diff --git a/Scripts/mxl/mxl_wtp_space_caseD.R b/Scripts/mxl/mxl_wtp_space_caseD_RentINT_X.R similarity index 71% rename from Scripts/mxl/mxl_wtp_space_caseD.R rename to Scripts/mxl/mxl_wtp_space_caseD_RentINT_X.R index d32875f8946cbe36e65e3d2496362ca43693977c..612c5147efe4a31b13964b4ad4d2bb2687a67d70 100644 --- a/Scripts/mxl/mxl_wtp_space_caseD.R +++ b/Scripts/mxl/mxl_wtp_space_caseD_RentINT_X.R @@ -23,8 +23,8 @@ apollo_initialise() ### Set core controls apollo_control = list( - modelName = "MXL_wtp_Case_D", - modelDescr = "MXL wtp space Case D", + modelName = "MXL_wtp_Case_D_X", + modelDescr = "MXL wtp space Case D Interactions", indivID ="id", mixing = TRUE, HB= FALSE, @@ -42,15 +42,27 @@ apollo_beta=c(mu_natural = 15, mu_ASC_sq_treated = 0, mu_ASC_sq_vol_treated = 0, mu_ASC_sq_no_info = 0, + mu_ASC_NR = 0, + mu_ASC_Age = 0, + mu_ASC_Income = 0, mu_rent_treated = 0, mu_rent_vol_treated = 0, mu_rent_no_info = 0, + mu_rent_NR = 0, + mu_rent_Age = 0, + mu_rent_Income = 0, mu_nat_treated =0, mu_nat_vol_treated = 0, mu_nat_no_info = 0, + mu_nat_NR = 0, + mu_nat_Age = 0, + mu_nat_Income = 0, mu_walking_treated =0, mu_walking_vol_treated = 0, mu_walking_no_info = 0, + mu_walking_NR = 0, + mu_walking_Age = 0, + mu_walking_Income = 0, sig_natural = 15, sig_walking = 2, sig_rent = 2, @@ -100,25 +112,44 @@ apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimat # Define utility functions here: V = list() - V[['alt1']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + V[['alt1']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * QFIncome)* + (b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + mu_nat_treated * Naturalness_1 *Dummy_Treated + mu_nat_no_info * Naturalness_1 * Dummy_no_info + mu_nat_vol_treated * Naturalness_1 * Dummy_Vol_Treated + mu_walking_treated * WalkingDistance_1 *Dummy_Treated + mu_walking_no_info * WalkingDistance_1 * Dummy_no_info - + mu_walking_vol_treated * WalkingDistance_1 * Dummy_Vol_Treated - Rent_1) + + mu_walking_vol_treated * WalkingDistance_1 * Dummy_Vol_Treated + + mu_nat_NR * Z_Mean_NR *Naturalness_1 + mu_nat_Age * Age_mean * Naturalness_1 + + mu_nat_Income * QFIncome * Naturalness_1 + mu_walking_NR * Z_Mean_NR * WalkingDistance_1 + + mu_walking_Age * Age_mean * WalkingDistance_1 + mu_walking_Income * QFIncome * WalkingDistance_1 + - Rent_1) - V[['alt2']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + V[['alt2']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * QFIncome)* + (b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + mu_nat_treated * Naturalness_2 *Dummy_Treated + mu_nat_no_info * Naturalness_2 * Dummy_no_info + mu_nat_vol_treated * Naturalness_2 * Dummy_Vol_Treated + mu_walking_treated * WalkingDistance_2 *Dummy_Treated + mu_walking_no_info * WalkingDistance_2 * Dummy_no_info - + mu_walking_vol_treated * WalkingDistance_2 * Dummy_Vol_Treated- Rent_2) + + mu_walking_vol_treated * WalkingDistance_2 * Dummy_Vol_Treated + + mu_nat_NR * Z_Mean_NR *Naturalness_2 + mu_nat_Age * Age_mean * Naturalness_2 + + mu_nat_Income * QFIncome * Naturalness_2 + mu_walking_NR * Z_Mean_NR * WalkingDistance_2 + + mu_walking_Age * Age_mean * WalkingDistance_2 + mu_walking_Income * QFIncome * WalkingDistance_2 + - Rent_2) - V[['alt3']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + V[['alt3']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * QFIncome)* + (b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + mu_nat_treated * Naturalness_3 *Dummy_Treated + mu_nat_no_info * Naturalness_3 * Dummy_no_info + mu_nat_vol_treated * Naturalness_3 * Dummy_Vol_Treated + mu_walking_treated * WalkingDistance_3 *Dummy_Treated + mu_walking_no_info * WalkingDistance_3 * Dummy_no_info + mu_walking_vol_treated * WalkingDistance_3 * Dummy_Vol_Treated + mu_ASC_sq_treated * Dummy_Treated + mu_ASC_sq_vol_treated * Dummy_Vol_Treated - + mu_ASC_sq_no_info * Dummy_no_info - Rent_3) + + mu_ASC_sq_no_info * Dummy_no_info + + mu_ASC_NR * Z_Mean_NR + mu_ASC_Age * Age_mean + mu_ASC_Income * QFIncome + + mu_nat_NR * Z_Mean_NR *Naturalness_3 + mu_nat_Age * Age_mean * Naturalness_3 + + mu_nat_Income * QFIncome * Naturalness_3 + mu_walking_NR * Z_Mean_NR * WalkingDistance_3 + + mu_walking_Age * Age_mean * WalkingDistance_3 + mu_walking_Income * QFIncome * WalkingDistance_3 + - Rent_3) ### Define settings for MNL model component @@ -151,7 +182,7 @@ apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimat # ################################################################# # # estimate model with bfgs algorithm -mxl_wtp_case_c = apollo_estimate(apollo_beta, apollo_fixed, +mxl_wtp_case_d_rentX = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, estimate_settings=list(maxIterations=400, estimationRoutine="bfgs", @@ -162,6 +193,6 @@ mxl_wtp_case_c = apollo_estimate(apollo_beta, apollo_fixed, # ################################################################# # #### MODEL OUTPUTS ## # ################################################################# # -apollo_saveOutput(mxl_wtp_case_c) +apollo_saveOutput(mxl_wtp_case_d_rentX) diff --git a/Scripts/mxl/mxl_wtp_space_caseD_rentINT.R b/Scripts/mxl/mxl_wtp_space_caseD_rentINT.R index 7d5699c85140299317eaf49291ecf34c45a50c92..d32875f8946cbe36e65e3d2496362ca43693977c 100644 --- a/Scripts/mxl/mxl_wtp_space_caseD_rentINT.R +++ b/Scripts/mxl/mxl_wtp_space_caseD_rentINT.R @@ -3,147 +3,165 @@ library(apollo) # Load apollo package -database <- database_full %>% filter(!is.na(Treatment_A)) %>% - mutate(Dummy_Choice_Info = case_when(Treatment_new == 1 ~ 1, Treatment_new == 4 ~ 1, Treatment_new == 5 ~ 1, TRUE ~ 0), - Dummy_Choice_No_Info = case_when(Treatment_new == 2 ~ 1, Treatment_new == 3 ~ 1, TRUE ~ 0)) - #initialize model - - apollo_initialise() - - - ### Set core controls - apollo_control = list( - modelName = "MXL_wtp Case D Rent Int", - modelDescr = "MXL_wtp Case D Rent Int", - indivID ="id", - mixing = TRUE, - HB= FALSE, - nCores = n_cores, - outputDirectory = "Estimation_results/mxl" - ) - - ##### Define model parameters depending on your attributes and model specification! #### - # set values to 0 for conditional logit model - - apollo_beta=c(mu_natural = 15, - mu_walking = -1, - mu_rent = -2, - ASC_sq = 0, - mu_rent_I = 0, - mu_nat_I = 0, - mu_wd_I= 0, - mu_asc_I = 0, - mu_rent_NI = 0, - mu_nat_NI = 0, - mu_wd_NI= 0, - mu_asc_NI = 0, - sig_natural = 15, - sig_walking = 2, - sig_rent = 2, - sig_ASC_sq = 2) - - ### specify parameters that should be kept fixed, here = none - apollo_fixed = c() - - ### Set parameters for generating draws, use 2000 sobol draws - apollo_draws = list( - interDrawsType = "sobol", - interNDraws = n_draws, - interUnifDraws = c(), - interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), - intraDrawsType = "halton", - intraNDraws = 0, - intraUnifDraws = c(), - intraNormDraws = c() - ) - - ### Create random parameters, define distribution of the parameters - apollo_randCoeff = function(apollo_beta, apollo_inputs){ - randcoeff = list() - - randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural - randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking - randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) - randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc - - return(randcoeff) - } +# Test treatment effect + +database <- database_full %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) + +table(database$Dummy_Treated) +table(database$Dummy_Vol_Treated) +table(database$Dummy_no_info) + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Case_D", + modelDescr = "MXL wtp space Case D", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + mu_ASC_sq_treated = 0, + mu_ASC_sq_vol_treated = 0, + mu_ASC_sq_no_info = 0, + mu_rent_treated = 0, + mu_rent_vol_treated = 0, + mu_rent_no_info = 0, + mu_nat_treated =0, + mu_nat_vol_treated = 0, + mu_nat_no_info = 0, + mu_walking_treated =0, + mu_walking_vol_treated = 0, + mu_walking_no_info = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 2) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc - ### validate - apollo_inputs = apollo_validateInputs() - apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ - - ### Function initialisation: do not change the following three commands - ### Attach inputs and detach after function exit - apollo_attach(apollo_beta, apollo_inputs) - on.exit(apollo_detach(apollo_beta, apollo_inputs)) - - ### Create list of probabilities P - P = list() - - #### List of utilities (later integrated in mnl_settings below) #### - # Define