diff --git a/Scripts/MAKE_FILE.R b/Scripts/MAKE_FILE.R
index a165a46abbee8521fdece9f5dbd32a626aab29cc..98189b39eaa6388ce2c279650f739801e10b2b5a 100644
--- a/Scripts/MAKE_FILE.R
+++ b/Scripts/MAKE_FILE.R
@@ -1,4 +1,6 @@
 rm(list=ls())
+
+
 library(tidyverse)
 library(tidylog)
 library(apollo)
@@ -102,4 +104,5 @@ source("Scripts/interaction_plots_presi.R")
 # # without protesters
 # mxl_wtp_case_a_prot <- apollo_loadModel("Estimation_results/mxl/without_protesters/MXL_wtp Case A prot")
 # mxl_wtp_case_b_prot <- apollo_loadModel("Estimation_results/mxl/without_protesters/MXL_wtp Case B prot")
-# mxl_wtp_case_c_prot <- apollo_loadModel("Estimation_results/mxl/without_protesters/MXL_wtp_Case_C prot")
\ No newline at end of file
+# mxl_wtp_case_c_prot <- apollo_loadModel("Estimation_results/mxl/without_protesters/MXL_wtp_Case_C prot")
+
diff --git a/Scripts/create_tables.R b/Scripts/create_tables.R
index 266d226f2f182fa92e9d83fe612bec792d40effe..b3d8e6acfcce8e43b77c13c64fb668fbf8b5ba26 100644
--- a/Scripts/create_tables.R
+++ b/Scripts/create_tables.R
@@ -1,4 +1,5 @@
-library(choiceTools)
+library(choiceTools, lib.loc = "/home/nc71qaxa/r-packages")
+
 
 dir.create("Tables/mxl")
 dir.create("Tables/logit")
@@ -90,8 +91,8 @@ texreg(l=list(conseq_model_A, conseq_model_control_A, conseq_model_C, conseq_mod
        caption = "Results of OLS on consequentiality score.",
        file="Tables/ols/consequentiality.tex")
 
-# Opt Out
-texreg(l=list(ols_opt_out_A, ols_opt_out_control_A, ols_opt_out_C, ols_opt_out_control_C),
+# Opt Out modified case D
+texreg(l=list(ols_opt_out_A, ols_opt_out_control_A, ols_opt_out_D, ols_opt_out_control_D),
        custom.model.names = c("Case A", "with Controls", "Case B", "with Controls"),
        custom.header = list("Dependent variable: Number of opt-out choices" = 1:4),
        custom.coef.map = list_ols,  stars = c(0.01, 0.05, 0.1), float.pos="tb",
diff --git a/Scripts/interaction_plots_presi.R b/Scripts/interaction_plots_presi.R
index 967a8618aa6ea87bd8eac3d1e6cd6dd69ec75e33..0e3727323e8bae7cdc2e80309169d818cb2fdc8d 100644
--- a/Scripts/interaction_plots_presi.R
+++ b/Scripts/interaction_plots_presi.R
@@ -28,31 +28,43 @@ create_interaction_term_plot <- function(ols_summary, treatment_labels, ord, uni
 }
 
 
-case_A_labels <- c("Treated", "Voluntary Treated")
+case_A_labels <- c("Treated", "Optional Treatment")
 case_C_labels <- c("No Info 2", "Text 1", "Text 2", "Video 1", "Video 2")
 case_C_labels_re <- c("Text 1", "Text 2", "Video 1", "Video 2", "No Info 2")
+case_D_labels <- c("No Info", "Treated", "Vol. Treated")
+case_D_labels_re <- c("Treated", "Vol. Treated", "No Info")
 
 plot_interview_A <- create_interaction_term_plot(ols_time_spent_control_A, case_A_labels, case_A_labels,
-                                                 "Interview Time in Seconds", -250, 380)
+                                                 "Interview Time in Seconds", -380, 380)
 plot_interview_C <- create_interaction_term_plot(ols_time_spent_control_C, case_C_labels, case_C_labels_re,
-                                                 "Interview Time in Seconds", -250, 380)
+                                                 "Interview Time in Seconds", -380, 380)
+
+plot_interview_D <- create_interaction_term_plot(ols_time_spent_control_D, case_D_labels, case_D_labels_re,
+                                                 "Interview Time in Seconds", -380, 380)
 
 plot_cc_A <- create_interaction_term_plot(ols_time_cc_control_A, case_A_labels, case_A_labels,
                                           "Mean Choice Card Time in Seconds", -5, 5)
 plot_cc_C <- create_interaction_term_plot(ols_time_cc_control_C, case_C_labels, case_C_labels_re,
                                           "Mean Choice Card Time in Seconds", -5, 5)
 
