From 0ad3a421aa425db840d81d7717be3a34f37c3f87 Mon Sep 17 00:00:00 2001 From: Marder <fm58hufi@usr.idiv.de> Date: Tue, 26 Mar 2024 10:34:32 +0100 Subject: [PATCH] OLS tables --- Scripts/MAKE_FILE.R | 1 + Scripts/create_tables.R | 41 ++++++- Scripts/data_prep.R | 7 ++ Scripts/logit/chr_vol_treat.R | 7 +- Scripts/mxl/mxl_wtp_space_caseD.R | 167 +++++++++++++++++++++++++++++ Scripts/ols/ols_consequentiality.R | 7 ++ Scripts/ols/ols_nr.R | 2 + Scripts/ols/ols_opt_out.R | 7 ++ Scripts/ols/ols_quiz.R | 8 +- Scripts/ols/ols_time_spent.R | 13 ++- Scripts/treatment.R | 15 ++- 11 files changed, 265 insertions(+), 10 deletions(-) create mode 100644 Scripts/mxl/mxl_wtp_space_caseD.R diff --git a/Scripts/MAKE_FILE.R b/Scripts/MAKE_FILE.R index 08efb1f..be870b6 100644 --- a/Scripts/MAKE_FILE.R +++ b/Scripts/MAKE_FILE.R @@ -70,6 +70,7 @@ mxl_wtp_case_c_NR <- apollo_loadModel("Estimation_results/mxl/MXL_wtp_NR_Case_C" mxl_wtp_case_a_rentINT <- apollo_loadModel("Estimation_results/mxl/MXL_wtp Case A Rent Int") mxl_wtp_case_b_rentINT <- apollo_loadModel("Estimation_results/mxl/MXL_wtp Case B Rent Int") mxl_wtp_case_c_rentINT <- apollo_loadModel("Estimation_results/mxl/MXL_wtp_Case_C Rent INT") +mxl_wtp_case_d_rentINT <- apollo_loadModel("Estimation_results/mxl/MXL_wtp_Case_D") # rent interactions models NR mxl_wtp_NR_case_a_rentINT <- apollo_loadModel("Estimation_results/mxl/MXL_wtp NR A Rent INT") diff --git a/Scripts/create_tables.R b/Scripts/create_tables.R index 9513164..588d392 100644 --- a/Scripts/create_tables.R +++ b/Scripts/create_tables.R @@ -5,11 +5,48 @@ dir.create("Tables/logit") dir.create("Tables/ols/") -list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" = "Treated", "as.factor(Treatment_A)Vol_Treated" = "Vol. Treated", +list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" = "Treated", "as.factor(Treatment_A)Vol_Treated" = "Optional Treatment", "as.factor(Treatment_C)No Info 2" = "No Info 2", "as.factor(Treatment_C)No Video 1" = "Text 1", "as.factor(Treatment_C)No Video 2" = "Text 2", "as.factor(Treatment_C)Video 1" = "Video 1", - "as.factor(Treatment_C)Video 2" = "Video 2", "Z_Mean_NR" = "NR-Index", "as.factor(Gender)2" = "Female", + "as.factor(Treatment_C)Video 2" = "Video 2", "as.factor(Treatment_D)Treated" = "Treated", "as.factor(Treatment_D)Vol. Treated" = "Vol. Treated", + "as.factor(Treatment_D)No Info 2" = "No Info", + "Z_Mean_NR" = "NR-Index", "as.factor(Gender)2" = "Female", "Age_mean" = "Age", "QFIncome" = "Income", "Uni_degree" = "University Degree") +# OLS A +texreg(l=list(ols_percentage_correct_control_A, ols_time_spent_control_A, ols_time_cc_control_A, conseq_model_control_A), + custom.model.names = c("Quiz", "Interview Time", "CC Time", "Cons. Score"), + custom.header = list("Model 1A" = 1:1, "Model 2A" = 2:2, "Model 3A" = 3:3, "Model 4A" = 4:4), + custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1), float.pos="tb", + custom.note = "Notes: (i) The dependent variables examined in this regression analysis are as follows: + Model 1A represents the percentage of correct quiz questions, Model 2A refers to net interview time, + Model 3A denotes choice card time, and Model 4A represents consequentiality score. + (ii) The variables included in the analysis are as follows: Treated is a dummy variable indicating membership + in the obligatory treated group, Optional Treatment is a dummy