utility functions here: - - V = list() - V[['alt1']] = -(b_mu_rent + mu_rent_I*Dummy_Choice_Info + mu_rent_NI*Dummy_Choice_No_Info)*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + - mu_nat_I * Naturalness_1 * Dummy_Choice_Info + mu_wd_I * WalkingDistance_1 * Dummy_Choice_Info+ - mu_nat_NI * Naturalness_1 * Dummy_Choice_No_Info + mu_wd_NI * WalkingDistance_1 * Dummy_Choice_No_Info - - Rent_1) - - V[['alt2']] = -(b_mu_rent + mu_rent_I*Dummy_Choice_Info + mu_rent_NI*Dummy_Choice_No_Info)*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + - mu_nat_I * Naturalness_2 * Dummy_Choice_Info + mu_wd_I * WalkingDistance_2 * Dummy_Choice_Info + - mu_nat_NI * Naturalness_2 * Dummy_Choice_No_Info + mu_wd_NI * WalkingDistance_2 * Dummy_Choice_No_Info - - Rent_2) - - V[['alt3']] = -(b_mu_rent + mu_rent_I*Dummy_Choice_Info + mu_rent_NI*Dummy_Choice_No_Info)*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + mu_asc_I * Dummy_Choice_Info + - mu_asc_NI * Dummy_Choice_No_Info +mu_nat_I * Naturalness_3 * Dummy_Choice_Info + mu_wd_I * WalkingDistance_3 * Dummy_Choice_Info + - mu_nat_NI * Naturalness_3 * Dummy_Choice_No_Info + mu_wd_NI * WalkingDistance_3 * Dummy_Choice_No_Info - - Rent_3) - - - ### Define settings for MNL model component - mnl_settings = list( - alternatives = c(alt1=1, alt2=2, alt3=3), - avail = 1, # all alternatives are available in every choice - choiceVar = choice, - V = V#, # tell function to use list vector defined above - - ) - - ### Compute probabilities using MNL model - P[['model']] = apollo_mnl(mnl_settings, functionality) - - ### Take product across observation for same individual - P = apollo_panelProd(P, apollo_inputs, functionality) - - ### Average across inter-individual draws - nur bei Mixed Logit! - P = apollo_avgInterDraws(P, apollo_inputs, functionality) + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + + mu_nat_treated * Naturalness_1 *Dummy_Treated + mu_nat_no_info * Naturalness_1 * Dummy_no_info + + mu_nat_vol_treated * Naturalness_1 * Dummy_Vol_Treated + + mu_walking_treated * WalkingDistance_1 *Dummy_Treated + mu_walking_no_info * WalkingDistance_1 * Dummy_no_info + + mu_walking_vol_treated * WalkingDistance_1 * Dummy_Vol_Treated - Rent_1) + + V[['alt2']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + + mu_nat_treated * Naturalness_2 *Dummy_Treated + mu_nat_no_info * Naturalness_2 * Dummy_no_info + + mu_nat_vol_treated * Naturalness_2 * Dummy_Vol_Treated + + mu_walking_treated * WalkingDistance_2 *Dummy_Treated + mu_walking_no_info * WalkingDistance_2 * Dummy_no_info + + mu_walking_vol_treated * WalkingDistance_2 * Dummy_Vol_Treated- Rent_2) + + V[['alt3']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info)*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + + mu_nat_treated * Naturalness_3 *Dummy_Treated + mu_nat_no_info * Naturalness_3 * Dummy_no_info + + mu_nat_vol_treated * Naturalness_3 * Dummy_Vol_Treated + + mu_walking_treated * WalkingDistance_3 *Dummy_Treated + mu_walking_no_info * WalkingDistance_3 * Dummy_no_info + + mu_walking_vol_treated * WalkingDistance_3 * Dummy_Vol_Treated + + mu_ASC_sq_treated * Dummy_Treated + mu_ASC_sq_vol_treated * Dummy_Vol_Treated + + mu_ASC_sq_no_info * Dummy_no_info - Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above - ### Prepare and return outputs of function - P = apollo_prepareProb(P, apollo_inputs, functionality) - return(P) - } - - - - # ################################################################# # - #### MODEL ESTIMATION ## - # ################################################################# # - # estimate model with bfgs algorithm + ) - mxl_wtp_case_d_rentINT = apollo_estimate(apollo_beta, apollo_fixed, - apollo_probabilities, apollo_inputs, - estimate_settings=list(maxIterations=400, - estimationRoutine="bfgs", - hessianRoutine="analytic")) + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) - # ################################################################# # - #### MODEL OUTPUTS ## - # ################################################################# # - apollo_saveOutput(mxl_wtp_case_d_rentINT) + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +mxl_wtp_case_c = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(mxl_wtp_case_c)