diff --git a/Scripts/create_tables.R b/Scripts/create_tables.R
index 588d3926bde0ed4baf1cbc8f1f5c1f4588662f55..45600ebe9b2d13d0c9d73a73b421b557e1109bb7 100644
--- a/Scripts/create_tables.R
+++ b/Scripts/create_tables.R
@@ -26,7 +26,7 @@ texreg(l=list(ols_percentage_correct_control_A, ols_time_spent_control_A, ols_ti
        natural relatedness index. Female is a dummy variable denoting gender, Age has been mean-centered and measured in years, 
        Income is a continuous variable indicating a transition from one income group to the next higher, and University Degree is 
        a dummy variable indicating whether an individual holds a university degree; (iii) %stars and standard errors in parentheses.",
-       label = "tab:mani",
+       label = "tab:olsA",
        caption = "Results of OLS regressions for Scenario Case A.",
        file="Tables/ols/ols_A.tex")
 
@@ -44,7 +44,7 @@ texreg(l=list(ols_percentage_correct_control_D, ols_time_spent_control_D, ols_ti
        natural relatedness index. Female is a dummy variable denoting gender, Age has been mean-centered and measured in years, 
        Income is a continuous variable indicating a transition from one income group to the next higher, and University Degree is 
        a dummy variable indicating whether an individual holds a university degree; (iii) %stars and standard errors in parentheses.",
-       label = "tab:mani",
+       label = "tab:olsD",
        caption = "Results of OLS regressions for Scenario Case B.",
        file="Tables/ols/ols_D.tex")
 
diff --git a/Scripts/data_prep.R b/Scripts/data_prep.R
index 8f695328cc4319720b79fe9dda01c1116d91112a..5627a1cf170e9f75fbb5910c57f0da1aae6f28fe 100644
--- a/Scripts/data_prep.R
+++ b/Scripts/data_prep.R
@@ -19,7 +19,8 @@ database_full <- database_full %>% mutate(Gender_female = case_when(Gender == 2
                                           Kids_Dummy = case_when(Number_Kids > 0 ~ 1, TRUE ~0),
                                           Employment_full = case_when(Employment_type == 1 ~ 1, TRUE~0),
                                           Pensioner = case_when(Employment_type == 6 ~ 1, TRUE~0),
-                                          Age_mean = Age - mean(Age))
+                                          Age_mean = Age - mean(Age),
+                                          Income_mean = QFIncome - mean(QFIncome))
 