+plot_cc_D <- create_interaction_term_plot(ols_time_cc_control_D, case_D_labels, case_D_labels_re,
+                                          "Mean Choice Card Time in Seconds", -5, 5)
+
 plot_mani_A <- create_interaction_term_plot(ols_percentage_correct_control_A, case_A_labels, case_A_labels,
-                                            "Percentage of Correct Quiz Statements", -5, 15)
+                                            "Percentage of Correct Quiz Statements", -15, 15)
 plot_mani_C <- create_interaction_term_plot(ols_percentage_correct_control_C, case_C_labels, case_C_labels_re,
-                                            "Percentage of Correct Quiz Statements", -5, 15)
+                                            "Percentage of Correct Quiz Statements", -15, 15)
+plot_mani_D <- create_interaction_term_plot(ols_percentage_correct_control_D, case_D_labels, case_D_labels_re,
+                                            "Percentage of Correct Quiz Statements", -15, 15)
 
 plot_cons_A <- create_interaction_term_plot(conseq_model_control_A, case_A_labels, case_A_labels,
-                                            "Consequentiality Score", -0.5, 0.8)
+                                            "Consequentiality Score", -0.8, 0.8)
 plot_cons_C <- create_interaction_term_plot(conseq_model_control_C, case_C_labels, case_C_labels_re,
-                                            "Consequentiality Score", -0.5, 0.8)
+                                            "Consequentiality Score", -0.8, 0.8)
+plot_cons_D <- create_interaction_term_plot(conseq_model_control_D, case_D_labels, case_D_labels_re,
+                                            "Consequentiality Score", -0.8, 0.8)
 
