@ ESY
 Cover total (%)
 </td>
 <td style="text-align:right;">
-21.1678275
+21.1663487
 </td>
 </tr>
 <tr>
@@ -3004,7 +3006,7 @@ Cover total (%)
 Cover tree layer (%)
 </td>
 <td style="text-align:right;">
-17.0949735
+17.0958414
 </td>
 </tr>
 <tr>
@@ -3012,7 +3014,7 @@ Cover tree layer (%)
 Cover shrub layer (%)
 </td>
 <td style="text-align:right;">
-18.6166364
+18.6167848
 </td>
 </tr>
 <tr>
@@ -3020,7 +3022,7 @@ Cover shrub layer (%)
 Cover herb layer (%)
 </td>
 <td style="text-align:right;">
-36.1539847
+36.1548647
 </td>
 </tr>
 <tr>
@@ -3028,7 +3030,7 @@ Cover herb layer (%)
 Cover moss layer (%)
 </td>
 <td style="text-align:right;">
-18.1638113
+18.1640149
 </td>
 </tr>
 <tr>
@@ -3036,7 +3038,7 @@ Cover moss layer (%)
 Cover lichen layer (%)
 </td>
 <td style="text-align:right;">
-0.3121463
+0.3121636
 </td>
 </tr>
 <tr>
@@ -3044,7 +3046,7 @@ Cover lichen layer (%)
 Cover algae layer (%)
 </td>
 <td style="text-align:right;">
-0.0567539
+0.0567570
 </td>
 </tr>
 <tr>
@@ -3052,7 +3054,7 @@ Cover algae layer (%)
 Cover litter layer (%)
 </td>
 <td style="text-align:right;">
-4.5210166
+4.5212674
 </td>
 </tr>
 <tr>
@@ -3060,7 +3062,7 @@ Cover litter layer (%)
 Cover open water (%)
 </td>
 <td style="text-align:right;">
-0.1392319
+0.1392396
 </td>
 </tr>
 <tr>
@@ -3068,7 +3070,7 @@ Cover open water (%)
 Cover bare rock (%)
 </td>
 <td style="text-align:right;">
-1.7043043
+1.7043988
 </td>
 </tr>
 <tr>
@@ -3076,7 +3078,7 @@ Cover bare rock (%)
 Height (highest) trees (m)
 </td>
 <td style="text-align:right;">
-7.5995524
+7.5998936
 </td>
 </tr>
 <tr>
@@ -3084,7 +3086,7 @@ Height (highest) trees (m)
 Height lowest trees (m)
 </td>
 <td style="text-align:right;">
-0.4962346
+0.4962622
 </td>
 </tr>
 <tr>
@@ -3092,7 +3094,7 @@ Height lowest trees (m)
 Height (highest) shrubs (m)
 </td>
 <td style="text-align:right;">
-5.0405637
+5.0408433
 </td>
 </tr>
 <tr>
@@ -3100,7 +3102,7 @@ Height (highest) shrubs (m)
 Height lowest shrubs (m)
 </td>
 <td style="text-align:right;">
-0.5556413
+0.5556721
 </td>
 </tr>
 <tr>
@@ -3108,7 +3110,7 @@ Height lowest shrubs (m)
 Aver. height (high) herbs (cm)
 </td>
 <td style="text-align:right;">
-9.5914847
+9.5916148
 </td>
 </tr>
 <tr>
@@ -3116,7 +3118,7 @@ Aver. height (high) herbs (cm)
 Aver. height lowest herbs (cm)
 </td>
 <td style="text-align:right;">
-2.7044104
+2.7043996
 </td>
 </tr>
 <tr>
@@ -3124,7 +3126,7 @@ Aver. height lowest herbs (cm)
 Maximum height herbs (cm)
 </td>
 <td style="text-align:right;">
-2.4628447
+2.4629813
 </td>
 </tr>
 <tr>
@@ -3132,12 +3134,12 @@ Maximum height herbs (cm)
 Maximum height cryptogams (mm)
 </td>
 <td style="text-align:right;">
-0.1219485
+0.1219552
 </td>
 </tr>
 </tbody>
 </table>
-<p>The process results in 1243968 plots selected, for a total of 1932708 trait * plot combinations.</p>
+<p>The process results in 1243899 plots selected, for a total of 1932574 trait * plot combinations.</p>
 <p>Geographical distribution of plots</p>
 <pre class="r"><code>countries &lt;- map_data(&quot;world&quot;)
 ggworld &lt;- ggplot(countries, aes(x=long, y=lat, group = group)) +
@@ -3145,7 +3147,7 @@ ggworld &lt;- ggplot(countries, aes(x=long, y=lat, group = group)) +
   geom_point(data=header.xylem, aes(x=Longitude, y=Latitude, group=1), col=&quot;red&quot;, alpha=0.5, cex=0.7, shape=&quot;+&quot;) + 
   theme_bw()
 ggworld</code></pre>
-<p><img src="" width="576" style="display: block; margin: auto;" /></p>
+<p><img src="" width="576" style="display: block; margin: auto;" /></p>
 <p>Summarize data across data sets in sPlot, and create list of data custodians</p>
 <pre class="r"><code>db.out &lt;- read_csv(&quot;/data/sPlot/users/Francesco/_sPlot_Management/Consortium/Databases.out.csv&quot;) %&gt;%
   dplyr::select(`GIVD ID`, Custodian)
@@ -3223,7 +3225,7 @@ Anne D. Bjorkman
 1100
 </td>
 <td style="text-align:left;">
-Vassiliy Martynenko
+Vasiliy Martynenko
 </td>
 </tr>
 <tr>
@@ -3366,7 +3368,7 @@ AF-00-011
 93
 </td>
 <td style="text-align:left;">
-Bruno Herault
+Bruno Hérault
 </td>
 </tr>
 <tr>
@@ -3828,7 +3830,7 @@ AU-NZ-001
 15738
 </td>
 <td style="text-align:left;">
-Susan Wiser
+Susan K. Wiser
 </td>
 </tr>
 <tr>
@@ -4876,20 +4878,9 @@ SA-EC-002
 Gonzalo Rivas-Torres
 </td>
 </tr>
-<tr>
-<td style="text-align:left;">
-NA
-</td>
-<td style="text-align:right;">
-69
-</td>
-<td style="text-align:left;">
-NA
-</td>
-</tr>
 </tbody>
 </table>
-<p>The data derive from 156 datasets.</p>
+<p>The data derive from 155 datasets.</p>
 </div>
 <div id="extract-climate-and-soils-data" class="section level1">
 <h1>4 Extract climate and soils data</h1>
@@ -5076,407 +5067,407 @@ SNDPPTsd
 <tbody>
 <tr>
 <td style="text-align:right;">
-1055814
+1762681
 </td>
 <td style="text-align:right;">
-0
+121
 </td>
 <td style="text-align:right;">
-104.00000
+106.00000
 </td>
 <td style="text-align:right;">
-60.00000
+43.00000
 </td>
 <td style="text-align:right;">
-288.0000
+155.0000
 </td>
 <td style="text-align:right;">
-5231.667
+8104.000
 </td>
 <td style="text-align:right;">
-217.0000
+252.0000
 </td>
 <td style="text-align:right;">
-8.166667
+-28.0000000
 </td>
 <td style="text-align:right;">
-208.3333
+280.0000
 </td>
 <td style="text-align:right;">
-54.00000
+3.00000
 </td>
 <td style="text-align:right;">
-82.000000
+113.000000
 </td>
 <td style="text-align:right;">
-178.0000
+223.0000
 </td>
 <td style="text-align:right;">
-34.000000
+-4.000000
 </td>
 <td style="text-align:right;">
-814.1667
+1461.0000
 </td>
 <td style="text-align:right;">
-79.00000
+164.00000
 </td>
 <td style="text-align:right;">
-47.00000
+87.00000
 </td>
 <td style="text-align:right;">
-15.83333
+22.00000
 </td>
 <td style="text-align:right;">
-234.3333
+478.0000
 </td>
 <td style="text-align:right;">
-154.00000
+267.00000
 </td>
 <td style="text-align:right;">
-231.0000
+363.00000
 </td>
 <td style="text-align:right;">
-174.0000
+406.00000
 </td>
 <td style="text-align:right;">
-0.000000
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-3.265986
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-0.4082483
+NA
 </td>
 <td style="text-align:right;">
-0.5163978
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-0.000000
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-0.9831921
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-0.0000000
+NA
 </td>
 <td style="text-align:right;">
-0.4082483
+NA
 </td>
 <td style="text-align:right;">
-0.8164966
+NA
 </td>
 <td style="text-align:right;">
-0.000000
+NA
 </td>
 <td style="text-align:right;">
-0.000000
+NA
 </td>
 <td style="text-align:right;">
-0.000000
+NA
 </td>
 <td style="text-align:right;">
-500.9677
+792.3333
 </td>
 <td style="text-align:right;">
-26.01613
+29.00000
 </td>
 <td style="text-align:right;">
-29.258064
+16.83333
 </td>
 <td style="text-align:right;">
-6.806452
+13.8333333
 </td>
 <td style="text-align:right;">
-64.22581
+119.33333
 </td>
 <td style="text-align:right;">
-65.66129
+47.66667
 </td>
 <td style="text-align:right;">
-37.290323
+37.33333
 </td>
 <td style="text-align:right;">
-33.54839
+46.16667
 </td>
 <td style="text-align:right;">
-44.646505
+27.339837
 </td>
 <td style="text-align:right;">
-4.0265184
+1.0954451
 </td>
 <td style="text-align:right;">
-3.6839727
+0.7527727
 </td>
 <td style="text-align:right;">
-1.4467455
+0.9831921
 </td>
 <td style="text-align:right;">
-26.123552
+10.405127
 </td>
 <td style="text-align:right;">
-1.6980563
+0.8164966
 </td>
 <td style="text-align:right;">
-2.5310342
+0.5163978
 </td>
 <td style="text-align:right;">
-3.4720307
+0.7527727
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-14866
+145165
 </td>
 <td style="text-align:right;">
-509
+101
 </td>
 <td style="text-align:right;">
-83.96739
+3.00000
 </td>
 <td style="text-align:right;">
-77.72826
+58.00000
 </td>
 <td style="text-align:right;">
-276.5435
+172.0000
 </td>
 <td style="text-align:right;">
-7176.413
+9222.000
 </td>
 <td style="text-align:right;">
-230.1304
+185.0000
 </td>
 <td style="text-align:right;">
--50.184783
+-151.0000000
 </td>
 <td style="text-align:right;">
-280.4348
+336.0000
 </td>
 <td style="text-align:right;">
-176.94565
+89.00000
 </td>
 <td style="text-align:right;">
--9.423913
+-32.000000
 </td>
 <td style="text-align:right;">
-180.4239
+134.0000
 </td>
 <td style="text-align:right;">
--13.391304
+-121.000000
 </td>
 <td style="text-align:right;">
-640.8913
+484.0000
 </td>
 <td style="text-align:right;">
-87.08696
+58.00000
 </td>