 # Data cleaning 
 
diff --git a/Scripts/mxl/mxl_wtp_space_caseD_RentINT_NR.R b/Scripts/mxl/mxl_wtp_space_caseD_RentINT_NR.R
new file mode 100644
index 0000000000000000000000000000000000000000..d0d686c41cd9b909b7619fb4928e056dfb489444
--- /dev/null
+++ b/Scripts/mxl/mxl_wtp_space_caseD_RentINT_NR.R
@@ -0,0 +1,187 @@
+#### Apollo standard script #####
+
+library(apollo) # Load apollo package 
+
+
+
+# Test treatment effect
+
+database <- database_full %>%
+  filter(!is.na(Treatment_new)) %>%
+  mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2  ~ 1, TRUE ~ 0),
+         Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0),
+         Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0))
+
+table(database$Dummy_Treated)
+table(database$Dummy_Vol_Treated)
+table(database$Dummy_no_info)
+
+#initialize model 
+
+apollo_initialise()
+
+
+### Set core controls
+apollo_control = list(
+  modelName  = "MXL_wtp_Case_D_NR",
+  modelDescr = "MXL wtp space Case D NR",
+  indivID    ="id",
+  mixing     = TRUE,
+  HB= FALSE,
+  nCores     = n_cores, 
+  outputDirectory = "Estimation_results/mxl"
+)
+
+##### Define model parameters depending on your attributes and model specification! ####
+# set values to 0 for conditional logit model
+
+apollo_beta=c(mu_natural = 15,
+              mu_walking = -1,
+              mu_rent = -2,
+              ASC_sq = 0,
+              mu_ASC_sq_treated = 0,
+              mu_ASC_sq_vol_treated = 0,
+              mu_ASC_sq_no_info = 0,
+              mu_ASC_NR = 0,
+              mu_rent_treated = 0,
+              mu_rent_vol_treated = 0,
+              mu_rent_no_info = 0,
+              mu_rent_NR = 0,
+              mu_nat_treated =0,
+              mu_nat_vol_treated = 0,
+              mu_nat_no_info = 0,
+              mu_nat_NR = 0,
+              mu_walking_treated =0,
+              mu_walking_vol_treated = 0,
+              mu_walking_no_info = 0,
+              mu_walking_NR = 0,
+              sig_natural = 15,
+              sig_walking = 2,
+              sig_rent = 2,
+              sig_ASC_sq = 2)
+
+### specify parameters that should be kept fixed, here = none
+apollo_fixed = c()
+
+### Set parameters for generating draws, use 2000 sobol draws
+apollo_draws = list(
+  interDrawsType = "sobol",
+  interNDraws    = n_draws,
+  interUnifDraws = c(),
+  interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
+  intraDrawsType = "halton",
+  intraNDraws    = 0,
+  intraUnifDraws = c(),
+  intraNormDraws = c()
+)
+
+### Create random parameters, define distribution of the parameters
+apollo_randCoeff = function(apollo_beta, apollo_inputs){
+  randcoeff = list()
+  
+  randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
+  randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
+  randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
+  randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
+  
+  return(randcoeff)
+}
+
+
+### validate 
+apollo_inputs = apollo_validateInputs()
+apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
+  
+  ### Function initialisation: do not change the following three commands
+  ### Attach inputs and detach after function exit
+  apollo_attach(apollo_beta, apollo_inputs)
+  on.exit(apollo_detach(apollo_beta, apollo_inputs))
+  
+  ### Create list of probabilities P
+  P = list()
+  
+  #### List of utilities (later integrated in mnl_settings below)  ####
+  # Define utility functions here:
+  
+  V = list()
+  V[['alt1']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info 
+                  + mu_rent_NR * Z_Mean_NR)*
+                            (b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
+                            +  mu_nat_treated * Naturalness_1 *Dummy_Treated + mu_nat_no_info * Naturalness_1 * Dummy_no_info
+                            +  mu_nat_vol_treated * Naturalness_1 * Dummy_Vol_Treated
+                            +  mu_walking_treated * WalkingDistance_1 *Dummy_Treated + mu_walking_no_info * WalkingDistance_1 * Dummy_no_info
+                            +  mu_walking_vol_treated * WalkingDistance_1 * Dummy_Vol_Treated
+                            +  mu_nat_NR * Z_Mean_NR *Naturalness_1 +
+                            + mu_walking_NR * Z_Mean_NR * WalkingDistance_1
+                            - Rent_1)
+  
+  V[['alt2']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info
+                  + mu_rent_NR * Z_Mean_NR)*                          
+                            (b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 
+                            + mu_nat_treated * Naturalness_2 *Dummy_Treated + mu_nat_no_info * Naturalness_2 * Dummy_no_info
+                            + mu_nat_vol_treated * Naturalness_2 * Dummy_Vol_Treated
+                            + mu_walking_treated * WalkingDistance_2 *Dummy_Treated + mu_walking_no_info * WalkingDistance_2 * Dummy_no_info
+                            + mu_walking_vol_treated * WalkingDistance_2 * Dummy_Vol_Treated
+                            +  mu_nat_NR * Z_Mean_NR *Naturalness_2 + 
+                            + mu_walking_NR * Z_Mean_NR * WalkingDistance_2
+                            - Rent_2)
+  
+  V[['alt3']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info
+                  + mu_rent_NR * Z_Mean_NR)*
+                            (b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3  
+                            +  mu_nat_treated * Naturalness_3 *Dummy_Treated + mu_nat_no_info * Naturalness_3 * Dummy_no_info
+                            +  mu_nat_vol_treated * Naturalness_3 * Dummy_Vol_Treated 
+                            +  mu_walking_treated * WalkingDistance_3 *Dummy_Treated + mu_walking_no_info * WalkingDistance_3 * Dummy_no_info
+                            +  mu_walking_vol_treated * WalkingDistance_3 * Dummy_Vol_Treated
+                            +  mu_ASC_sq_treated * Dummy_Treated + mu_ASC_sq_vol_treated * Dummy_Vol_Treated
+                            +  mu_ASC_sq_no_info * Dummy_no_info 
+                            +  mu_ASC_NR * Z_Mean_NR 
+                            +  mu_nat_NR * Z_Mean_NR *Naturalness_3 
+                            +  mu_walking_NR * Z_Mean_NR * WalkingDistance_3
+                            - Rent_3)
+  
+  
+  ### Define settings for MNL model component
+  mnl_settings = list(
+    alternatives  = c(alt1=1, alt2=2, alt3=3),
+    avail         = 1, # all alternatives are available in every choice
+    choiceVar     = choice,
+    V             = V#,  # tell function to use list vector defined above
+    
+  )
+  
+  ### Compute probabilities using MNL model
+  P[['model']] = apollo_mnl(mnl_settings, functionality)
+  
+  ### Take product across observation for same individual
+  P = apollo_panelProd(P, apollo_inputs, functionality)
+  
+  ### Average across inter-individual draws - nur bei Mixed Logit!
+  P = apollo_avgInterDraws(P, apollo_inputs, functionality)
+  
+  ### Prepare and return outputs of function
+  P = apollo_prepareProb(P, apollo_inputs, functionality)
+  return(P)
+}
+
+
+
+# ################################################################# #
+#### MODEL ESTIMATION                                            ##
+# ################################################################# #
+# estimate model with bfgs algorithm
+
+mxl_wtp_case_d_rent_NR = apollo_estimate(apollo_beta, apollo_fixed,
+                                 apollo_probabilities, apollo_inputs, 
+                                 estimate_settings=list(maxIterations=400,
+                                                        estimationRoutine="bfgs",
+                                                        hessianRoutine="analytic"))
+
+
+
+# ################################################################# #
+#### MODEL OUTPUTS                                               ##
+# ################################################################# #
+apollo_saveOutput(mxl_wtp_case_d_rent_NR)
+
+
diff --git a/Scripts/mxl/mxl_wtp_space_caseD_RentINT_X.R b/Scripts/mxl/mxl_wtp_space_caseD_RentINT_X.R
index 612c5147efe4a31b13964b4ad4d2bb2687a67d70..2b16bb087a277655f659d410f95011ad3355c802 100644
--- a/Scripts/mxl/mxl_wtp_space_caseD_RentINT_X.R
+++ b/Scripts/mxl/mxl_wtp_space_caseD_RentINT_X.R
@@ -113,31 +113,31 @@ apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimat
   