variable indicating membership in the group with + the choice to receive treatment or not, with the reference group being Non-Treated. NR-Index represents the z-standardized + natural relatedness index. Female is a dummy variable denoting gender, Age has been mean-centered and measured in years, + Income is a continuous variable indicating a transition from one income group to the next higher, and University Degree is + a dummy variable indicating whether an individual holds a university degree; (iii) %stars and standard errors in parentheses.", + label = "tab:mani", + caption = "Results of OLS regressions for Scenario Case A.", + file="Tables/ols/ols_A.tex") + +# OLS D +texreg(l=list(ols_percentage_correct_control_D, ols_time_spent_control_D, ols_time_cc_control_D, conseq_model_control_D), + custom.model.names = c("Quiz", "Interview Time", "CC Time", "Cons. Score"), + custom.header = list("Model 1B" = 1:1, "Model 2B" = 2:2, "Model 3B" = 3:3, "Model 4B" = 4:4), + custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1), float.pos="tb", + custom.note = "Notes: (i) The dependent variables examined in this regression analysis are as follows: + Model 1B represents the percentage of correct quiz questions, Model 2B refers to net interview time, + Model 3B denotes choice card time, and Model 4B represents consequentiality score. + (ii) The variables included in the analysis are as follows: Treated is a dummy variable indicating membership + in the obligatory treated group, Vol. Treated is a dummy variable indicating the group that voluntarily chose the optional treatment, + while No Info indicates the group that did not opt for the treatment, with the reference group being Non-Treated. NR-Index represents the z-standardized + natural relatedness index. Female is a dummy variable denoting gender, Age has been mean-centered and measured in years, + Income is a continuous variable indicating a transition from one income group to the next higher, and University Degree is + a dummy variable indicating whether an individual holds a university degree; (iii) %stars and standard errors in parentheses.", + label = "tab:mani", + caption = "Results of OLS regressions for Scenario Case B.", + file="Tables/ols/ols_D.tex") # Manipulation check texreg(l=list(ols_percentage_correct_A, ols_percentage_correct_control_A, ols_percentage_correct_C, ols_percentage_correct_control_C), diff --git a/Scripts/data_prep.R b/Scripts/data_prep.R index 567faf4..8f69532 100644 --- a/Scripts/data_prep.R +++ b/Scripts/data_prep.R @@ -58,6 +58,13 @@ database_full <- database_full %>% Treatment_new == 5 ~ 'Video 2', Treatment_new == 6 ~ 'No Treatment 3', TRUE ~ NA_character_ + )) %>% + mutate(Treatment_D = case_when( + Treatment_new == 1 | Treatment_new == 2 ~ 'Treated', + Treatment_new == 3 ~ 'No Info 2', + Treatment_new == 4 | Treatment_new == 5 ~ 'Vol. Treated', + Treatment_new == 6 ~ 'No Treatment 3', + TRUE ~ NA_character_ )) id_list <- unique(database_full$id) diff --git a/Scripts/logit/chr_vol_treat.R b/Scripts/logit/chr_vol_treat.R index 8272830..6f652b4 100644 --- a/Scripts/logit/chr_vol_treat.R +++ b/Scripts/logit/chr_vol_treat.R @@ -18,8 +18,9 @@ data <- database_full %>% slice(1) %>% ungroup() data <- data %>% - mutate(Choice_Treat = ifelse(Dummy_Video_1 == 1 | Dummy_Video_2 == 1 | Dummy_Info_nv2 == 1, 1, - ifelse(Dummy_no_info==1 | Dummy_Info_nv1 == 1,0,NA))) + mutate(Choice_Treat = ifelse( Dummy_Video_2 == 1 | Dummy_Info_nv2 == 1, 1, + ifelse(Dummy_no_info==1 ,0,NA))) + table(data$Choice_Treat) @@ -36,7 +37,7 @@ logit_choice_treat_uni<-glm(Choice_Treat ~ as.factor(Gender)+Z_Mean_NR+Age_mean summary(logit_choice_treat_uni) # Calculate marginal effects -marginal_effects <- margins(logit_choice_treat) +marginal_effects <- margins(logit_choice_treat_uni) # Display the marginal effects summary(marginal_effects) diff --git a/Scripts/mxl/mxl_wtp_space_caseD.R b/Scripts/mxl/mxl_wtp_space_caseD.R new file mode 100644 index 0000000..d32875f --- /dev/null +++ b/Scripts/mxl/mxl_wtp_space_caseD.R @@ -0,0 +1,167 @@ +#### Apollo standard script ##### + +library(apollo) # Load apollo package + + + +# Test treatment effect + +database <- database_full %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) + +table(database$Dummy_Treated) +table(database$Dummy_Vol_Treated) +table(database$Dummy_no_info) + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Case_D", + modelDescr = "MXL wtp space Case D", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + mu_ASC_sq_treated = 0, + mu_ASC_sq_vol_treated = 0, + mu_ASC_sq_no_info = 0, + mu_rent_treated = 0, + mu_rent_vol_treated = 0, + mu_rent_no_info = 0, + mu_nat_treated =0, + mu_nat_vol_treated = 0, + mu_nat_no_info = 0, + mu_walking_treated =0, + mu_walking_vol_treated = 0, + mu_walking_no_info = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 2) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + + mu_nat_treated * Naturalness_1 *Dummy_Treated + mu_nat_no_info * Naturalness_1 * Dummy_no_info + + mu_nat_vol_treated * Naturalness_1 * Dummy_Vol_Treated + + mu_walking_treated * WalkingDistance_1 *Dummy_Treated + mu_walking_no_info * WalkingDistance_1 * Dummy_no_info + + mu_walking_vol_treated * WalkingDistance_1 * Dummy_Vol_Treated - Rent_1) + + V[['alt2']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + + mu_nat_treated * Naturalness_2 *Dummy_Treated + mu_nat_no_info * Naturalness_2 * Dummy_no_info + + mu_nat_vol_treated * Naturalness_2 * Dummy_Vol_Treated + + mu_walking_treated * WalkingDistance_2 *Dummy_Treated + mu_walking_no_info * WalkingDistance_2 * Dummy_no_info + + mu_walking_vol_treated * WalkingDistance_2 * Dummy_Vol_Treated- Rent_2) + + V[['alt3']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + + mu_nat_treated * Naturalness_3 *Dummy_Treated + mu_nat_no_info * Naturalness_3 * Dummy_no_info + + mu_nat_vol_treated * Naturalness_3 * Dummy_Vol_Treated + + mu_walking_treated * WalkingDistance_3 *Dummy_Treated + mu_walking_no_info * WalkingDistance_3 * Dummy_no_info + + mu_walking_vol_treated * WalkingDistance_3 * Dummy_Vol_Treated + + mu_ASC_sq_treated * Dummy_Treated + mu_ASC_sq_vol_treated * Dummy_Vol_Treated + + mu_ASC_sq_no_info * Dummy_no_info - Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +mxl_wtp_case_c = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(mxl_wtp_case_c) + + diff --git a/Scripts/ols/ols_consequentiality.R b/Scripts/ols/ols_consequentiality.R index 446c328..7f89ba5 100644 --- a/Scripts/ols/ols_consequentiality.R +++ b/Scripts/ols/ols_consequentiality.R @@ -26,3 +26,10 @@ summary(conseq_model_C) conseq_model_control_C <- lm(Conseq_score ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data) summary(conseq_model_control_C) + + +conseq_model_D <- lm(Conseq_score ~ as.factor(Treatment_D), data) +summary(conseq_model_D) + +conseq_model_control_D <- lm(Conseq_score ~ as.factor(Treatment_D) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data) +summary(conseq_model_control_D) diff --git a/Scripts/ols/ols_nr.R b/Scripts/ols/ols_nr.R index 274e610..85d4145 100644 --- a/Scripts/ols/ols_nr.R +++ b/Scripts/ols/ols_nr.R @@ -3,7 +3,9 @@ data$Treatment_C <- as.factor(data$Treatment_C) data$Treatment_C <- relevel(data$Treatment_C, ref = "No Treatment 3") +data$Treatment_D <- as.factor(data$Treatment_D) +data$Treatment_D <- relevel(data$Treatment_D, ref = "No Treatment 3") nr_model <- lm(Z_Mean_NR ~ Age_mean + Uni_degree + Kids_Dummy + Gender_female+ Rent_SQ + Naturalness_SQ + WalkingDistance_SQ , data) diff --git a/Scripts/ols/ols_opt_out.R b/Scripts/ols/ols_opt_out.R index 9c2357f..74784e9 100644 --- a/Scripts/ols/ols_opt_out.R +++ b/Scripts/ols/ols_opt_out.R @@ -6,7 +6,9 @@ data <- database_full %>% data$Treatment_C <- as.factor(data$Treatment_C) data$Treatment_C <- relevel(data$Treatment_C, ref = "No Treatment 3") +data$Treatment_D <- as.factor(data$Treatment_D) +data$Treatment_D <- relevel(data$Treatment_D, ref = "No Treatment 3") ols_opt_out_A<- lm( count_choosen_3 ~ as.factor(Treatment_A) ,data) summary(ols_opt_out_A) ols_opt_out_control_A<- lm( count_choosen_3 ~ as.factor(Treatment_A) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+Uni_degree,data) @@ -20,6 +22,11 @@ ols_opt_out_C<- lm( count_choosen_3 ~ as.factor(Treatment_C) ,data) summary(ols_opt_out_C) ols_opt_out_control_C<- lm( count_choosen_3 ~ as.factor(Treatment_C) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+Uni_degree,data) summary(ols_opt_out_control_C) +ols_opt_out_D<- lm( count_choosen_3 ~ as.factor(Treatment_D) ,data) +summary(ols_opt_out_D) +ols_opt_out_control_D<- lm( count_choosen_3 ~ as.factor(Treatment_D) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+Uni_degree,data) +summary(ols_opt_out_control_D) + # Obtain predicted values predictions <- predict(ols_opt_out_control_C, data, se.fit = TRUE) diff --git a/Scripts/ols/ols_quiz.R b/Scripts/ols/ols_quiz.R index d80f763..489286f 100644 --- a/Scripts/ols/ols_quiz.R +++ b/Scripts/ols/ols_quiz.R @@ -1,8 +1,9 @@ quiz_data$Treatment_C <- as.factor(quiz_data$Treatment_C) +quiz_data$Treatment_D <- as.factor(quiz_data$Treatment_D) quiz_data$Treatment_C <- relevel(quiz_data$Treatment_C, ref = "No Treatment 3") - +quiz_data$Treatment_D <- relevel(quiz_data$Treatment_D, ref = "No Treatment 3") ols_percentage_correct_A<- lm( percentage_correct ~ as.factor(Treatment_A) ,quiz_data) summary(ols_percentage_correct_A) @@ -21,6 +22,11 @@ summary(ols_percentage_correct_control_C) vif(ols_percentage_correct_control_C) + +ols_percentage_correct_D<- lm( percentage_correct ~ as.factor(Treatment_D) ,quiz_data) +summary(ols_percentage_correct_D) +ols_percentage_correct_control_D<- lm( percentage_correct ~ as.factor(Treatment_D) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,quiz_data) +summary(ols_percentage_correct_control_D) # # # Create an HTML results table with customized names and stars # results_table_3 <- stargazer( diff --git a/Scripts/ols/ols_time_spent.R b/Scripts/ols/ols_time_spent.R index a9afc04..71dba63 100644 --- a/Scripts/ols/ols_time_spent.R +++ b/Scripts/ols/ols_time_spent.R @@ -7,9 +7,9 @@ data <- database_full %>% data$Treatment_C <- as.factor(data$Treatment_C) - +data$Treatment_D <- as.factor(data$Treatment_D) data$Treatment_C <- relevel(data$Treatment_C, ref = "No Treatment 3") - +data$Treatment_D <- relevel(data$Treatment_D, ref = "No Treatment 3") ols_time_spent_A<- lm( interviewtime_net_clean ~ as.factor(Treatment_A) ,data) summary(ols_time_spent_A) ols_time_spent_control_A<- lm( interviewtime_net_clean ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data) @@ -23,7 +23,10 @@ ols_time_spent_C<- lm( interviewtime_net_clean ~ as.factor(Treatment_C) ,data) summary(ols_time_spent_C) ols_time_spent_control_C<- lm( interviewtime_net_clean ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data) summary(ols_time_spent_control_C) - +ols_time_spent_D<- lm( interviewtime_net_clean ~ as.factor(Treatment_D) ,data) +summary(ols_time_spent_D) +ols_time_spent_control_D<- lm( interviewtime_net_clean ~ as.factor(Treatment_D) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data) +summary(ols_time_spent_control_D) ols_time_cc_A<- lm( CC_time_mean_clean ~ as.factor(Treatment_A) ,data) summary(ols_time_cc_A) @@ -38,6 +41,10 @@ ols_time_cc_C<- lm( CC_time_mean_clean ~ as.factor(Treatment_C) ,data) summary(ols_time_cc_C) ols_time_cc_control_C<- lm( CC_time_mean_clean ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +Uni_degree,data) summary(ols_time_cc_control_C) +ols_time_cc_D<- lm( CC_time_mean_clean ~ as.factor(Treatment_D) ,data) +summary(ols_time_cc_D) +ols_time_cc_control_D<- lm( CC_time_mean_clean ~ as.factor(Treatment_D) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +Uni_degree,data) +summary(ols_time_cc_control_D) # # Create an HTML results table with customized names and stars # results_table_5 <- stargazer( # ols_tme_spent_1, ols_tme_spent_control_1, diff --git a/Scripts/treatment.R b/Scripts/treatment.R index acec3c3..0d86be9 100644 --- a/Scripts/treatment.R +++ b/Scripts/treatment.R @@ -109,12 +109,25 @@ database_full <- database_full %>% mutate(groupTime1774 = case_when(is.na(groupT mutate(interviewtime_net = interviewtime - groupTime1774 - groupTime1784 - groupTime1775 - groupTime1785- groupTime1786 ) # Calculate the cutoff values for the lowest and highest 1 percent lower_cutoff <- quantile(database_full$interviewtime_net, 0.01) -upper_cutoff <- quantile(database_full$interviewtime_net, 0.99) +upper_cutoff <- quantile(database_full$interviewtime_net, 0.95) # Filter the data to keep only values within the specified range database_full <- database_full %>% mutate(interviewtime_net_clean = ifelse(between(interviewtime_net, lower_cutoff, upper_cutoff), interviewtime_net, NA)) +# Assuming 'database' is your data frame +video2_data <- subset(database_full, Treatment_C == "Video 2") + +# Summary statistics for interview time in 'Video 2' cases +summary(video2_data$interviewtime_net_clean) +# Assuming 'database' is your data frame +sorted_database <- video2_data[order(video2_data$interviewtime_net_clean, decreasing = F), ] + +# Display the ten highest values of interview time +top_10_highest <- tail(sorted_database$interviewtime_net_clean, 200) +print(top_10_highest) + + bxplt_interview_time_A<-ggplot(data=database_full[!is.na(database_full$Treatment_A), ]) + geom_boxplot(aes(y=interviewtime_net_clean, x= Treatment_A, group=Treatment_A, fill=Treatment_A), outlier.shape = NA) + coord_cartesian(ylim = c(500, 2900)) + -- GitLab