 <td style="text-align:right;">
-32.33696
+25.00000
 </td>
 <td style="text-align:right;">
-36.25000
+29.00000
 </td>
 <td style="text-align:right;">
-259.3696
+165.0000
 </td>
 <td style="text-align:right;">
-99.84783
+80.00000
 </td>
 <td style="text-align:right;">
-233.3370
+164.00000
 </td>
 <td style="text-align:right;">
-108.9022
+83.00000
 </td>
 <td style="text-align:right;">
-8.772398
+NA
 </td>
 <td style="text-align:right;">
-0.4472937
+NA
 </td>
 <td style="text-align:right;">
-1.1617819
+NA
 </td>
 <td style="text-align:right;">
-46.601927
+NA
 </td>
 <td style="text-align:right;">
-9.2916332
+NA
 </td>
 <td style="text-align:right;">
-8.0122562
+NA
 </td>
 <td style="text-align:right;">
-1.2692851
+NA
 </td>
 <td style="text-align:right;">
-9.3083492
+NA
 </td>
 <td style="text-align:right;">
-8.164832
+NA
 </td>
 <td style="text-align:right;">
-9.2275670
+NA
 </td>
 <td style="text-align:right;">
-8.1158596
+NA
 </td>
 <td style="text-align:right;">
-87.2503606
+NA
 </td>
 <td style="text-align:right;">
-12.0745415
+NA
 </td>
 <td style="text-align:right;">
-4.5241165
+NA
 </td>
 <td style="text-align:right;">
-1.8905491
+NA
 </td>
 <td style="text-align:right;">
-36.3274840
+NA
 </td>
 <td style="text-align:right;">
-14.101621
+NA
 </td>
 <td style="text-align:right;">
-32.983938
+NA
 </td>
 <td style="text-align:right;">
-15.855155
+NA
 </td>
 <td style="text-align:right;">
-799.4233
+501.3000
 </td>
 <td style="text-align:right;">
-20.34871
+27.70000
 </td>
 <td style="text-align:right;">
-17.803935
+12.70000
 </td>
 <td style="text-align:right;">
-18.152646
+5.8000000
 </td>
 <td style="text-align:right;">
-49.68385
+177.60000
 </td>
 <td style="text-align:right;">
-53.77001
+50.30000
 </td>
 <td style="text-align:right;">
-41.138399
+36.20000
 </td>
 <td style="text-align:right;">
-41.04071
+51.20000
 </td>
 <td style="text-align:right;">
-77.252901
+34.919113
 </td>
 <td style="text-align:right;">
-2.9640025
+0.8232726
 </td>
 <td style="text-align:right;">
-2.3305197
+0.6749486
 </td>
 <td style="text-align:right;">
-1.8310616
+0.4216370
 </td>
 <td style="text-align:right;">
-15.822520
+14.982953
 </td>
 <td style="text-align:right;">
-3.9467806
+0.4830459
 </td>
 <td style="text-align:right;">
-2.0002998
+0.7888106
 </td>
 <td style="text-align:right;">
-3.2557389
+0.9189366
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-859556
+1758161
 </td>
 <td style="text-align:right;">
-NA
+1202
 </td>
 <td style="text-align:right;">
-92.00000
+79.00000
 </td>
 <td style="text-align:right;">
-66.00000
+67.00000
 </td>
 <td style="text-align:right;">
-278.0000
+220.0000
 </td>
 <td style="text-align:right;">
-6061.000
+8280.000
 </td>
 <td style="text-align:right;">
-222.0000
+235.0000
 </td>
 <td style="text-align:right;">
--15.000000
+-68.0000000
 </td>
 <td style="text-align:right;">
-236.0000
+303.0000
 </td>
 <td style="text-align:right;">
-171.00000
+198.00000
 </td>
 <td style="text-align:right;">
-35.000000
+-26.000000
 </td>
 <td style="text-align:right;">
-177.0000
+198.0000
 </td>
 <td style="text-align:right;">
-12.000000
+-32.000000
 </td>
 <td style="text-align:right;">
-758.0000
+1975.0000
 </td>
 <td style="text-align:right;">
-76.00000
+277.00000
 </td>
 <td style="text-align:right;">
-50.00000
+72.00000
 </td>
 <td style="text-align:right;">
-13.00000
+46.00000
 </td>
 <td style="text-align:right;">
-221.0000
+828.0000
 </td>
 <td style="text-align:right;">
-164.00000
+228.00000
 </td>
 <td style="text-align:right;">
-213.0000
+828.00000
 </td>
 <td style="text-align:right;">
-168.0000
+244.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -5536,287 +5527,287 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-673.6000
+817.2500
 </td>
 <td style="text-align:right;">
-19.40000
+35.50000
 </td>
 <td style="text-align:right;">
-21.600000
+19.00000
 </td>
 <td style="text-align:right;">
-12.200000
+19.2500000
 </td>
 <td style="text-align:right;">
-43.80000
+152.75000
 </td>
 <td style="text-align:right;">
-57.80000
+49.75000
 </td>
 <td style="text-align:right;">
-55.000000
+36.50000
 </td>
 <td style="text-align:right;">
-23.60000
+44.75000
 </td>
 <td style="text-align:right;">
-25.822471
+26.170913
 </td>
 <td style="text-align:right;">
-1.6733201
+1.2909944
 </td>
 <td style="text-align:right;">
-0.5477226
+0.8164966
 </td>
 <td style="text-align:right;">
-0.4472136
+0.5000000
 </td>
 <td style="text-align:right;">
-11.541230
+6.652067
 </td>
 <td style="text-align:right;">
-2.2803509
+0.5000000
 </td>
 <td style="text-align:right;">
-1.8708287
+0.5773503
 </td>
 <td style="text-align:right;">
-2.1908902
+0.5000000
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1605521
+923129
 </td>
 <td style="text-align:right;">
-107
+NA
 </td>
 <td style="text-align:right;">
-98.00000
+160.35976
 </td>
 <td style="text-align:right;">
-64.00000
+62.17378
 </td>
 <td style="text-align:right;">
-328.0000
+247.9451
 </td>
 <td style="text-align:right;">
-4570.000
+6664.412
 </td>
 <td style="text-align:right;">
-209.0000
+295.7256
 </td>
 <td style="text-align:right;">
-13.000000
+45.0670732
 </td>
 <td style="text-align:right;">
-196.0000
+250.6646
 </td>
 <td style="text-align:right;">
-54.00000
+101.67683
 </td>
 <td style="text-align:right;">
-41.000000
+254.064024
 </td>
 <td style="text-align:right;">
-165.0000
+254.3689
 </td>
 <td style="text-align:right;">
-41.000000
+75.533537
 </td>
 <td style="text-align:right;">
-634.0000
+557.5000
 </td>
 <td style="text-align:right;">
-59.00000
+76.22561
 </td>
 <td style="text-align:right;">
-41.00000
+15.90549
 </td>
 <td style="text-align:right;">
-9.00000
+45.33537
 </td>
 <td style="text-align:right;">
-175.0000
+222.6768
 </td>
 <td style="text-align:right;">
-135.00000
+49.41463
 </td>
 <td style="text-align:right;">
-169.0000
+49.42683
 </td>
 <td style="text-align:right;">
-135.0000
+178.37500
 </td>
 <td style="text-align:right;">
-NA
+8.9711649
 </td>
 <td style="text-align:right;">
-NA
+2.870867
 </td>
 <td style="text-align:right;">
-NA
+7.4499373
 </td>
 <td style="text-align:right;">
-NA
+47.364145
 </td>
 <td style="text-align:right;">
-NA
+8.9427853
 </td>
 <td style="text-align:right;">
-NA
+9.0965807
 </td>
 <td style="text-align:right;">
-NA
+4.2155638
 </td>
 <td style="text-align:right;">
-NA
+13.1423335
 </td>
 <td style="text-align:right;">
-NA
+9.121949
 </td>
 <td style="text-align:right;">
-NA
+9.1378105
 </td>
 <td style="text-align:right;">
-NA
+8.7429537
 </td>
 <td style="text-align:right;">
-NA
+64.541384
 </td>
 <td style="text-align:right;">
-NA
+9.356890
 </td>
 <td style="text-align:right;">
-NA
+2.2079022
 </td>
 <td style="text-align:right;">
-NA
+1.5013855
 </td>
 <td style="text-align:right;">
-NA
+26.146713
 </td>
 <td style="text-align:right;">
-NA
+6.597565
 </td>
 <td style="text-align:right;">
-NA
+6.599565
 </td>
 <td style="text-align:right;">
-NA
+21.939371
 </td>
 <td style="text-align:right;">
-917.1667
+1245.3117
 </td>
 <td style="text-align:right;">
-20.66667
+23.49298
 </td>
 <td style="text-align:right;">
-26.333333
+23.87862
 </td>
 <td style="text-align:right;">
-13.000000
+18.8700615
 </td>
 <td style="text-align:right;">
-36.00000
+33.66001
 </td>
 <td style="text-align:right;">
-63.50000
+72.37094
 </td>
 <td style="text-align:right;">
-39.500000
+36.21291
 </td>
 <td style="text-align:right;">
-34.33333
+39.93371
 </td>
 <td style="text-align:right;">
-20.778996
+145.216224
 </td>
 <td style="text-align:right;">
-1.2110601
+2.8967136
 </td>
 <td style="text-align:right;">
-1.3662601
+1.8436039
 </td>
 <td style="text-align:right;">
-0.6324555
+3.5358312
 </td>
 <td style="text-align:right;">
-2.280351
+17.995757
 </td>
 <td style="text-align:right;">
-0.8366600
+3.3922852
 </td>
 <td style="text-align:right;">
-1.0488088
+2.2528178
 </td>
 <td style="text-align:right;">
-0.8164966
+2.5691739
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1316079
+1986320
 </td>
 <td style="text-align:right;">
 NA
 </td>
 <td style="text-align:right;">
-59.00000
+164.00000
 </td>
 <td style="text-align:right;">
-73.00000
+38.00000
 </td>
 <td style="text-align:right;">
-265.0000
+361.0000
 </td>
 <td style="text-align:right;">
-7245.000
+2284.000
 </td>
 <td style="text-align:right;">
-204.0000
+223.0000
 </td>
 <td style="text-align:right;">
--73.000000
+116.0000000
 </td>
 <td style="text-align:right;">
-277.0000
+107.0000
 </td>
 <td style="text-align:right;">