 plot_opt_A <- create_interaction_term_plot(ols_opt_out_control_A, case_A_labels, case_A_labels,
-                                           "Number of Status Quo Choices", -1.5, 1)
+                                           "Number of Status Quo Choices", -1.5, 1.5)
 plot_opt_C <- create_interaction_term_plot(ols_opt_out_control_C, case_C_labels, case_C_labels_re,
-                                           "Number of Status Quo Choices", -1.5, 1)
+                                           "Number of Status Quo Choices", -1.5, 1.5)
diff --git a/project_start.qmd b/project_start.qmd
index c5557a0b0027c9e1fc91a8d6e09576ee464d0200..287eeacf73b7a832561d306de232e910d3190d0d 100644
--- a/project_start.qmd
+++ b/project_start.qmd
@@ -1,6 +1,6 @@
 ---
-title: "Hot Cities, Cool Choices?" 
-subtitle: "The Effect of Voluntary and Obligatory Information on Preferences for Urban Green Spaces"
+title: "Hot Cities, Cool Choices:" 
+subtitle: "The Effect of Optional and Obligatory Information on Stated Preferences for Urban Green Spaces"
 title-slide-attributes:
   data-background-image: Grafics/iDiv_logo_item.png
   data-background-size: contain
@@ -14,7 +14,7 @@ format:
     slide-number: true
     smaller: true
     logo: Grafics/iDiv_logo_item.PNG
-    footer: "Hot Cities, Cool Choices?"
+    footer: "WONV 2024: Hot Cities, Cool Choices"
     scrollable: true
     embed-resources: true
 ---
@@ -27,13 +27,15 @@ source("Scripts/MAKE_FILE.R")
 library(tidyverse)
 library(apollo)
 library(texreg)
-list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" = "Treated", "as.factor(Treatment_A)Vol_Treated" = "Vol. Treated",
+list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" = "Treated", "as.factor(Treatment_A)Vol_Treated" = "Optional Treatment",
                  "as.factor(Treatment_C)No Info 2" = "No Info 2", "as.factor(Treatment_C)No Video 1" = "Text 1",
                  "as.factor(Treatment_C)No Video 2" = "Text 2", "as.factor(Treatment_C)Video 1" = "Video 1",
                  "as.factor(Treatment_C)Video 2" = "Video 2", "Z_Mean_NR" = "NR-Index", "as.factor(Gender)2" = "Female",
                  "Age_mean" = "Age", "QFIncome" = "Income", "Uni_degree" = "University Degree")
 ```
 
+# Motivation & Research Contribution
+
 ## Motivation (1)
 
 ::: incremental
@@ -49,13 +51,13 @@ list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" =
 -   Too **much information** may increase survey **complexity**, leading to respondents being overburdened with it and producing less consistent choices.
 -   Too **little information** may lead respondents to **not** being able to make an **informed choice**.
 -   Valid preference elicitation depends not only on the provision of information, but also on the **appropriate processing and recall** of the information by the respondent.
--   **Voluntary information** allows the respondents to gather required information if needed.
+-   **Voluntary information** allows the respondents to gather required information if needed and might increase efficiency of information provision
 :::
 
 ## Literature
 
 ::: incremental
--   There is **little research** on the effects of **voluntary information provision** on choice behavior and information recall.
+-   There is **little research** on the effects of **optional information provision** on choice behavior and information recall.
 -   In their study, **Tienhaara et al. (2022)** surveyed preferences for agricultural genetic resources, allowing respondents the option to access detailed information on the valued goods prior to preference elicitation.
 -   Similarly, **Hu et al. (2009)** offered respondents the opportunity to access voluntary information about genetic modified food before participating in a choice experiment.
 -   Both studies conclude that, on average, respondents who retrieve voluntary information have **larger willingness to pay** for the good to be valued.
@@ -65,19 +67,21 @@ list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" =
 ## Research Contribution
 
 ::: incremental
--   Our study explores the impact of additional obligatory and voluntary information on stated preferences using an exogenous split sample approach with three treatments.
+-   Our study explores the impact of additional obligatory and optional information on stated preferences using an exogenous split sample approach with three treatments.
 -   We investigate the effects of information treatments on survey engagement, information recall, consequentiality, and stated preferences, similar to Welling et al. (2023), expanding our understanding of treatment effects.
--   We test who choose additional information and to what extent they have different preferences than respondents who do not choose aditional information.
+-   We test who choose additional information and to what extent they have different preferences than respondents who do not choose additional information.
 :::
 
 ## Research Questions
 
 ::: incremental
-1.  How do obligatory and voluntary information treatments affect **survey engagement**, **information recall**, **consequentiality**, and **stated preferences**?
+1.  How do obligatory and optional information provision affect **survey engagement**, **information recall**, **consequentiality**, and **stated preferences**?
 2.  Do **socio-demographic** or **attitudinal** variables  influence the decision to **access voluntary information**?
 3.  Do **survey engagement**, **information recall**, **consequentiality**, and **stated preferences** differ between respondents who **access voluntary information** and those who do not?
 :::
 
+# Survey & Data 
+
 ## Discrete Choice Experiment
 
 ::: incremental
@@ -129,15 +133,15 @@ To what extent do you agree or disagree with the following statements?
 
 ## Experimental Setting
 
-![](Grafics/FlowChart.png){width="300"}
+![](Grafics/FlowChart_4_groups.png){width="300"}
 
 ## Case A
 
-![](Grafics/FlowChart_A.png){width="300"}
+![](Grafics/FlowChart_4_groups_A.png){width="300"}
 
 ## Case B
 
-![](Grafics/FlowChart_B.png){width="300"}
+![](Grafics/FlowChart_4_groups_B.png){width="300"}
 
 ## Data
 
@@ -154,6 +158,8 @@ To what extent do you agree or disagree with the following statements?
 +   **Attitudinal variable**: Measure derived from 21 items on **nature relatedness**.
 :::
 
+# Methods
+
 ## Methods (1) {auto-animate="true"}
 
 -   Logit regression (voluntary information access):
@@ -201,229 +207,131 @@ and
 
 ```{=tex}
 \begin{equation}
-  v_{Treat_A} = \{Treated, Voluntary Treated\}
+  v_{Treat_A} = \{Treated, Optional Treatment\}
 \end{equation}
 ```
 
