diff --git a/Scripts/mxl/Split_samples/mxl_wtp_space_not_tr_A_NR.R b/Scripts/mxl/Split_samples/mxl_wtp_space_not_tr_A_NR.R new file mode 100644 index 0000000000000000000000000000000000000000..b96c49bd26358c82387df6668f49398964e49a9a --- /dev/null +++ b/Scripts/mxl/Split_samples/mxl_wtp_space_not_tr_A_NR.R @@ -0,0 +1,148 @@ +#### Apollo standard script ##### + +library(apollo) # Load apollo package + + +# Test treatment effect + +database <- database_full %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Video_1 = case_when(Treatment_new == 1 ~ 1, TRUE ~ 0), + Dummy_Video_2 = case_when(Treatment_new == 5 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0), + Dummy_Info_nv1 = case_when(Treatment_new == 2 ~1, TRUE~0), + Dummy_Info_nv2 = case_when(Treatment_new == 4 ~1 , TRUE~0)) %>% + filter(Treatment_A == "Not_Treated") + + #initialize model + + apollo_initialise() + + + ### Set core controls + apollo_control = list( + modelName = "MXL_wtp Not_Treated A NR", + modelDescr = "MXL wtp space Not_Treated A NR", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/Split_samples" + ) + + ##### Define model parameters depending on your attributes and model specification! #### + # set values to 0 for conditional logit model + + apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + mu_nat_NR = 0, + mu_walking_NR = 0, + mu_asc_NR = 0, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + + ### specify parameters that should be kept fixed, here = none + apollo_fixed = c() + + ### Set parameters for generating draws, use 2000 sobol draws + apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() + ) + + ### Create random parameters, define distribution of the parameters + apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) + } + + + ### validate + apollo_inputs = apollo_validateInputs() + apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + mu_nat_NR * Naturalness_1 * Z_Mean_NR + mu_walking_NR * WalkingDistance_1 * Z_Mean_NR - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + + mu_nat_NR * Naturalness_2 * Z_Mean_NR + mu_walking_NR * WalkingDistance_2 * Z_Mean_NR - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + + mu_nat_NR * Naturalness_3 * Z_Mean_NR + mu_walking_NR * WalkingDistance_3 * Z_Mean_NR - + Rent_3 + mu_asc_NR * Z_Mean_NR) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) + } + + + + # ################################################################# # + #### MODEL ESTIMATION ## + # ################################################################# # + # estimate model with bfgs algorithm + + mxl_wtp_not_tr_a_nr = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + + # ################################################################# # + #### MODEL OUTPUTS ## + # ################################################################# # + apollo_saveOutput(mxl_wtp_not_tr_a_nr) + + diff --git a/Scripts/mxl/Split_samples/mxl_wtp_space_tr_A_NR.R b/Scripts/mxl/Split_samples/mxl_wtp_space_tr_A_NR.R new file mode 100644 index 0000000000000000000000000000000000000000..28870ec5b24710f90a3cbd184534cd9b597873dc --- /dev/null +++ b/Scripts/mxl/Split_samples/mxl_wtp_space_tr_A_NR.R @@ -0,0 +1,149 @@ +#### Apollo standard script ##### + +library(apollo) # Load apollo package + + +# Test treatment effect + +database <- database_full %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Video_1 = case_when(Treatment_new == 1 ~ 1, TRUE ~ 0), + Dummy_Video_2 = case_when(Treatment_new == 5 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0), + Dummy_Info_nv1 = case_when(Treatment_new == 2 ~1, TRUE~0), + Dummy_Info_nv2 = case_when(Treatment_new == 4 ~1 , TRUE~0)) %>% + filter(Treatment_A == "Treated") + + #initialize model + + apollo_initialise() + + + ### Set core controls + apollo_control = list( + modelName = "MXL_wtp Treated A NR", + modelDescr = "MXL wtp space Treated A NR", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/Split_samples" + ) + + ##### Define model parameters depending on your attributes and model specification! #### + # set values to 0 for conditional logit model + + apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + mu_nat_NR = 0, + mu_walking_NR = 0, + mu_asc_NR = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 2) + + ### specify parameters that should be kept fixed, here = none + apollo_fixed = c() + + ### Set parameters for generating draws, use 2000 sobol draws + apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() + ) + + ### Create random parameters, define distribution of the parameters + apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) + } + + + ### validate + apollo_inputs = apollo_validateInputs() + apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + mu_nat_NR * Naturalness_1 * Z_Mean_NR + mu_walking_NR * WalkingDistance_1 * Z_Mean_NR - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + + mu_nat_NR * Naturalness_2 * Z_Mean_NR + mu_walking_NR * WalkingDistance_2 * Z_Mean_NR - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + + mu_nat_NR * Naturalness_3 * Z_Mean_NR + mu_walking_NR * WalkingDistance_3 * Z_Mean_NR - + Rent_3 + mu_asc_NR * Z_Mean_NR) + + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) + } + + + + # ################################################################# # + #### MODEL ESTIMATION ## + # ################################################################# # + # estimate model with bfgs algorithm + + mxl_wtp_tr_a_nr = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + + # ################################################################# # + #### MODEL OUTPUTS ## + # ################################################################# # + apollo_saveOutput(mxl_wtp_tr_a_nr) + + diff --git a/Scripts/mxl/Split_samples/mxl_wtp_space_vol_treat.R b/Scripts/mxl/Split_samples/mxl_wtp_space_vol_treat.R new file mode 100644 index 0000000000000000000000000000000000000000..8177fbe1d15e9860278bf60372ff976de482cb67 --- /dev/null +++ b/Scripts/mxl/Split_samples/mxl_wtp_space_vol_treat.R @@ -0,0 +1,136 @@ +#### Apollo standard script ##### + +library(apollo) # Load apollo package + + +# Test treatment effect + +database <- database_full %>% + filter(Treatment_D == "Vol. Treated") + + #initialize model + + apollo_initialise() + + + ### Set core controls + apollo_control = list( + modelName = "MXL_wtp Vol_Treat", + modelDescr = "MXL wtp space Vol_Treat", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/Split_samples" + ) + + ##### Define model parameters depending on your attributes and model specification! #### + # set values to 0 for conditional logit model + + apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + + ### specify parameters that should be kept fixed, here = none + apollo_fixed = c() + + ### Set parameters for generating draws, use 2000 sobol draws + apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() + ) + + ### Create random parameters, define distribution of the parameters + apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) + } + + + ### validate + apollo_inputs = apollo_validateInputs() + apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 - + Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) + } + + + + # ################################################################# # + #### MODEL ESTIMATION ## + # ################################################################# # + # estimate model with bfgs algorithm + + mxl_wtp_Vol_Treat = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + + # ################################################################# # + #### MODEL OUTPUTS ## + # ################################################################# # + apollo_saveOutput(mxl_wtp_Vol_Treat) + + diff --git a/Scripts/mxl/Split_samples/mxl_wtp_space_vol_treat_NR.R b/Scripts/mxl/Split_samples/mxl_wtp_space_vol_treat_NR.R new file mode 100644 index 0000000000000000000000000000000000000000..dfac0a3161ac0c63b5ced965063899dd063c7d1b --- /dev/null +++ b/Scripts/mxl/Split_samples/mxl_wtp_space_vol_treat_NR.R @@ -0,0 +1,143 @@ +#### Apollo standard script ##### + +library(apollo) # Load apollo package + + +# Test treatment effect + +database <- database_full %>% + filter(!is.na(Treatment_new)) %>% + filter(Treatment_D == "Vol. Treated") + + #initialize model + + apollo_initialise() + + + ### Set core controls + apollo_control = list( + modelName = "MXL_wtp Vol_Treat NR", + modelDescr = "MXL wtp space Vol_Treat NR", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/Split_samples" + ) + + ##### Define model parameters depending on your attributes and model specification! #### + # set values to 0 for conditional logit model + + apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + mu_nat_NR = 0, + mu_walking_NR = 0, + mu_asc_NR = 0, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + + ### specify parameters that should be kept fixed, here = none + apollo_fixed = c() + + ### Set parameters for generating draws, use 2000 sobol draws + apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() + ) + + ### Create random parameters, define distribution of the parameters + apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) + } + + + ### validate + apollo_inputs = apollo_validateInputs() + apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + mu_nat_NR * Naturalness_1 * Z_Mean_NR + mu_walking_NR * WalkingDistance_1 * Z_Mean_NR - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + + mu_nat_NR * Naturalness_2 * Z_Mean_NR + mu_walking_NR * WalkingDistance_2 * Z_Mean_NR - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + + mu_nat_NR * Naturalness_3 * Z_Mean_NR + mu_walking_NR * WalkingDistance_3 * Z_Mean_NR - + Rent_3 + mu_asc_NR * Z_Mean_NR) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) + } + + + + # ################################################################# # + #### MODEL ESTIMATION ## + # ################################################################# # + # estimate model with bfgs algorithm + + mxl_wtp_Vol_Treat_NR = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + + # ################################################################# # + #### MODEL OUTPUTS ## + # ################################################################# # + apollo_saveOutput(mxl_wtp_Vol_Treat_NR) + +