-153.00000
+137.00000
 </td>
 <td style="text-align:right;">
--36.000000
+196.000000
 </td>
 <td style="text-align:right;">
-156.0000
+196.0000
 </td>
 <td style="text-align:right;">
--39.000000
+134.000000
 </td>
 <td style="text-align:right;">
-1045.0000
+1289.0000
 </td>
 <td style="text-align:right;">
-160.00000
+236.00000
 </td>
 <td style="text-align:right;">
-48.00000
+18.00000
 </td>
 <td style="text-align:right;">
-48.00000
+72.00000
 </td>
 <td style="text-align:right;">
-480.0000
+693.0000
 </td>
 <td style="text-align:right;">
-149.00000
+56.00000
 </td>
 <td style="text-align:right;">
-434.0000
+56.00000
 </td>
 <td style="text-align:right;">
-160.0000
+618.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -5876,28 +5867,28 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-762.0000
+842.0000
 </td>
 <td style="text-align:right;">
-25.00000
+24.00000
 </td>
 <td style="text-align:right;">
-18.000000
+25.00000
 </td>
 <td style="text-align:right;">
-14.000000
+13.0000000
 </td>
 <td style="text-align:right;">
-102.00000
+84.00000
 </td>
 <td style="text-align:right;">
-52.00000
+63.00000
 </td>
 <td style="text-align:right;">
-46.000000
+21.00000
 </td>
 <td style="text-align:right;">
-37.00000
+54.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -5926,407 +5917,407 @@ NA
 </tr>
 <tr>
 <td style="text-align:right;">
-951628
+1373162
 </td>
 <td style="text-align:right;">
-183
+197
 </td>
 <td style="text-align:right;">
-97.27670
+100.13636
 </td>
 <td style="text-align:right;">
-38.69660
+79.00000
 </td>
 <td style="text-align:right;">
-303.1675
+259.2727
 </td>
 <td style="text-align:right;">
-3181.583
+8036.545
 </td>
 <td style="text-align:right;">
-167.3617
+254.9545
 </td>
 <td style="text-align:right;">
-39.783981
+-50.0000000
 </td>
 <td style="text-align:right;">
-127.5655
+304.8636
 </td>
 <td style="text-align:right;">
-68.44903
+181.59091
 </td>
 <td style="text-align:right;">
-97.684466
+31.090909
 </td>
 <td style="text-align:right;">
-144.5801
+204.0000
 </td>
 <td style="text-align:right;">
-58.339806
+-12.000000
 </td>
 <td style="text-align:right;">
-1440.9320
+726.9545
 </td>
 <td style="text-align:right;">
-158.89320
+104.68182
 </td>
 <td style="text-align:right;">
-81.16990
+39.00000
 </td>
 <td style="text-align:right;">
-22.96359
+32.90909
 </td>
 <td style="text-align:right;">
-465.4199
+284.7727
 </td>
 <td style="text-align:right;">
-246.85922
+118.00000
 </td>
 <td style="text-align:right;">
-335.3762
+242.13636
 </td>
 <td style="text-align:right;">
-376.3786
+150.40909
 </td>
 <td style="text-align:right;">
-4.773318
+1.1668213
 </td>
 <td style="text-align:right;">
-1.7585905
+0.000000
 </td>
 <td style="text-align:right;">
-6.6904886
+0.4558423
 </td>
 <td style="text-align:right;">
-36.133848
+9.470391
 </td>
 <td style="text-align:right;">
-4.6085486
+1.2140947
 </td>
 <td style="text-align:right;">
-5.1709873
+1.0235326
 </td>
 <td style="text-align:right;">
-2.8758710
+0.3512501
 </td>
 <td style="text-align:right;">
-5.6097607
+1.2595952
 </td>
 <td style="text-align:right;">
-4.820622
+1.108800
 </td>
 <td style="text-align:right;">
-4.5956599
+1.2724180
 </td>
 <td style="text-align:right;">
-4.9357002
+1.0235326
 </td>
 <td style="text-align:right;">
-171.3306737
+12.021716
 </td>
 <td style="text-align:right;">
-18.7292984
+2.233647
 </td>
 <td style="text-align:right;">
-8.3564313
+0.6172134
 </td>
 <td style="text-align:right;">
-1.1698294
+0.9714540
 </td>
 <td style="text-align:right;">
-56.6295074
+5.698219
 </td>
 <td style="text-align:right;">
-25.623696
+1.877181
 </td>
 <td style="text-align:right;">
-41.839826
+5.138978
 </td>
 <td style="text-align:right;">
-46.861626
+3.018342
 </td>
 <td style="text-align:right;">
-468.7101
+1145.9222
 </td>
 <td style="text-align:right;">
-23.93448
+21.72622
 </td>
 <td style="text-align:right;">
-17.202994
+23.94524
 </td>
 <td style="text-align:right;">
-16.852865
+3.4841499
 </td>
 <td style="text-align:right;">
-149.33999
+32.28818
 </td>
 <td style="text-align:right;">
-54.55216
+60.15274
 </td>
 <td style="text-align:right;">
-36.391983
+39.85014
 </td>
 <td style="text-align:right;">
-46.41243
+36.19308
 </td>
 <td style="text-align:right;">
-83.179353
+64.361131
 </td>
 <td style="text-align:right;">
-2.7960323
+1.5272017
 </td>
 <td style="text-align:right;">
-2.4750250
+2.2437837
 </td>
 <td style="text-align:right;">
-2.5543684
+0.7985949
 </td>
 <td style="text-align:right;">
-38.508144
+10.864268
 </td>
 <td style="text-align:right;">
-2.7762622
+3.6961568
 </td>
 <td style="text-align:right;">
-2.5714244
+1.5321294
 </td>
 <td style="text-align:right;">
-3.6287941
+2.0960074
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1665327
+1717768
 </td>
 <td style="text-align:right;">
-1025
+NA
 </td>
 <td style="text-align:right;">
-102.75000
+206.00000
 </td>
 <td style="text-align:right;">
-69.46875
+103.00000
 </td>
 <td style="text-align:right;">
-282.3125
+422.0000
 </td>
 <td style="text-align:right;">
-6071.531
+4999.000
 </td>
 <td style="text-align:right;">
-237.4375
+331.0000
 </td>
 <td style="text-align:right;">
--8.562500
+89.0000000
 </td>
 <td style="text-align:right;">
-246.0625
+243.0000
 </td>
 <td style="text-align:right;">
-47.90625
+139.00000
 </td>
 <td style="text-align:right;">
-191.625000
+266.000000
 </td>
 <td style="text-align:right;">
-192.4688
+272.0000
 </td>
 <td style="text-align:right;">
-25.343750
+138.000000
 </td>
 <td style="text-align:right;">
-854.7188
+56.0000
 </td>
 <td style="text-align:right;">
-110.37500
+15.00000
 </td>
 <td style="text-align:right;">
-51.03125
+0.00000
 </td>
 <td style="text-align:right;">
-25.87500
+107.00000
 </td>
 <td style="text-align:right;">
-319.8750
+41.0000
 </td>
 <td style="text-align:right;">
-153.68750
+0.00000
 </td>
 <td style="text-align:right;">
-153.6875
+0.00000
 </td>
 <td style="text-align:right;">
-213.0625
+37.00000
 </td>
 <td style="text-align:right;">
-9.801251
+NA
 </td>
 <td style="text-align:right;">
-0.5070073
+NA
 </td>
 <td style="text-align:right;">
-1.6932027
+NA
 </td>
 <td style="text-align:right;">
-29.491370
+NA
 </td>
 <td style="text-align:right;">
-10.1566362
+NA
 </td>
 <td style="text-align:right;">
-9.6283771
+NA
 </td>
 <td style="text-align:right;">
-0.7156094
+NA
 </td>
 <td style="text-align:right;">
-9.4232361
+NA
 </td>
 <td style="text-align:right;">
-10.742589
+NA
 </td>
 <td style="text-align:right;">
-10.3112353
+NA
 </td>
 <td style="text-align:right;">
-9.4684855
+NA
 </td>
 <td style="text-align:right;">
-67.8243625
+NA
 </td>
 <td style="text-align:right;">
-8.7611680
+NA
 </td>
 <td style="text-align:right;">
-4.4029636
+NA
 </td>
 <td style="text-align:right;">
-1.4756081
+NA
 </td>
 <td style="text-align:right;">
-26.1086440
+NA
 </td>
 <td style="text-align:right;">
-13.294281
+NA
 </td>
 <td style="text-align:right;">
-13.294281
+NA
 </td>
 <td style="text-align:right;">
-17.159475
+NA
 </td>
 <td style="text-align:right;">
-860.7004
+1332.0000
 </td>
 <td style="text-align:right;">
-28.14372
+24.00000
 </td>
 <td style="text-align:right;">
-24.400810
+36.25000
 </td>
 <td style="text-align:right;">
-18.368421
+7.2500000
 </td>
 <td style="text-align:right;">
-49.91498
+27.75000
 </td>
 <td style="text-align:right;">
-62.89676
+77.50000
 </td>
 <td style="text-align:right;">
-39.336032
+31.25000
 </td>
 <td style="text-align:right;">
-36.29757
+33.00000
 </td>
 <td style="text-align:right;">
-61.672393
+9.273618
 </td>
 <td style="text-align:right;">
-2.3604223
+1.6329932
 </td>
 <td style="text-align:right;">
-2.6132133
+1.2583057
 </td>
 <td style="text-align:right;">
-2.2478059
+0.5000000
 </td>
 <td style="text-align:right;">
-17.741234
+3.304038
 </td>
 <td style="text-align:right;">
-2.4683534
+0.5773503
 </td>
 <td style="text-align:right;">
-1.5693687
+0.9574271
 </td>
 <td style="text-align:right;">
-3.2293209
+1.1547005
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1985908
+69713
 </td>
 <td style="text-align:right;">
-NA
+222
 </td>
 <td style="text-align:right;">
-184.00000
+127.00000
 </td>
 <td style="text-align:right;">
-71.00000
+88.00000
 </td>
 <td style="text-align:right;">
-378.0000
+290.0000
 </td>
 <td style="text-align:right;">
-3881.000
+7605.000
 </td>
 <td style="text-align:right;">
-292.0000
+286.0000
 </td>
 <td style="text-align:right;">
-103.000000
+-18.0000000
 </td>
 <td style="text-align:right;">
-189.0000