 ```{=tex}
 \begin{equation}
-  v_{Treat_B} = \{Text 1, Text 2, Video 1, Video 2, No Info 2\}
+  v_{Treat_B} = \{Treated, Vol. Treated, No Info\}
 \end{equation}
 ```
 
 
 
-## Logit Regression: Who choses treatment?
-
-::: {style="font-size: 65%;"}
-```{r, results='asis'}
 
 
-htmlreg(l=list(logit_choice_treat_uni), stars = c(0.01, 0.05, 0.1), float.pos="tb",
-       custom.model.names = c("Logit regression"),
-       custom.header = list("Dependent variable: Voluntary Information Access" = 1),
-       custom.coef.map = list_ols, custom.note = "%stars. Standard errors in parentheses.",
-       label = "tab:logit_vt", single.row = TRUE,
-       caption = "Results of logit regression on access of optional information.")
+# Case A: Obligatory vs. optional information
 
 
-```
-:::
 
-## OLS Engagement: Interview time
+<!-- ::: {style="font-size: 45%;"} -->
+<!-- ```{r, results='asis'} -->
 
-::: panel-tabset
-### Table
 
-::: {style="font-size: 55%;"}
-```{r, results='asis'}
-htmlreg(l=list(ols_time_spent_A,  ols_time_spent_control_A, ols_time_spent_C,  ols_time_spent_control_C),
-       custom.model.names = c("Case A", "with Controls", "Case B", "with Controls"),
-       custom.header = list("Dependent variable: Net interview time" = 1:4),
-       custom.coef.map = list_ols,  stars = c(0.01, 0.05, 0.1), float.pos="tb",
-       custom.note = "%stars. Standard errors in parentheses.",
-       label = "tab:net_int", single.row = TRUE,
-       caption = "Results of OLS on net interview time.")
-```
-:::
+<!-- htmlreg(l=list(ols_time_spent_control_A, ols_time_cc_control_A, ols_percentage_correct_control_A, conseq_model_control_A), -->
+<!--        custom.model.names = c("Interview Time",  "CC Time", "Quiz",  "Cons. Score"), -->
+<!--        custom.header = list("Model 1A" = 1:1, "Model 2A" = 2:2, "Model 3A" = 3:3, "Model 4A" = 4:4), -->
+<!--        custom.coef.map = list_ols,  stars = c(0.01, 0.05, 0.1), float.pos="tb",  -->
+<!--        label = "tab:olsA", -->
+<!--        caption = "Results of OLS regressions for Scenario Case A.") -->
+<!-- ``` -->
+<!-- ::: -->
 
-### Plot
 
-```{r}
-ggpubr::ggarrange(plot_interview_A, plot_interview_C)
-```
-:::
 
-## OLS Engagement: Choice Card Time
+## OLS Engagement: Interview & Choice Card Time
 
-::: panel-tabset
-### Plot
 
 ```{r}
-ggpubr::ggarrange(plot_cc_A, plot_cc_C)
+ggpubr::ggarrange(plot_interview_A, plot_cc_A)
 ```
 
-### Table
 
-::: {style="font-size: 55%;"}
-```{r, results='asis'}
-htmlreg(l=list(ols_time_cc_A,  ols_time_cc_control_A, ols_time_cc_C,  ols_time_cc_control_C),
-       custom.model.names = c("Case A", "with Controls", "Case B", "with Controls"),
-       custom.header = list("Dependent variable: Mean choice card time" = 1:4),
-       custom.coef.map = list_ols,  stars = c(0.01, 0.05, 0.1), float.pos="tb",
-       custom.note = "%stars. Standard errors in parentheses.",
-       label = "tab:cctime", single.row = TRUE,
-       caption = "Results of OLS on mean choice card time.")
-```
-:::
-:::
+## OLS: Information recall & Consequentiality
 
-## OLS: Information recall
 
-::: panel-tabset
-### Plot
 
