diff --git a/Scripts/logit/chr_vol_treat.R b/Scripts/logit/chr_vol_treat.R index 6bd1e6bd7199aaa9ab8cfee687e5a14fcef7fc64..5b494acb94e817a3895f194338df8a505a011609 100644 --- a/Scripts/logit/chr_vol_treat.R +++ b/Scripts/logit/chr_vol_treat.R @@ -28,21 +28,21 @@ data <- database_full %>% ungroup() data <- data %>% mutate(Choice_Treat = ifelse( Dummy_Video_2 == 1 | Dummy_Info_nv2 == 1, 1, - ifelse(Dummy_no_info==1 ,0,NA))) + ifelse(Dummy_no_info==1 ,0,NA))) table(data$Choice_Treat) - + logit_choice_treat<-glm(Choice_Treat ~ as.factor(Gender)+Z_Mean_NR+Age_mean + QFIncome + as.factor(Education), data, family=binomial) summary(logit_choice_treat) logit_choice_treat_uni<-glm(Choice_Treat ~ as.factor(Gender)+Z_Mean_NR+Age_mean + QFIncome + - Uni_degree + Kids_Dummy + Engagement_ugs + UGS_visits, data, family=binomial) + Uni_degree + Kids_Dummy + Engagement_ugs + UGS_visits, data, family=binomial) summary(logit_choice_treat_uni) @@ -94,6 +94,7 @@ data <- data %>% # Split the data into labeled and unlabeled sets labeled_data <- filter(data, Choice_Treat==1| Choice_Treat==0) unlabeled_data <- filter(data, is.na(Choice_Treat)) +labeled_data_id<-labeled_data labeled_data<-select(labeled_data,-id) # Assuming the group information is in the column called 'Group' labeled_data$Choice_Treat<- as.factor(labeled_data$Choice_Treat) @@ -120,10 +121,10 @@ tuneGrid <- expand.grid( model3 <- train(Choice_Treat ~ ., - data = trainData, - method = "xgbTree", - tuneGrid = tuneGrid, - trControl = trainControl(method = "cv", number = 5)) + data = trainData, + method = "xgbTree", + tuneGrid = tuneGrid, + trControl = trainControl(method = "cv", number = 5)) # Get variable importance @@ -140,6 +141,10 @@ labeled_data$PredictedGroup <- labeled_predictions table(labeled_data$Choice_Treat, labeled_data$PredictedGroup) unlabeled_predictions <- predict(model3, newdata = unlabeled_data) +labeled_data_id$PredictedGroup <- labeled_predictions +data_prediction_labeled<-select(labeled_data_id, c("id", "PredictedGroup")) +saveRDS(data_prediction_labeled, "Data/predictions_labeled.RDS") + unlabeled_data$PredictedGroup <- unlabeled_predictions data_prediction<-select(unlabeled_data, c("id", "PredictedGroup")) saveRDS(data_prediction, "Data/predictions.RDS") @@ -178,9 +183,4 @@ auc_value <- auc(roc_obj) best_coords <- coords(roc_obj, "best", best.method="youden") -cut_off <- best_coords$threshold - -<<<<<<< HEAD - -======= ->>>>>>> refs/remotes/origin/main +cut_off <- best_coords$threshold \ No newline at end of file diff --git a/Scripts/mxl/Prediction models/mxl_wtp_space_pred_matching_complete.R b/Scripts/mxl/Prediction models/mxl_wtp_space_pred_matching_complete.R new file mode 100644 index 0000000000000000000000000000000000000000..31ff5c68f04ef53b6d56ce4cf3cbea069a188f25 --- /dev/null +++ b/Scripts/mxl/Prediction models/mxl_wtp_space_pred_matching_complete.R @@ -0,0 +1,191 @@ +#### Apollo standard script ##### + +library(apollo) # Load apollo package + +data_predictions1 <- readRDS("Data/predictions.RDS") +data_predictions2 <- readRDS("Data/predictions_labeled.RDS") + +data_predictions <- bind_rows(data_predictions1, data_predictions2) + +database <- left_join(database_full, data_predictions, by="id") + + + +database <- database %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>% + mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>% + mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0), + Dummy_Opt_Treat_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Opt_Treat_Not_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 0 ~1, TRUE~0)) + + + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Prediction matching all complete", + modelDescr = "MXL wtp space Prediction matching all complete", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/prediction" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + mu_ASC_sq_opt_treated_pred = 0, + mu_ASC_sq_opt_treated_not_pred = 0, + mu_ASC_sq_treat_pred = 0, + mu_ASC_sq_treat_not_pred = 0, + mu_ASC_sq_control_not_pred = 0, + mu_nat_opt_treated_pred = 0, + mu_nat_opt_treated_not_pred = 0, + mu_nat_treat_pred = 0, + mu_nat_treat_not_pred = 0, + mu_nat_control_not_pred = 0, + mu_walking_opt_treated_pred = 0, + mu_walking_opt_treated_not_pred = 0, + mu_walking_treat_pred = 0, + mu_walking_treat_not_pred = 0, + mu_walking_control_not_pred = 0, + mu_rent_opt_treated_pred = 0, + mu_rent_opt_treated_not_pred = 0, + mu_rent_treat_pred = 0, + mu_rent_treat_not_pred = 0, + mu_rent_control_not_pred = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 2) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -(b_mu_rent + mu_rent_opt_treated_pred * Dummy_Opt_Treat_Pred + mu_rent_opt_treated_not_pred * Dummy_Opt_Treat_Not_Pred + mu_rent_treat_pred * Dummy_Treated_Pred + + mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_not_pred * Dummy_Control_Not_Pred)* + (b_mu_natural*Naturalness_1 + b_mu_walking*WalkingDistance_1 + + mu_nat_opt_treated_pred * Dummy_Opt_Treat_Pred * Naturalness_1 + mu_nat_opt_treated_not_pred * Dummy_Opt_Treat_Not_Pred * Naturalness_1 + + mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_1 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_1 + mu_nat_control_not_pred * Dummy_Control_Not_Pred * Naturalness_1 + + mu_walking_opt_treated_pred * Dummy_Opt_Treat_Pred * WalkingDistance_1 + mu_walking_opt_treated_not_pred* Dummy_Opt_Treat_Not_Pred * WalkingDistance_1 + + mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_1 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_1 + mu_walking_control_not_pred * Dummy_Control_Not_Pred * WalkingDistance_1 + - Rent_1) + + V[['alt2']] = -(b_mu_rent + mu_rent_opt_treated_pred * Dummy_Opt_Treat_Pred + mu_rent_opt_treated_not_pred * Dummy_Opt_Treat_Not_Pred + mu_rent_treat_pred * Dummy_Treated_Pred + + mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_not_pred * Dummy_Control_Not_Pred)* + (b_mu_natural*Naturalness_2 + b_mu_walking*WalkingDistance_2 + + mu_nat_opt_treated_pred * Dummy_Opt_Treat_Pred * Naturalness_2 + mu_nat_opt_treated_not_pred * Dummy_Opt_Treat_Not_Pred * Naturalness_2 + + mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_2 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_2 + mu_nat_control_not_pred * Dummy_Control_Not_Pred * Naturalness_2 + + mu_walking_opt_treated_pred * Dummy_Opt_Treat_Pred * WalkingDistance_2 + mu_walking_opt_treated_not_pred* Dummy_Opt_Treat_Not_Pred * WalkingDistance_2 + + mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_2 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_2 + mu_walking_control_not_pred * Dummy_Control_Not_Pred * WalkingDistance_2 + - Rent_2) + + V[['alt3']] = -(b_mu_rent + mu_rent_opt_treated_pred * Dummy_Opt_Treat_Pred + mu_rent_opt_treated_not_pred * Dummy_Opt_Treat_Not_Pred + mu_rent_treat_pred * Dummy_Treated_Pred + + mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_not_pred * Dummy_Control_Not_Pred)* + (b_mu_natural*Naturalness_3 + b_mu_walking*WalkingDistance_3 + + mu_nat_opt_treated_pred * Dummy_Opt_Treat_Pred * Naturalness_3 + mu_nat_opt_treated_not_pred * Dummy_Opt_Treat_Not_Pred * Naturalness_3 + + mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_3 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_3 + mu_nat_control_not_pred * Dummy_Control_Not_Pred * Naturalness_3 + + mu_walking_opt_treated_pred * Dummy_Opt_Treat_Pred * WalkingDistance_3 + mu_walking_opt_treated_not_pred* Dummy_Opt_Treat_Not_Pred * WalkingDistance_3 + + mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_3 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_3 + mu_walking_control_not_pred * Dummy_Control_Not_Pred * WalkingDistance_3 + + b_ASC_sq + mu_ASC_sq_opt_treated_pred * Dummy_Opt_Treat_Pred + mu_ASC_sq_opt_treated_not_pred * Dummy_Opt_Treat_Not_Pred + + mu_ASC_sq_treat_pred * Dummy_Treated_Pred + mu_ASC_sq_treat_not_pred * Dummy_Treated_Not_Pred + mu_ASC_sq_control_not_pred * Dummy_Control_Not_Pred - Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +mxl_wtp_matching_all_complete = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(mxl_wtp_matching_all_complete) + +