+304.0000
 </td>
 <td style="text-align:right;">
-136.00000
+53.00000
 </td>
 <td style="text-align:right;">
 233.000000
 </td>
 <td style="text-align:right;">
-240.0000
+233.0000
 </td>
 <td style="text-align:right;">
-135.000000
+27.000000
 </td>
 <td style="text-align:right;">
-953.0000
+645.0000
 </td>
 <td style="text-align:right;">
-197.00000
+72.00000
 </td>
 <td style="text-align:right;">
-9.00000
+35.00000
 </td>
 <td style="text-align:right;">
-86.00000
+19.00000
 </td>
 <td style="text-align:right;">
-590.0000
+202.0000
 </td>
 <td style="text-align:right;">
-30.00000
+113.00000
 </td>
 <td style="text-align:right;">
-35.0000
+113.00000
 </td>
 <td style="text-align:right;">
-499.0000
+179.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -6386,287 +6377,287 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-1017.0000
+1302.2000
 </td>
 <td style="text-align:right;">
-12.00000
+24.20000
 </td>
 <td style="text-align:right;">
-16.000000
+23.20000
 </td>
 <td style="text-align:right;">
-20.000000
+9.8000000
 </td>
 <td style="text-align:right;">
-20.00000
+23.60000
 </td>
 <td style="text-align:right;">
-60.00000
+66.60000
 </td>
 <td style="text-align:right;">
-9.000000
+35.20000
 </td>
 <td style="text-align:right;">
-75.00000
+42.20000
 </td>
 <td style="text-align:right;">
-NA
+21.522082
 </td>
 <td style="text-align:right;">
-NA
+0.8366600
 </td>
 <td style="text-align:right;">
-NA
+0.4472136
 </td>
 <td style="text-align:right;">
-NA
+1.0954451
 </td>
 <td style="text-align:right;">
-NA
+2.408319
 </td>
 <td style="text-align:right;">
-NA
+0.5477226
 </td>
 <td style="text-align:right;">
-NA
+0.8366600
 </td>
 <td style="text-align:right;">
-NA
+0.4472136
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1803757
+1192205
 </td>
 <td style="text-align:right;">
-687
+38
 </td>
 <td style="text-align:right;">
-83.80000
+105.00000
 </td>
 <td style="text-align:right;">
-59.60000
+68.00000
 </td>
 <td style="text-align:right;">
-186.2000
+299.0000
 </td>
 <td style="text-align:right;">
-9002.800
+5587.000
 </td>
 <td style="text-align:right;">
-235.4000
+229.0000
 </td>
 <td style="text-align:right;">
--84.800000
+2.0000000
 </td>
 <td style="text-align:right;">
-320.4000
+227.0000
 </td>
 <td style="text-align:right;">
-207.80000
+183.00000
 </td>
 <td style="text-align:right;">
--43.800000
+85.000000
 </td>
 <td style="text-align:right;">
-207.8000
+183.0000
 </td>
 <td style="text-align:right;">
--43.800000
+31.000000
 </td>
 <td style="text-align:right;">
-1329.2000
+727.0000
 </td>
 <td style="text-align:right;">
-254.20000
+69.00000
 </td>
 <td style="text-align:right;">
-38.40000
+46.00000
 </td>
 <td style="text-align:right;">
-64.80000
+11.00000
 </td>
 <td style="text-align:right;">
-736.6000
+205.0000
 </td>
 <td style="text-align:right;">
-134.00000
+148.00000
 </td>
 <td style="text-align:right;">
-736.6000
+205.00000
 </td>
 <td style="text-align:right;">
-134.0000
+166.00000
 </td>
 <td style="text-align:right;">
-4.324350
+NA
 </td>
 <td style="text-align:right;">
-0.5477226
+NA
 </td>
 <td style="text-align:right;">
-0.4472136
+NA
 </td>
 <td style="text-align:right;">
-24.488773
+NA
 </td>
 <td style="text-align:right;">
-4.5607017
+NA
 </td>
 <td style="text-align:right;">
-3.9623226
+NA
 </td>
 <td style="text-align:right;">
-0.8944272
+NA
 </td>
 <td style="text-align:right;">
-4.3243497
+NA
 </td>
 <td style="text-align:right;">
-3.962323
+NA
 </td>
 <td style="text-align:right;">
-4.3243497
+NA
 </td>
 <td style="text-align:right;">
-3.9623226
+NA
 </td>
 <td style="text-align:right;">
-87.7251389
+NA
 </td>
 <td style="text-align:right;">
-16.2388423
+NA
 </td>
 <td style="text-align:right;">
-3.1304952
+NA
 </td>
 <td style="text-align:right;">
-1.6431677
+NA
 </td>
 <td style="text-align:right;">
-48.9826500
+NA
 </td>
 <td style="text-align:right;">
-10.246951
+NA
 </td>
 <td style="text-align:right;">
-48.982650
+NA
 </td>
 <td style="text-align:right;">
-10.246951
+NA
 </td>
 <td style="text-align:right;">
-890.0000
+606.4000
 </td>
 <td style="text-align:right;">
-27.71233
+15.40000
 </td>
 <td style="text-align:right;">
-16.767123
+16.20000
 </td>
 <td style="text-align:right;">
-14.726027
+6.6000000
 </td>
 <td style="text-align:right;">
-107.89041
+26.20000
 </td>
 <td style="text-align:right;">
-54.00000
+64.00000
 </td>
 <td style="text-align:right;">
-37.383562
+47.20000
 </td>
 <td style="text-align:right;">
-46.06849
+36.40000
 </td>
 <td style="text-align:right;">
-34.460525
+20.132064
 </td>
 <td style="text-align:right;">
-1.6706573
+1.3416408
 </td>
 <td style="text-align:right;">
-1.0995018
+0.8366600
 </td>
 <td style="text-align:right;">
-1.6688342
+0.5477226
 </td>
 <td style="text-align:right;">
-12.763404
+1.483240
 </td>
 <td style="text-align:right;">
-0.9279607
+1.2247449
 </td>
 <td style="text-align:right;">
-1.4398123
+1.7888544
 </td>
 <td style="text-align:right;">
-1.1344206
+1.8165902
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-490220
+843257
 </td>
 <td style="text-align:right;">
-33
+522
 </td>
 <td style="text-align:right;">
-85.00000
+77.00000
 </td>
 <td style="text-align:right;">
-26.00000
+69.00000
 </td>
 <td style="text-align:right;">
-136.0000
+296.0000
 </td>
 <td style="text-align:right;">
-5928.000
+5745.000
 </td>
 <td style="text-align:right;">
-187.0000
+205.0000
 </td>
 <td style="text-align:right;">
--7.000000
+-29.0000000
 </td>
 <td style="text-align:right;">
-194.0000
+234.0000
 </td>
 <td style="text-align:right;">
-170.00000
+20.00000
 </td>
 <td style="text-align:right;">
-18.000000
+97.000000
 </td>
 <td style="text-align:right;">
-170.0000
+157.0000
 </td>
 <td style="text-align:right;">
-7.000000
+1.000000
 </td>
 <td style="text-align:right;">
-588.0000
+862.0000
 </td>
 <td style="text-align:right;">
-60.00000
+91.00000
 </td>
 <td style="text-align:right;">
-31.00000
+62.00000
 </td>
 <td style="text-align:right;">
-20.00000
+11.00000
 </td>
 <td style="text-align:right;">
-178.0000
+259.0000
 </td>
 <td style="text-align:right;">
-107.00000
+192.00000
 </td>
 <td style="text-align:right;">
-178.0000
+205.00000
 </td>
 <td style="text-align:right;">
-108.0000
+224.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -6726,457 +6717,457 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-629.7143
+707.6000
 </td>
 <td style="text-align:right;">
-20.71429
+20.40000
 </td>
 <td style="text-align:right;">
-10.142857
+21.60000
 </td>
 <td style="text-align:right;">
-6.000000
+14.2000000
 </td>
 <td style="text-align:right;">
-107.00000
+38.00000
 </td>
 <td style="text-align:right;">
-50.00000
+64.60000
 </td>
 <td style="text-align:right;">
-21.571429
+55.80000
 </td>
 <td style="text-align:right;">
-68.14286
+22.80000
 </td>
 <td style="text-align:right;">
-44.865407
+26.005769
 </td>
 <td style="text-align:right;">
-0.4879500
+1.1401754
 </td>
 <td style="text-align:right;">
-0.8997354
+0.5477226
 </td>
 <td style="text-align:right;">
-0.5773503
+0.4472136
 </td>
 <td style="text-align:right;">
-7.461010
+2.345208
 </td>
 <td style="text-align:right;">
-2.0000000
+0.5477226
 </td>
 <td style="text-align:right;">
-0.9759001
+0.8366600
 </td>
 <td style="text-align:right;">
-1.4638501
+0.4472136
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1796030
+145488
 </td>
 <td style="text-align:right;">
-382
+180
 </td>
 <td style="text-align:right;">
-115.00000
+52.16667
 </td>
 <td style="text-align:right;">
-49.00000
+68.00000
 </td>
 <td style="text-align:right;">
-173.0000
+199.0000
 </td>
 <td style="text-align:right;">
-8093.000
+9675.333
 </td>
 <td style="text-align:right;">
-266.0000
+232.8333
 </td>
 <td style="text-align:right;">
--17.000000
+-110.1666667
 </td>
 <td style="text-align:right;">
-283.0000
+343.0000
 </td>
 <td style="text-align:right;">
-50.00000
+182.83333
 </td>
 <td style="text-align:right;">
-123.000000
+-42.000000
 </td>
 <td style="text-align:right;">
-234.0000
+182.8333
 </td>
 <td style="text-align:right;">
-7.000000
+-78.333333
 </td>
 <td style="text-align:right;">
-1920.0000
+695.1667
 </td>
 <td style="text-align:right;">
-239.00000
+91.00000
 </td>
 <td style="text-align:right;">
-90.00000
+35.50000
 </td>
 <td style="text-align:right;">
-29.00000
+29.50000
 </td>
 <td style="text-align:right;">
-690.0000
+259.8333
 </td>
 <td style="text-align:right;">
-273.00000
+107.66667
 </td>
 <td style="text-align:right;">
-528.0000
+259.83333