 ```{r}
-ggpubr::ggarrange(plot_mani_A, plot_mani_C)
+ggpubr::ggarrange(plot_mani_A, plot_cons_A)
 ```
 
-### Table
 
-::: {style="font-size: 55%;"}
+## MXL: Effects on stated preferences
+
+::: {style="font-size: 60%;"}
+
+
 ```{r, results='asis'}
-htmlreg(l=list(ols_percentage_correct_A,  ols_percentage_correct_control_A, ols_percentage_correct_C, ols_percentage_correct_control_C),
-       custom.model.names = c("Case A", "with Controls", "Case B", "with Controls"),
-       custom.header = list("Dependent Variable: Percentage of correct quiz statements" = 1:4),
-       custom.coef.map = list_ols,  stars = c(0.01, 0.05, 0.1), float.pos="tb", 
-       custom.note = "%stars. Standard errors in parentheses.",
-       label = "tab:mani", single.row = TRUE,
-       caption = "Results of OLS on percentage of correct quiz statements.")
+htmlreg(c(case_A_cols[1], remGOF(case_A_cols[2:4])),
+       custom.coef.map = list("natural" = "Naturalness", "walking" = "Walking Distance", "rent" = "Rent",
+                              "ASC_sq" = "ASC SQ", "_natural" = "Naturalness", "nat" = "Naturalness",
+                              "wd" = "Walking Distance", "asc" = "ASC SQ"),
+       custom.model.names = c("Mean", "SD", "Treated", "Optional Treatment"), custom.note = "%stars. Standard errors in parentheses.",
+       stars = c(0.01, 0.05, 0.1), float.pos="tb", 
+       label = "tab:mxl_A",
+       caption = "Results of mixed logit model with treatment interactions for Case A.")
 ```
 :::
-:::
-
-<!-- ## Self Reference -->
-
-<!-- 1.  Es entspricht meiner persönlichen Erfahrung, dass die Grünfläche in meiner Nähe zu einem angenehmen Klima an meinem Wohnort beiträgt. -->
 
-<!-- 2.  Ich bin durch hohe Temperaturen in der Stadt im Sommer eingeschränkt. -->
 
-<!-- 3.  Die Stadt sollte mehr unternehmen, um Hitzeinseln zu vermeiden. -->
 
-<!-- Stimme voll und ganz zu - Stimme gar nicht zu -->
+# Case B: Voluntary information access
 
-<!-- **Only the treated participants got these questions!** -->
+## Logit Regression: Who choses treatment?
 
-## OLS: Consequentiality
+::: {style="font-size: 65%;"}
+```{r, results='asis'}
 
-::: panel-tabset
-### Plot
 
-```{r}
-ggpubr::ggarrange(plot_cons_A, plot_cons_C)
-```
+htmlreg(l=list(logit_choice_treat_uni), stars = c(0.01, 0.05, 0.1), float.pos="tb",
+       custom.model.names = c("Logit regression"),
+       custom.header = list("Dependent variable: Voluntary Information Access" = 1),
+       custom.coef.map = list_ols, custom.note = "%stars. Standard errors in parentheses.",
+       label = "tab:logit_vt", single.row = TRUE,
+       caption = "Results of logit regression on access of optional information.")
 
-### Table
 
-::: {style="font-size: 55%;"}
-```{r, results='asis'}
-htmlreg(l=list(conseq_model_A, conseq_model_control_A, conseq_model_C, conseq_model_control_C),
-       custom.model.names = c("Case A", "with Controls", "Case B", "with Controls"),
-       custom.header = list("Dependent variable: Consequentiality score" = 1:4),
-       custom.coef.map = list_ols,  stars = c(0.01, 0.05, 0.1), float.pos="tb",
-       custom.note = "%stars. Standard errors in parentheses.",
-       label = "tab:conseq", single.row = TRUE,
-       caption = "Results of OLS on consequentiality score.")
 ```
 :::
-:::
 
-## OLS: Status quo
+## OLS Engagement: Interview & Choice Card Time
 
-::: panel-tabset
-### Plot
 
 ```{r}
-ggpubr::ggarrange(plot_opt_A, plot_opt_C)
-```
-
-### Table
-
-::: {style="font-size: 60%;"}
-```{r, results='asis'}
-htmlreg(l=list(ols_opt_out_A, ols_opt_out_control_A, ols_opt_out_C, ols_opt_out_control_C),
-       custom.model.names = c("Case A", "with Controls", "Case B", "with Controls"),
-       custom.header = list("Dependent variable: Number of status quo choices" = 1:4),
-       custom.coef.map = list_ols,  stars = c(0.01, 0.05, 0.1), float.pos="tb",
-       custom.note = "%stars. Standard errors in parentheses.",
-       label = "tab:optout", single.row = TRUE,
-       caption = "Results of OLS on number of status quo choices.")
+ggpubr::ggarrange(plot_interview_D, plot_cc_D)
 ```
-:::
-:::
 