   V = list()
   V[['alt1']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info 
-                  + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * QFIncome)*
+                  + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * Income_mean)*
                             (b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
                             +  mu_nat_treated * Naturalness_1 *Dummy_Treated + mu_nat_no_info * Naturalness_1 * Dummy_no_info
                             +  mu_nat_vol_treated * Naturalness_1 * Dummy_Vol_Treated
                             +  mu_walking_treated * WalkingDistance_1 *Dummy_Treated + mu_walking_no_info * WalkingDistance_1 * Dummy_no_info
                             +  mu_walking_vol_treated * WalkingDistance_1 * Dummy_Vol_Treated
                             +  mu_nat_NR * Z_Mean_NR *Naturalness_1 + mu_nat_Age * Age_mean * Naturalness_1
-                            +  mu_nat_Income * QFIncome * Naturalness_1 + mu_walking_NR * Z_Mean_NR * WalkingDistance_1
-                            +  mu_walking_Age * Age_mean * WalkingDistance_1 + mu_walking_Income * QFIncome * WalkingDistance_1
+                            +  mu_nat_Income * Income_mean * Naturalness_1 + mu_walking_NR * Z_Mean_NR * WalkingDistance_1
+                            +  mu_walking_Age * Age_mean * WalkingDistance_1 + mu_walking_Income * Income_mean * WalkingDistance_1
                             - Rent_1)
   
   V[['alt2']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info
-                  + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * QFIncome)*                          
+                  + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * Income_mean)*                          
                             (b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 
                             + mu_nat_treated * Naturalness_2 *Dummy_Treated + mu_nat_no_info * Naturalness_2 * Dummy_no_info
                             + mu_nat_vol_treated * Naturalness_2 * Dummy_Vol_Treated
                             + mu_walking_treated * WalkingDistance_2 *Dummy_Treated + mu_walking_no_info * WalkingDistance_2 * Dummy_no_info
                             + mu_walking_vol_treated * WalkingDistance_2 * Dummy_Vol_Treated
                             +  mu_nat_NR * Z_Mean_NR *Naturalness_2 + mu_nat_Age * Age_mean * Naturalness_2
-                            +  mu_nat_Income * QFIncome * Naturalness_2 + mu_walking_NR * Z_Mean_NR * WalkingDistance_2
-                            +  mu_walking_Age * Age_mean * WalkingDistance_2 + mu_walking_Income * QFIncome * WalkingDistance_2
+                            +  mu_nat_Income * Income_mean * Naturalness_2 + mu_walking_NR * Z_Mean_NR * WalkingDistance_2
+                            +  mu_walking_Age * Age_mean * WalkingDistance_2 + mu_walking_Income * Income_mean * WalkingDistance_2
                             - Rent_2)
   
   V[['alt3']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info
-                  + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * QFIncome)*
+                  + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * Income_mean)*
                             (b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3  
                             +  mu_nat_treated * Naturalness_3 *Dummy_Treated + mu_nat_no_info * Naturalness_3 * Dummy_no_info
                             +  mu_nat_vol_treated * Naturalness_3 * Dummy_Vol_Treated 
@@ -145,10 +145,10 @@ apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimat
                             +  mu_walking_vol_treated * WalkingDistance_3 * Dummy_Vol_Treated
                             +  mu_ASC_sq_treated * Dummy_Treated + mu_ASC_sq_vol_treated * Dummy_Vol_Treated
                             +  mu_ASC_sq_no_info * Dummy_no_info 
-                            +  mu_ASC_NR * Z_Mean_NR + mu_ASC_Age * Age_mean + mu_ASC_Income * QFIncome 
+                            +  mu_ASC_NR * Z_Mean_NR + mu_ASC_Age * Age_mean + mu_ASC_Income * Income_mean 
                             +  mu_nat_NR * Z_Mean_NR *Naturalness_3 + mu_nat_Age * Age_mean * Naturalness_3
-                            +  mu_nat_Income * QFIncome * Naturalness_3 + mu_walking_NR * Z_Mean_NR * WalkingDistance_3
-                            +  mu_walking_Age * Age_mean * WalkingDistance_3 + mu_walking_Income * QFIncome * WalkingDistance_3
+                            +  mu_nat_Income * Income_mean * Naturalness_3 + mu_walking_NR * Z_Mean_NR * WalkingDistance_3
+                            +  mu_walking_Age * Age_mean * WalkingDistance_3 + mu_walking_Income * Income_mean * WalkingDistance_3
                             - Rent_3)