 </td>
 <td style="text-align:right;">
-479.0000
+119.00000
 </td>
 <td style="text-align:right;">
-NA
+0.4082483
 </td>
 <td style="text-align:right;">
-NA
+0.000000
 </td>
 <td style="text-align:right;">
-NA
+0.0000000
 </td>
 <td style="text-align:right;">
-NA
+1.966384
 </td>
 <td style="text-align:right;">
-NA
+0.4082483
 </td>
 <td style="text-align:right;">
-NA
+0.4082483
 </td>
 <td style="text-align:right;">
-NA
+0.0000000
 </td>
 <td style="text-align:right;">
-NA
+0.4082483
 </td>
 <td style="text-align:right;">
-NA
+0.000000
 </td>
 <td style="text-align:right;">
-NA
+0.4082483
 </td>
 <td style="text-align:right;">
-NA
+0.5163978
 </td>
 <td style="text-align:right;">
-NA
+9.968283
 </td>
 <td style="text-align:right;">
-NA
+1.414214
 </td>
 <td style="text-align:right;">
-NA
+0.5477226
 </td>
 <td style="text-align:right;">
-NA
+0.5477226
 </td>
 <td style="text-align:right;">
-NA
+3.970726
 </td>
 <td style="text-align:right;">
-NA
+1.505545
 </td>
 <td style="text-align:right;">
-NA
+3.970726
 </td>
 <td style="text-align:right;">
-NA
+1.549193
 </td>
 <td style="text-align:right;">
-893.0000
+873.0865
 </td>
 <td style="text-align:right;">
-30.75000
+28.91346
 </td>
 <td style="text-align:right;">
-25.000000
+14.77885
 </td>
 <td style="text-align:right;">
-16.750000
+4.0384615
 </td>
 <td style="text-align:right;">
-137.50000
+134.70192
 </td>
 <td style="text-align:right;">
-52.25000
+54.99038
 </td>
 <td style="text-align:right;">
-36.750000
+38.80769
 </td>
 <td style="text-align:right;">
-38.75000
+46.50000
 </td>
 <td style="text-align:right;">
-12.884099
+32.696638
 </td>
 <td style="text-align:right;">
-0.5000000
+2.5508825
 </td>
 <td style="text-align:right;">
-0.0000000
+1.1983543
 </td>
 <td style="text-align:right;">
-0.9574271
+0.7363394
 </td>
 <td style="text-align:right;">
-5.259911
+28.825851
 </td>
 <td style="text-align:right;">
-0.9574271
+1.9131390
 </td>
 <td style="text-align:right;">
-0.5000000
+2.4695305
 </td>
 <td style="text-align:right;">
-0.5000000
+3.1221103
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-998764
+1581132
 </td>
 <td style="text-align:right;">
-50
+117
 </td>
 <td style="text-align:right;">
-190.00000
+37.71429
 </td>
 <td style="text-align:right;">
-29.00000
+75.00000
 </td>
 <td style="text-align:right;">
-162.0000
+191.1429
 </td>
 <td style="text-align:right;">
-5140.000
+11188.714
 </td>
 <td style="text-align:right;">
-286.0000
+244.0000
 </td>
 <td style="text-align:right;">
-109.000000
+-147.2857143
 </td>
 <td style="text-align:right;">
-177.0000
+391.2857
 </td>
 <td style="text-align:right;">
-187.00000
+188.00000
 </td>
 <td style="text-align:right;">
-253.000000
+-69.285714
 </td>
 <td style="text-align:right;">
-267.0000
+188.0000
 </td>
 <td style="text-align:right;">
-125.000000
+-114.142857
 </td>
 <td style="text-align:right;">
-415.0000
+509.8571
 </td>
 <td style="text-align:right;">
-83.00000
+69.71429
 </td>
 <td style="text-align:right;">
-1.00000
+23.28571
 </td>
 <td style="text-align:right;">
-76.00000
+34.42857
 </td>
 <td style="text-align:right;">
-201.0000
+197.1429
 </td>
 <td style="text-align:right;">
-5.00000
+70.71429
 </td>
 <td style="text-align:right;">
-15.0000
+197.14286
 </td>
 <td style="text-align:right;">
-133.0000
+76.42857
 </td>
 <td style="text-align:right;">
-NA
+1.1126973
 </td>
 <td style="text-align:right;">
-NA
+0.000000
 </td>
 <td style="text-align:right;">
-NA
+0.3779645
 </td>
 <td style="text-align:right;">
-NA
+12.311435
 </td>
 <td style="text-align:right;">
-NA
+1.4142136
 </td>
 <td style="text-align:right;">
-NA
+1.1126973
 </td>
 <td style="text-align:right;">
-NA
+0.4879500
 </td>
 <td style="text-align:right;">
-NA
+1.4142136
 </td>
 <td style="text-align:right;">
-NA
+1.112697
 </td>
 <td style="text-align:right;">
-NA
+1.4142136
 </td>
 <td style="text-align:right;">
-NA
+1.0690450
 </td>
 <td style="text-align:right;">
-NA
+32.364737
 </td>
 <td style="text-align:right;">
-NA
+4.151878
 </td>
 <td style="text-align:right;">
-NA
+1.1126973
 </td>
 <td style="text-align:right;">
-NA
+0.7867958
 </td>
 <td style="text-align:right;">
-NA
+11.781745
 </td>
 <td style="text-align:right;">
-NA
+4.309458
 </td>
 <td style="text-align:right;">
-NA
+11.781745
 </td>
 <td style="text-align:right;">
-NA
+4.076647
 </td>
 <td style="text-align:right;">
-1321.1667
+826.4057
 </td>
 <td style="text-align:right;">
-23.58333
+32.88679
 </td>
 <td style="text-align:right;">
-32.833333
+20.57547
 </td>
 <td style="text-align:right;">
-10.666667
+0.9150943
 </td>
 <td style="text-align:right;">
-18.75000
+92.36792
 </td>
 <td style="text-align:right;">
-77.83333
+61.25472
 </td>
 <td style="text-align:right;">
-39.166667
+42.41509
 </td>
 <td style="text-align:right;">
-28.00000
+37.00943
 </td>
 <td style="text-align:right;">
-41.908631
+57.202194
 </td>
 <td style="text-align:right;">
-1.0836247
+2.0485570
 </td>
 <td style="text-align:right;">
-1.1146409
+1.1376510
 </td>
 <td style="text-align:right;">
-0.7784989
+1.0430534
 </td>
 <td style="text-align:right;">
-1.422226
+8.579406
 </td>
 <td style="text-align:right;">
-0.7177406
+1.4609933
 </td>
 <td style="text-align:right;">
-0.8348471
+1.5173155
 </td>
 <td style="text-align:right;">
-0.9534626
+2.0447158
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1203804
+389930
 </td>
 <td style="text-align:right;">
-27
+NA
 </td>
 <td style="text-align:right;">
-99.00000
+84.00000
 </td>
 <td style="text-align:right;">
-62.00000
+33.00000
 </td>
 <td style="text-align:right;">
-287.0000
+165.0000
 </td>
 <td style="text-align:right;">
-5399.000
+5841.000
 </td>
 <td style="text-align:right;">
-215.0000
+191.0000
 </td>
 <td style="text-align:right;">
-1.000000
+-8.0000000
 </td>
 <td style="text-align:right;">
-214.0000
+198.0000
 </td>
 <td style="text-align:right;">
-175.00000
+168.00000
 </td>
 <td style="text-align:right;">
-77.000000
+8.000000
 </td>
 <td style="text-align:right;">
-175.0000
+168.0000
 </td>
 <td style="text-align:right;">
-27.000000
+8.000000
 </td>
 <td style="text-align:right;">
-802.0000
+556.0000
 </td>
 <td style="text-align:right;">
-79.00000
+56.00000
 </td>
 <td style="text-align:right;">
-48.00000
+31.00000
 </td>
 <td style="text-align:right;">
-15.00000
+18.00000
 </td>
 <td style="text-align:right;">
-231.0000
+166.0000
 </td>
 <td style="text-align:right;">
-155.00000
+105.00000
 </td>
 <td style="text-align:right;">
-231.0000
+166.00000
 </td>
 <td style="text-align:right;">
-169.0000
+105.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -7236,287 +7227,287 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-432.8333
+824.7500
 </td>
 <td style="text-align:right;">
-19.00000
+19.50000
 </td>
 <td style="text-align:right;">
-2.166667
+18.50000
 </td>
 <td style="text-align:right;">
-5.500000
+8.5000000
 </td>
 <td style="text-align:right;">
-79.83333
+65.50000
 </td>
 <td style="text-align:right;">
-44.16667
+61.75000
 </td>
 <td style="text-align:right;">
-9.666667
+25.25000
 </td>
 <td style="text-align:right;">
-88.16667
+56.00000
 </td>
 <td style="text-align:right;">
-59.334363
+43.851074
 </td>
 <td style="text-align:right;">
-1.4142136
+1.0000000
 </td>
 <td style="text-align:right;">
-0.4082483
+0.5773503
 </td>
 <td style="text-align:right;">
-0.5477226
+1.0000000
 </td>
 <td style="text-align:right;">
-10.048217
+4.123106
 </td>
 <td style="text-align:right;">
-0.7527727
+0.5000000
 </td>
 <td style="text-align:right;">
-0.8164966
+1.5000000
 </td>
 <td style="text-align:right;">
-0.9831921
+1.4142136
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-775535
+718409
 </td>
 <td style="text-align:right;">
-NA
+562
 </td>
 <td style="text-align:right;">
-97.00000
+103.00000
 </td>
 <td style="text-align:right;">
-36.65556
+77.00000
 </td>
 <td style="text-align:right;">
-198.7667
+309.0000
 </td>
 <td style="text-align:right;">
-5202.522
+5944.000
 </td>
 <td style="text-align:right;">
-195.7222
+244.0000
 </td>
 <td style="text-align:right;">
-10.944444
+-6.0000000
 </td>
 <td style="text-align:right;">
-184.8667
+250.0000
 </td>
 <td style="text-align:right;">
-156.55556
+117.00000
 </td>
 <td style="text-align:right;">
-69.000000
+29.000000
 </td>
 <td style="text-align:right;">
-172.1111
+189.0000
 </td>
 <td style="text-align:right;">
-28.055556
+27.000000
 </td>
 <td style="text-align:right;">
-771.8111
+709.0000
 </td>
 <td style="text-align:right;">
-80.72222