 
+## OLS: Information recall & Consequentiality
 
-## MXL: Effects on stated preferences
 
-::: {style="font-size: 60%;"}
-::: panel-tabset
-### Case A
 
-```{r, results='asis'}
-htmlreg(c(case_A_cols[1], remGOF(case_A_cols[2:4])),
-       custom.coef.map = list("natural" = "Naturalness", "walking" = "Walking Distance", "rent" = "Rent",
-                              "ASC_sq" = "ASC SQ", "_natural" = "Naturalness", "nat" = "Naturalness",
-                              "wd" = "Walking Distance", "asc" = "ASC SQ"),
-       custom.model.names = c("Mean", "SD", "Treated", "Voluntary Treated"), custom.note = "%stars. Standard errors in parentheses.",
-       stars = c(0.01, 0.05, 0.1), float.pos="tb", 
-       label = "tab:mxl_A",
-       caption = "Results of mixed logit model with treatment interactions for Case A.")
-```
-
-### Case B
-
-```{r, results='asis'}
-htmlreg(c(case_C_cols[1], remGOF(case_C_cols[2:7])),
-       custom.coef.map = list("natural" = "Naturalness", "walking" = "Walking Distance", "rent" = "Rent",
-                              "ASC_sq" = "ASC SQ", "_natural" = "Naturalness", "nat" = "Naturalness",
-                              "wd" = "Walking Distance", "asc" = "ASC SQ",
-                              "ASC_sq_info" = "ASC SQ", "rent_info" = "Rent", "nat_info" = "Naturalness", "walking_info" = "Walking Distance"),
-       custom.model.names = c("Mean", "SD", "Video 1", "Video 2", "Text 1", "Text 2", "No Info"), custom.note = "%stars. Standard errors in parentheses.",
-       stars = c(0.01, 0.05, 0.1), float.pos="tb",
-       label = "tab:mxl_C",
-       caption = "Results of mixed logit model with treatment interactions for Case B.")
+```{r}
+ggpubr::ggarrange(plot_mani_D, plot_cons_D)
 ```
-:::
-:::
 
-## MXL: WTP space with NR index
+## MXL: Case B
 
 ::: {style="font-size: 60%;"}
 ```{r, results='asis'}
-htmlreg(c(case_C_cols_NR[1], remGOF(case_C_cols_NR[2:8])),
+htmlreg(c(case_B_cols_NR[1], remGOF(case_B_cols_NR[2:6])),
        custom.coef.map = list("natural" = "Naturalness", "walking" = "Walking Distance", "rent" = "Rent",
                               "ASC_sq" = "ASC SQ", "_natural" = "Naturalness", "nat" = "Naturalness",
-                              "wd" = "Walking Distance", "asc" = "ASC SQ",
+                              "wd" = "Walking Distance", "asc" = "ASC SQ", "ASC" ="ASC SQ",
                               "ASC_sq_info" = "ASC SQ", "rent_info" = "Rent", "nat_info" = "Naturalness", "walking_info" = "Walking Distance"),
-       custom.model.names = c("Mean", "SD", "Video 1", "Video 2", "Text 1", "Text 2", "No Info", "NR"), custom.note = "%stars. Standard errors in parentheses.",
+       custom.model.names = c("Mean", "SD", "Treated", "Vol. Treated", "No Info", "NR-Index"), custom.note = "%stars (one-sided). Robust standard errors in parentheses.",
        stars = c(0.01, 0.05, 0.1), float.pos="tb",
-       label = "tab:mxl_NR",
-       caption = "Results of mixed logit model with treatment and NR-index interactions for Case B.")
+       label = "tab:mxl_C_NR",
+       caption = "Results of mixed logit model with treatment interactions for Case B.")
 ```
 :::
 
-<!-- ## Case D -->
 
-<!-- ```{r} -->
-
-<!-- summary(case_d) -->
-
-<!-- ``` -->
 
 ## Discussion (1)
 
-1. How do obligatory and voluntary information treatments affect survey engagement, information recall, consequentiality, and stated preferences?
+1. How do obligatory and optional information provision affect survey engagement, information recall, consequentiality, and stated preferences?
 
 ::: incremental
  
@@ -477,9 +385,11 @@ htmlreg(c(case_C_cols_NR[1], remGOF(case_C_cols_NR[2:8])),
 
 - Voluntary information access is correlated with increased consequentiality, higher survey engagement and higher willingness to pay
 
-- Obligatory information treatment is more effective than optional
+- Obligatory information treatment is more effective than optional on the cost of slightly reduced survey engagement 
+
+- Voluntarily accessed treatment shows strongest effects, but is highly endogenous
 
-- Voluntarily accessed treatment shows strongest effects
+- Providing optional information seem to rather increase inequality in good-specific knowledge than decreasing it
 
 :::