+83.00000
 </td>
 <td style="text-align:right;">
-41.41111
+40.00000
 </td>
 <td style="text-align:right;">
-22.55556
+20.00000
 </td>
 <td style="text-align:right;">
-240.1556
+223.0000
 </td>
 <td style="text-align:right;">
-133.45556
+126.00000
 </td>
 <td style="text-align:right;">
-233.9222
+195.00000
 </td>
 <td style="text-align:right;">
-147.4889
+148.00000
 </td>
 <td style="text-align:right;">
-0.000000
+NA
 </td>
 <td style="text-align:right;">
-0.7667399
+NA
 </td>
 <td style="text-align:right;">
-3.1159250
+NA
 </td>
 <td style="text-align:right;">
-14.984807
+NA
 </td>
 <td style="text-align:right;">
-0.5614543
+NA
 </td>
 <td style="text-align:right;">
-0.2303447
+NA
 </td>
 <td style="text-align:right;">
-0.6902206
+NA
 </td>
 <td style="text-align:right;">
-0.4996878
+NA
 </td>
 <td style="text-align:right;">
-0.000000
+NA
 </td>
 <td style="text-align:right;">
-0.3160303
+NA
 </td>
 <td style="text-align:right;">
-0.2303447
+NA
 </td>
 <td style="text-align:right;">
-7.6465377
+NA
 </td>
 <td style="text-align:right;">
-0.4747034
+NA
 </td>
 <td style="text-align:right;">
-0.6852285
+NA
 </td>
 <td style="text-align:right;">
-0.4996878
+NA
 </td>
 <td style="text-align:right;">
-1.4371563
+NA
 </td>
 <td style="text-align:right;">
-1.703672
+NA
 </td>
 <td style="text-align:right;">
-1.559514
+NA
 </td>
 <td style="text-align:right;">
-1.921168
+NA
 </td>
 <td style="text-align:right;">
-781.9368
+830.0000
 </td>
 <td style="text-align:right;">
-21.41214
+19.20000
 </td>
 <td style="text-align:right;">
-19.503161
+19.60000
 </td>
 <td style="text-align:right;">
-11.867257
+14.6000000
 </td>
 <td style="text-align:right;">
-76.05815
+33.40000
 </td>
 <td style="text-align:right;">
-66.99621
+60.20000
 </td>
 <td style="text-align:right;">
-32.236410
+33.00000
 </td>
 <td style="text-align:right;">
-48.23388
+47.40000
 </td>
 <td style="text-align:right;">
-65.897185
+9.137833
 </td>
 <td style="text-align:right;">
-3.5719802
+0.8366600
 </td>
 <td style="text-align:right;">
-2.6851071
+1.8165902
 </td>
 <td style="text-align:right;">
-3.4668524
+1.1401754
 </td>
 <td style="text-align:right;">
-22.104222
+1.816590
 </td>
 <td style="text-align:right;">
-1.5779287
+1.4832397
 </td>
 <td style="text-align:right;">
-3.1867589
+1.4142136
 </td>
 <td style="text-align:right;">
-4.5277949
+1.3416408
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1947920
+1013996
 </td>
 <td style="text-align:right;">
-NA
+222
 </td>
 <td style="text-align:right;">
-95.00000
+54.00000
 </td>
 <td style="text-align:right;">
-113.00000
+63.00000
 </td>
 <td style="text-align:right;">
-277.0000
+212.0000
 </td>
 <td style="text-align:right;">
-9919.000
+7983.000
 </td>
 <td style="text-align:right;">
-316.0000
+212.0000
 </td>
 <td style="text-align:right;">
--92.000000
+-86.0000000
 </td>
 <td style="text-align:right;">
-409.0000
+297.0000
 </td>
 <td style="text-align:right;">
-125.00000
+161.00000
 </td>
 <td style="text-align:right;">
--25.000000
+-55.000000
 </td>
 <td style="text-align:right;">
-235.0000
+162.0000
 </td>
 <td style="text-align:right;">
--40.000000
+-55.000000
 </td>
 <td style="text-align:right;">
-176.0000
+706.0000
 </td>
 <td style="text-align:right;">
-22.00000
+85.00000
 </td>
 <td style="text-align:right;">
-8.00000
+30.00000
 </td>
 <td style="text-align:right;">
-31.00000
+30.00000
 </td>
 <td style="text-align:right;">
-62.0000
+255.0000
 </td>
 <td style="text-align:right;">
-26.00000
+102.00000
 </td>
 <td style="text-align:right;">
-40.0000
+237.00000
 </td>
 <td style="text-align:right;">
-26.0000
+102.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -7576,627 +7567,627 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-1403.2000
+638.0000
 </td>
 <td style="text-align:right;">
-19.00000
+24.66667
 </td>
 <td style="text-align:right;">
-15.400000
+11.00000
 </td>
 <td style="text-align:right;">
-14.800000
+9.0000000
 </td>
 <td style="text-align:right;">
-11.00000
+80.50000
 </td>
 <td style="text-align:right;">
-79.20000
+54.50000
 </td>
 <td style="text-align:right;">
-35.600000
+33.33333
 </td>
 <td style="text-align:right;">
-48.80000
+55.50000
 </td>
 <td style="text-align:right;">
-4.658326
+37.459311
 </td>
 <td style="text-align:right;">
-0.7071068
+1.0327956
 </td>
 <td style="text-align:right;">
 0.8944272
 </td>
 <td style="text-align:right;">
-1.7888544
+0.6324555
 </td>
 <td style="text-align:right;">
-0.000000
+5.128353
 </td>
 <td style="text-align:right;">
-0.4472136
+0.5477226
 </td>
 <td style="text-align:right;">
-0.5477226
+0.5163978
 </td>
 <td style="text-align:right;">
-0.4472136
+1.0488088
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1456091
+117514
 </td>
 <td style="text-align:right;">
-592
+NA
 </td>
 <td style="text-align:right;">
-69.00000
+100.05199
 </td>
 <td style="text-align:right;">
-75.00000
+68.87348
 </td>
 <td style="text-align:right;">
-263.0000
+307.4922
 </td>
 <td style="text-align:right;">
-7444.000
+5434.270
 </td>
 <td style="text-align:right;">
-219.0000
+222.9445
 </td>
 <td style="text-align:right;">
--67.000000
+-0.3414211
 </td>
 <td style="text-align:right;">
-286.0000
+223.3085
 </td>
 <td style="text-align:right;">
-166.00000
+91.71231
 </td>
 <td style="text-align:right;">
--28.000000
+80.187175
 </td>
 <td style="text-align:right;">
-169.0000
+176.7868
 </td>
 <td style="text-align:right;">
--32.000000
+28.663778
 </td>
 <td style="text-align:right;">
-808.0000
+806.6915
 </td>
 <td style="text-align:right;">
-99.00000
+75.59099
 </td>
 <td style="text-align:right;">
-47.00000
+51.86482
 </td>
 <td style="text-align:right;">
-24.00000
+10.01040
 </td>
 <td style="text-align:right;">
-281.0000
+223.3778
 </td>
 <td style="text-align:right;">
-147.00000
+169.99133
 </td>
 <td style="text-align:right;">
-253.0000
+218.50953
 </td>
 <td style="text-align:right;">
-174.0000
+186.29636
 </td>
 <td style="text-align:right;">
-NA
+1.5955886
 </td>
 <td style="text-align:right;">
-NA
+0.332719
 </td>
 <td style="text-align:right;">
-NA
+0.5003730
 </td>
 <td style="text-align:right;">
-NA
+14.062967
 </td>
 <td style="text-align:right;">
-NA
+1.3477253
 </td>
 <td style="text-align:right;">
-NA
+1.7528449
 </td>
 <td style="text-align:right;">
-NA
+0.5668633
 </td>
 <td style="text-align:right;">
-NA
+62.1180027
 </td>
 <td style="text-align:right;">
-NA
+1.585407
 </td>
 <td style="text-align:right;">
-NA
+1.4806506
 </td>
 <td style="text-align:right;">
-NA
+1.7132921
 </td>
 <td style="text-align:right;">
-NA
+41.571121
 </td>
 <td style="text-align:right;">
-NA
+3.985972
 </td>
 <td style="text-align:right;">
-NA
+2.6677914
 </td>
 <td style="text-align:right;">
-NA
+0.3534002
 </td>
 <td style="text-align:right;">
-NA
+11.605766
 </td>
 <td style="text-align:right;">
-NA
+9.059119
 </td>
 <td style="text-align:right;">
-NA
+12.453399
 </td>
 <td style="text-align:right;">
-NA
+9.849944
 </td>
 <td style="text-align:right;">
-732.3333
+675.8064
 </td>
 <td style="text-align:right;">
-21.50000
+13.91451
 </td>
 <td style="text-align:right;">
-18.666667
+13.87350
 </td>
 <td style="text-align:right;">
-16.000000
+8.4245160
 </td>
 <td style="text-align:right;">
-45.33333
+19.73961
 </td>
 <td style="text-align:right;">
-53.83333
+62.81977
 </td>
 <td style="text-align:right;">
-44.666667
+64.22330
 </td>
 <td style="text-align:right;">
-36.83333
+21.87242
 </td>
 <td style="text-align:right;">
-26.409594
+84.695727
 </td>
 <td style="text-align:right;">
-1.7606817
+1.4642037
 </td>
 <td style="text-align:right;">
-0.8164966
+1.5854461
 </td>
 <td style="text-align:right;">
-0.6324555
+1.2474760
 </td>
 <td style="text-align:right;">
-7.840068
+4.989717
 </td>
 <td style="text-align:right;">
-0.7527727
+5.4984385
 </td>
 <td style="text-align:right;">
-0.8164966
+8.4684489
 </td>
 <td style="text-align:right;">
-1.1690452
+9.3935629
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-466498
+950578
 </td>
 <td style="text-align:right;">
-84
+199
 </td>
 <td style="text-align:right;">
-80.00000
+95.28571
 </td>
 <td style="text-align:right;">
-49.00000
+23.00000
 </td>
 <td style="text-align:right;">
-236.0000
+222.7143
 </td>
 <td style="text-align:right;">
-5644.000
+2855.429
 </td>
 <td style="text-align:right;">
-194.0000
+150.4286
 </td>
 <td style="text-align:right;">
--15.000000
+47.4285714
 </td>
 <td style="text-align:right;">
-209.0000
+102.8571
 </td>
 <td style="text-align:right;">
-64.00000
+89.28571
 </td>
 <td style="text-align:right;">
-50.000000
+93.142857
 </td>
 <td style="text-align:right;">
-161.0000
+138.2857
 </td>
 <td style="text-align:right;">
-6.000000
+60.428571
 </td>
 <td style="text-align:right;">
-819.0000
+1751.2857
 </td>
 <td style="text-align:right;">
-91.00000
+193.85714
 </td>
 <td style="text-align:right;">
-45.00000
+99.00000
 </td>
 <td style="text-align:right;">
-22.00000
+22.28571
 </td>
 <td style="text-align:right;">
-271.0000
+576.8571
 </td>
 <td style="text-align:right;">
-146.00000
+308.28571
 </td>
 <td style="text-align:right;">
-217.0000
+401.14286
 </td>
 <td style="text-align:right;">
-166.0000
+460.85714
 </td>
 <td style="text-align:right;">
-NA
+3.1471832
 </td>
 <td style="text-align:right;">
-NA
+0.000000
 </td>
 <td style="text-align:right;">
-NA
+0.7559289
 </td>
 <td style="text-align:right;">
-NA
+7.849780
 </td>
 <td style="text-align:right;">
-NA
+2.8784917
 </td>
 <td style="text-align:right;">
-NA
+3.2586880
 </td>
 <td style="text-align:right;">
-NA
+0.3779645
 </td>
 <td style="text-align:right;">
-NA
+3.1471832
 </td>
 <td style="text-align:right;">
-NA
+3.023716
 </td>
 <td style="text-align:right;">
-NA
+3.1471832
 </td>
 <td style="text-align:right;">
-NA
+3.2586880
 </td>
 <td style="text-align:right;">
-NA
+94.547544
 </td>
 <td style="text-align:right;">
-NA
+10.286376
 </td>
 <td style="text-align:right;">
-NA
+4.3969687
 </td>
 <td style="text-align:right;">
-NA
+0.4879500
 </td>
 <td style="text-align:right;">
-NA
+30.721483
 </td>
 <td style="text-align:right;">
-NA
+13.659115
 </td>
 <td style="text-align:right;">
-NA
+22.835853
 </td>
 <td style="text-align:right;">
-NA
+26.397150
 </td>
 <td style="text-align:right;">
-539.1429
+406.3402
 </td>
 <td style="text-align:right;">
-11.42857
+29.03093
 </td>
 <td style="text-align:right;">
-4.571429
+13.12371
 </td>
 <td style="text-align:right;">
-7.428571
+16.8969072
 </td>
 <td style="text-align:right;">
-64.57143
+275.49485
 </td>
 <td style="text-align:right;">
-52.85714
+50.25773
 </td>
 <td style="text-align:right;">
-13.857143
+35.22680
 </td>
 <td style="text-align:right;">
-81.00000
+51.69072
 </td>
 <td style="text-align:right;">
-22.341505
+29.958613
 </td>
 <td style="text-align:right;">
-0.7867958
+2.2933491
 </td>
 <td style="text-align:right;">
-0.5345225
+2.0271991
 </td>
 <td style="text-align:right;">
-0.5345225
+1.6862467
 </td>
 <td style="text-align:right;">
-3.552330
+18.086668
 </td>
 <td style="text-align:right;">
-0.6900656
+1.1206244
 </td>
 <td style="text-align:right;">
-1.0690450
+2.2707614
 </td>
 <td style="text-align:right;">
-1.6329932
+2.2143510
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-910522
+782863
 </td>
 <td style="text-align:right;">
-34
+253
 </td>
 <td style="text-align:right;">
-89.96809
+86.95789
 </td>
 <td style="text-align:right;">
-60.78723
+68.00000
 </td>
 <td style="text-align:right;">
-257.8085
+277.7614
 </td>
 <td style="text-align:right;">
-6233.691
+6239.361
 </td>
 <td style="text-align:right;">
-219.3723
+219.5509
 </td>
 <td style="text-align:right;">
--16.382979
+-24.2771930
 </td>
 <td style="text-align:right;">
-235.8298
+243.8807
 </td>
 <td style="text-align:right;">
-172.15957
+166.33333
 </td>
 <td style="text-align:right;">
-9.500000
+4.694737
 </td>
 <td style="text-align:right;">
-177.7340
+173.9053
 </td>
 <td style="text-align:right;">
-8.648936
+4.694737
 </td>
 <td style="text-align:right;">
-618.7872
+708.5053
 </td>
 <td style="text-align:right;">
-68.40426
+80.55789
 </td>
 <td style="text-align:right;">
-34.88298
+43.41404
 </td>
 <td style="text-align:right;">
-18.46809
+17.39298
 </td>
 <td style="text-align:right;">
-201.6596
+228.2456
 </td>
 <td style="text-align:right;">
-119.74468
+140.49825
 </td>
 <td style="text-align:right;">
-191.5106
+204.60702
 </td>
 <td style="text-align:right;">
-119.7872
+140.49825
 </td>
 <td style="text-align:right;">
-0.176716
+4.6137786
 </td>
 <td style="text-align:right;">
-0.4114579
+0.000000
 </td>
 <td style="text-align:right;">
-0.8585634
+0.6217180
 </td>
 <td style="text-align:right;">
-6.864317
+20.046230
 </td>
 <td style="text-align:right;">
-0.5676596
+4.8172637
 </td>
 <td style="text-align:right;">
-0.4887197
+4.4258769
 </td>
 <td style="text-align:right;">
-0.5799202
+0.6278284
 </td>
 <td style="text-align:right;">
-0.4930308
+8.5866202
 </td>
 <td style="text-align:right;">
-4.160102
+4.413664
 </td>
 <td style="text-align:right;">
-0.4442108
+4.8128504
 </td>
 <td style="text-align:right;">
-0.4798621
+4.4136640
 </td>
 <td style="text-align:right;">
-9.2908469
+93.590343
 </td>
 <td style="text-align:right;">
-1.1669199
+10.422128
 </td>
 <td style="text-align:right;">
-0.6020821
+5.8397448
 </td>
 <td style="text-align:right;">
-0.5016559
+1.1475417
 </td>
 <td style="text-align:right;">
-3.3873680
+30.036527
 </td>
 <td style="text-align:right;">
-1.911685
+19.164710
 </td>
 <td style="text-align:right;">
-3.130649
+27.046126
 </td>
 <td style="text-align:right;">
-1.905692
+19.164710
 </td>
 <td style="text-align:right;">
-584.1868
+756.6105
 </td>
 <td style="text-align:right;">
-19.19886
+19.62710
 </td>
 <td style="text-align:right;">
-9.005682
+18.85049
 </td>
 <td style="text-align:right;">
-7.257812
+13.4865574
 </td>
 <td style="text-align:right;">
-81.09162
+43.06798
 </td>
 <td style="text-align:right;">
-56.05043
+56.81290
 </td>
 <td style="text-align:right;">
-18.286932
+48.21290
 </td>
 <td style="text-align:right;">
-72.61861
+32.93202
 </td>
 <td style="text-align:right;">
-91.020105
+90.716429
 </td>
 <td style="text-align:right;">
-3.8092692
+2.6515227
 </td>
 <td style="text-align:right;">
-2.7163924
+2.5869124
 </td>
 <td style="text-align:right;">
-0.9720376
+2.8190946
 </td>
 <td style="text-align:right;">
-23.877101
+15.007765
 </td>
 <td style="text-align:right;">
-3.5887984
+5.7275224
 </td>
 <td style="text-align:right;">
-2.6472391
+4.0282300
 </td>
 <td style="text-align:right;">
-4.3236340
+5.4622739
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-1252128
+1919062
 </td>
 <td style="text-align:right;">
-NA
+2004
 </td>
 <td style="text-align:right;">
-91.00000
+31.00000
 </td>
 <td style="text-align:right;">
-66.00000
+109.00000
 </td>
 <td style="text-align:right;">
-262.0000
+316.0000
 </td>
 <td style="text-align:right;">
-6703.000
+7955.000
 </td>
 <td style="text-align:right;">
-229.0000
+228.0000
 </td>
 <td style="text-align:right;">
--23.000000
+-117.0000000
 </td>
 <td style="text-align:right;">
-252.0000
+346.0000
 </td>
 <td style="text-align:right;">
-180.00000
+93.00000
 </td>
 <td style="text-align:right;">
-4.000000
+-63.000000
 </td>
 <td style="text-align:right;">
-184.0000
+150.0000
 </td>
 <td style="text-align:right;">
-4.000000
+-73.000000
 </td>
 <td style="text-align:right;">
-513.0000
+441.0000
 </td>
 <td style="text-align:right;">
-61.00000
+78.00000
 </td>
 <td style="text-align:right;">
-29.00000
+20.00000
 </td>
 <td style="text-align:right;">
-24.00000
+44.00000
 </td>
 <td style="text-align:right;">
-182.0000
+217.0000
 </td>
 <td style="text-align:right;">
-93.00000
+66.00000
 </td>
 <td style="text-align:right;">
-165.0000
+117.00000
 </td>
 <td style="text-align:right;">
-93.0000
+76.00000
 </td>
 <td style="text-align:right;">
 NA
@@ -8256,222 +8247,222 @@ NA
 NA
 </td>
 <td style="text-align:right;">
-664.0000
+1131.0000
 </td>
 <td style="text-align:right;">
-24.00000
+27.80000
 </td>
 <td style="text-align:right;">
-15.000000
+12.00000
 </td>
 <td style="text-align:right;">
-10.000000
+21.2000000
 </td>
 <td style="text-align:right;">
-95.00000
+48.20000
 </td>
 <td style="text-align:right;">
-58.00000
+58.60000
 </td>
 <td style="text-align:right;">
-26.000000
+36.40000
 </td>
 <td style="text-align:right;">
-59.00000
+51.60000
 </td>
 <td style="text-align:right;">
-NA
+35.454196
 </td>
 <td style="text-align:right;">
-NA
+0.8366600
 </td>
 <td style="text-align:right;">
-NA
+0.7071068
 </td>
 <td style="text-align:right;">
-NA
+2.9495762
 </td>
 <td style="text-align:right;">
-NA
+2.167948
 </td>
 <td style="text-align:right;">
-NA
+0.5477226
 </td>
 <td style="text-align:right;">
-NA
+0.5477226
 </td>
 <td style="text-align:right;">
-NA
+1.1401754
 </td>
 </tr>
 <tr>
 <td style="text-align:right;">
-779809
+439645
 </td>
 <td style="text-align:right;">
-87
+16
 </td>
 <td style="text-align:right;">
-89.68977
+84.00000
 </td>
 <td style="text-align:right;">
-64.75908
+24.00000
 </td>
 <td style="text-align:right;">
-276.5330
+127.0000
 </td>
 <td style="text-align:right;">
-6010.749
+5801.000
 </td>
 <td style="text-align:right;">
-218.4373
+183.0000
 </td>
 <td style="text-align:right;">
--15.191419
+-4.0000000
 </td>
 <td style="text-align:right;">
-233.5974
+187.0000
 </td>
 <td style="text-align:right;">
-171.05776
+108.00000
 </td>
 <td style="text-align:right;">
-66.966997
+49.000000
 </td>
 <td style="text-align:right;">
-174.1155
+167.0000
 </td>
 <td style="text-align:right;">
-10.978548
+9.000000
 </td>
 <td style="text-align:right;">
-788.2426
+699.0000
 </td>
 <td style="text-align:right;">
-78.61716
+83.00000
 </td>
 <td style="text-align:right;">
-49.20792
+38.00000
 </td>
 <td style="text-align:right;">
-15.05281
+24.00000
 </td>
 <td style="text-align:right;">
-233.3251
+239.0000
 </td>
 <td style="text-align:right;">
-158.39274
+119.00000
 </td>
 <td style="text-align:right;">
-232.7343
+198.00000
 </td>
 <td style="text-align:right;">
-168.6700
+132.00000
 </td>
 <td style="text-align:right;">
-1.372502
+NA
 </td>
 <td style="text-align:right;">
-0.4279976
+NA
 </td>
 <td style="text-align:right;">
-0.5123918
+NA
 </td>
 <td style="text-align:right;">
-14.772762
+NA
 </td>
 <td style="text-align:right;">
-1.3805719
+NA
 </td>
 <td style="text-align:right;">
-1.3964509
+NA
 </td>
 <td style="text-align:right;">
-0.5659130
+NA
 </td>
 <td style="text-align:right;">
-3.2643779
+NA
 </td>
 <td style="text-align:right;">
-6.024926
+NA
 </td>
 <td style="text-align:right;">
-1.4164991
+NA
 </td>
 <td style="text-align:right;">
-1.3586096
+NA
 </td>
 <td style="text-align:right;">
-61.0301557
+NA
 </td>
 <td style="text-align:right;">
-6.8021851
+NA
 </td>
 <td style="text-align:right;">
-3.5795106
+NA
 </td>
 <td style="text-align:right;">
-0.8235282
+NA
 </td>
 <td style="text-align:right;">
-19.6866762
+NA
 </td>
 <td style="text-align:right;">
-10.953133
+NA
 </td>
 <td style="text-align:right;">
-19.241837
+NA
 </td>
 <td style="text-align:right;">
-12.760864
+NA
 </td>
 <td style="text-align:right;">
-573.9951
+710.7500
 </td>
 <td style="text-align:right;">
-15.82623
+20.37500
 </td>
 <td style="text-align:right;">
-5.616689
+11.87500
 </td>
 <td style="text-align:right;">
-7.527284
+7.2500000
 </td>
 <td style="text-align:right;">
-57.46521
+125.00000
 </td>
 <td style="text-align:right;">
-48.99538
+51.75000
 </td>
 <td style="text-align:right;">
-22.357928
+20.12500
 </td>
 <td style="text-align:right;">
-71.89888
+68.00000
 </td>
 <td style="text-align:right;">
-58.083351
+42.811047
 </td>
 <td style="text-align:right;">
-2.5895106
+0.7440238
 </td>
 <td style="text-align:right;">
-2.2557509
+0.8345230
 </td>
 <td style="text-align:right;">
-1.4731410
+0.8864053
 </td>
 <td style="text-align:right;">
-17.054369
+14.362650
 </td>
 <td style="text-align:right;">
-5.6925041
+0.8864053
 </td>
 <td style="text-align:right;">
-6.8538879
+0.8345230
 </td>
 <td style="text-align:right;">
-8.5774418
+0.7559289
 </td>
 </tr>
 </tbody>
@@ -8525,40 +8516,40 @@ sessionInfo()</code></pre>
 ## LAPACK: /usr/lib/libopenblasp-r0.2.18.so
 ## 
 ## locale:
-##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
-##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
-##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
-##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
-##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
-## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
+##  [1] LC_CTYPE=en_US.UTF-8          LC_NUMERIC=C                  LC_TIME=en_US.UTF-8          
+##  [4] LC_COLLATE=en_US.UTF-8        LC_MONETARY=en_US.UTF-8       LC_MESSAGES=en_US.UTF-8      
+##  [7] LC_PAPER=en_US.UTF-8          LC_NAME=en_US.UTF-8           LC_ADDRESS=en_US.UTF-8       
+## [10] LC_TELEPHONE=en_US.UTF-8      LC_MEASUREMENT=en_US.UTF-8    LC_IDENTIFICATION=en_US.UTF-8
 ## 
 ## attached base packages:
-## [1] grid      stats     graphics  grDevices utils     datasets  methods  
-## [8] base     
+## [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
 ## 
 ## other attached packages:
-##  [1] rgeos_0.5-5       rgdal_1.5-18      sf_0.9-3          sp_1.4-4         
-##  [5] downloader_0.4    gridExtra_2.3     viridis_0.5.1     viridisLite_0.3.0
-##  [9] kableExtra_1.3.1  knitr_1.30        forcats_0.5.0     stringr_1.4.0    
-## [13] dplyr_1.0.2       purrr_0.3.4       readr_1.4.0       tidyr_1.1.2      
-## [17] tibble_3.0.1      ggplot2_3.3.0     tidyverse_1.3.0  
+##  [1] downloader_0.4      gridExtra_2.3       dggridR_2.0.3       rnaturalearth_0.2.0 sf_0.9-3           
+##  [6] elevatr_0.2.0       rworldmap_1.3-6     raster_3.0-7        rgeos_0.5-5         rgdal_1.5-18       
+## [11] sp_1.4-4            kableExtra_1.3.1    knitr_1.30          xlsx_0.6.5          viridis_0.5.1      
+## [16] viridisLite_0.3.0   forcats_0.5.0       stringr_1.4.0       dplyr_1.0.2         purrr_0.3.4        
+## [21] readr_1.4.0         tidyr_1.1.2         tibble_3.0.1        ggplot2_3.3.0       tidyverse_1.3.0    
 ## 
 ## loaded via a namespace (and not attached):
-##  [1] Rcpp_1.0.5         lubridate_1.7.9    lattice_0.20-41    class_7.3-17      
-##  [5] utf8_1.1.4         assertthat_0.2.1   digest_0.6.25      R6_2.5.0          
-##  [9] cellranger_1.1.0   backports_1.2.0    reprex_0.3.0       evaluate_0.14     
-## [13] e1071_1.7-4        highr_0.8          httr_1.4.2         pillar_1.4.3      
-## [17] rlang_0.4.8        readxl_1.3.1       rstudioapi_0.11    rmarkdown_2.5     
-## [21] labeling_0.4.2     webshot_0.5.2      munsell_0.5.0      broom_0.7.0       
-## [25] compiler_3.6.3     modelr_0.1.6       xfun_0.19          pkgconfig_2.0.3   
-## [29] htmltools_0.5.0    tidyselect_1.1.0   fansi_0.4.1        crayon_1.3.4      
-## [33] dbplyr_2.0.0       withr_2.3.0        jsonlite_1.7.1     gtable_0.3.0      
-## [37] lifecycle_0.2.0    DBI_1.1.0          magrittr_1.5       units_0.6-7       
-## [41] scales_1.1.1       KernSmooth_2.23-18 cli_2.1.0          stringi_1.5.3     
-## [45] farver_2.0.3       fs_1.5.0           xml2_1.3.2         ellipsis_0.3.1    
-## [49] generics_0.1.0     vctrs_0.3.4        tools_3.6.3        glue_1.4.2        
-## [53] maps_3.3.0         hms_0.5.3          yaml_2.2.1         colorspace_1.4-1  
-## [57] classInt_0.4-3     rvest_0.3.6        haven_2.3.1</code></pre>
+##  [1] colorspace_2.0-0     ellipsis_0.3.1       class_7.3-17         fs_1.5.0             rstudioapi_0.13     
+##  [6] farver_2.0.3         prodlim_2019.11.13   fansi_0.4.1          lubridate_1.7.9.2    xml2_1.3.2          
+## [11] codetools_0.2-18     splines_3.6.3        spam_2.5-1           jsonlite_1.7.1       caret_6.0-84        
+## [16] rJava_0.9-13         broom_0.7.0          dbplyr_2.0.0         compiler_3.6.3       httr_1.4.2          
+## [21] backports_1.2.0      assertthat_0.2.1     Matrix_1.2-18        cli_2.2.0            htmltools_0.5.0     
+## [26] tools_3.6.3          dotCall64_1.0-0      gtable_0.3.0         glue_1.4.2           reshape2_1.4.4      
+## [31] maps_3.3.0           Rcpp_1.0.5           cellranger_1.1.0     vctrs_0.3.5          nlme_3.1-150        
+## [36] iterators_1.0.13     timeDate_3043.102    xfun_0.19            gower_0.2.2          xlsxjars_0.6.1      
+## [41] rvest_0.3.6          lifecycle_0.2.0      MASS_7.3-53          scales_1.1.1         ipred_0.9-9         
+## [46] hms_0.5.3            fields_11.6          yaml_2.2.1           rpart_4.1-15         stringi_1.5.3       
+## [51] highr_0.8            maptools_1.0-2       foreach_1.5.1        e1071_1.7-4          lava_1.6.8.1        
+## [56] rlang_0.4.9          pkgconfig_2.0.3      evaluate_0.14        lattice_0.20-41      recipes_0.1.15      
+## [61] labeling_0.4.2       tidyselect_1.1.0     plyr_1.8.6           magrittr_2.0.1       R6_2.5.0            
+## [66] generics_0.1.0       DBI_1.1.0            pillar_1.4.3         haven_2.3.1          foreign_0.8-76      
+## [71] withr_2.3.0          units_0.6-7          survival_3.2-7       nnet_7.3-14          modelr_0.1.6        
+## [76] crayon_1.3.4         KernSmooth_2.23-18   utf8_1.1.4           rworldxtra_1.01      rmarkdown_2.5       
+## [81] readxl_1.3.1         data.table_1.13.2    ModelMetrics_1.2.2.2 reprex_0.3.0         digest_0.6.25       
+## [86] classInt_0.4-3       webshot_0.5.2        stats4_3.6.3         munsell_0.5.0</code></pre>
 </div>
 
 
-- 
GitLab