diff --git a/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Control_Not_Pred.R b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Control_Not_Pred.R new file mode 100644 index 0000000000000000000000000000000000000000..07ee9eb0b7d519a190714dd68a347e5f46f714ac --- /dev/null +++ b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Control_Not_Pred.R @@ -0,0 +1,156 @@ + +#### Apollo standard script ##### + +library(apollo) # Load apollo package + +data_predictions1 <- readRDS("Data/predictions.RDS") +data_predictions2 <- readRDS("Data/predictions_labeled.RDS") + +data_predictions <- bind_rows(data_predictions1, data_predictions2) + +database <- left_join(database_full, data_predictions, by="id") + + + +database <- database %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>% + mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>% + mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0), + Dummy_Opt_Treat_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Opt_Treat_Not_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 0 ~1, TRUE~0)) +table(database$Treatment) +database<- filter(database,Dummy_Control_Not_Pred==1 ) + + + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Control_Not_Pred", + modelDescr = "MXL_wtp_Control_Not_Pred", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/prediction/Split_samples" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 - + Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +model = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(model) + +apollo_modelOutput(model) + diff --git a/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Control_Pred.R b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Control_Pred.R new file mode 100644 index 0000000000000000000000000000000000000000..1f1b6c04a747dfdd0c51238e8d5884e906e78511 --- /dev/null +++ b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Control_Pred.R @@ -0,0 +1,157 @@ + +#### Apollo standard script ##### + +library(apollo) # Load apollo package + +data_predictions1 <- readRDS("Data/predictions.RDS") +data_predictions2 <- readRDS("Data/predictions_labeled.RDS") + +data_predictions <- bind_rows(data_predictions1, data_predictions2) + +database <- left_join(database_full, data_predictions, by="id") + + + +database <- database %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>% + mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>% + mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0), + Dummy_Opt_Treat_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Opt_Treat_Not_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 0 ~1, TRUE~0)) +table(database$Treatment) +database<- filter(database,Dummy_Control_Not_Pred==0 & Dummy_Treated_Pred==0 & + Dummy_Treated_Not_Pred == 0 & Dummy_Opt_Treat_Pred==0 & + Dummy_Opt_Treat_Not_Pred == 0) + + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Control_Pred", + modelDescr = "MXL_wtp_Control_Pred", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/prediction/Split_samples" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 - + Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +model = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(model) + +apollo_modelOutput(model) + diff --git a/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Opt_Not_Pred.R b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Opt_Not_Pred.R new file mode 100644 index 0000000000000000000000000000000000000000..484d1fd2c6bb631559313859713e7272a4bdd336 --- /dev/null +++ b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Opt_Not_Pred.R @@ -0,0 +1,156 @@ + +#### Apollo standard script ##### + +library(apollo) # Load apollo package + +data_predictions1 <- readRDS("Data/predictions.RDS") +data_predictions2 <- readRDS("Data/predictions_labeled.RDS") + +data_predictions <- bind_rows(data_predictions1, data_predictions2) + +database <- left_join(database_full, data_predictions, by="id") + + + +database <- database %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>% + mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>% + mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0), + Dummy_Opt_Treat_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Opt_Treat_Not_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 0 ~1, TRUE~0)) +table(database$Treatment) +database<- filter(database,Dummy_Opt_Treat_Not_Pred==1 ) + + + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Opt_Not_Pred", + modelDescr = "MXL_wtp_Opt_Not_Pred", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/prediction/Split_samples" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 - + Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +model = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(model) + +apollo_modelOutput(model) + diff --git a/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Opt_Pred.R b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Opt_Pred.R new file mode 100644 index 0000000000000000000000000000000000000000..0785b9d988270f61cc91e9529932869e2ae71a6e --- /dev/null +++ b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Opt_Pred.R @@ -0,0 +1,156 @@ + +#### Apollo standard script ##### + +library(apollo) # Load apollo package + +data_predictions1 <- readRDS("Data/predictions.RDS") +data_predictions2 <- readRDS("Data/predictions_labeled.RDS") + +data_predictions <- bind_rows(data_predictions1, data_predictions2) + +database <- left_join(database_full, data_predictions, by="id") + + + +database <- database %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>% + mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>% + mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0), + Dummy_Opt_Treat_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Opt_Treat_Not_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 0 ~1, TRUE~0)) +table(database$Treatment) +database<- filter(database,Dummy_Opt_Treat_Pred==1 ) + + + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Opt_Pred", + modelDescr = "MXL_wtp_Opt_Pred", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/prediction/Split_samples" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 - + Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +model = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(model) + +apollo_modelOutput(model) + diff --git a/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Treatment_Not_Pred.R b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Treatment_Not_Pred.R new file mode 100644 index 0000000000000000000000000000000000000000..03667eaf757cf9ed466c2a5b1671e6944f8ec800 --- /dev/null +++ b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Treatment_Not_Pred.R @@ -0,0 +1,156 @@ + +#### Apollo standard script ##### + +library(apollo) # Load apollo package + +data_predictions1 <- readRDS("Data/predictions.RDS") +data_predictions2 <- readRDS("Data/predictions_labeled.RDS") + +data_predictions <- bind_rows(data_predictions1, data_predictions2) + +database <- left_join(database_full, data_predictions, by="id") + + + +database <- database %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>% + mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>% + mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0), + Dummy_Opt_Treat_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Opt_Treat_Not_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 0 ~1, TRUE~0)) +table(database$Treatment) +database<- filter(database,Dummy_Treated_Not_Pred==1 ) + + + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Treated_Not_Pred", + modelDescr = "MXL_wtp_Treated_Not_Pred", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/prediction/Split_samples" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 - + Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +model = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(model) + +apollo_modelOutput(model) + diff --git a/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Treatment_Pred.R b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Treatment_Pred.R new file mode 100644 index 0000000000000000000000000000000000000000..76b11f4fc54e4f86f0a6debe1532935b1565bfcd --- /dev/null +++ b/Scripts/mxl/Prediction models/Split_samples/mxl_wtp_space_caseM_Treatment_Pred.R @@ -0,0 +1,156 @@ + +#### Apollo standard script ##### + +library(apollo) # Load apollo package + +data_predictions1 <- readRDS("Data/predictions.RDS") +data_predictions2 <- readRDS("Data/predictions_labeled.RDS") + +data_predictions <- bind_rows(data_predictions1, data_predictions2) + +database <- left_join(database_full, data_predictions, by="id") + + + +database <- database %>% + filter(!is.na(Treatment_new)) %>% + mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), + Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), + Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>% + mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>% + mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0), + Dummy_Opt_Treat_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 1 ~1, TRUE~0), + Dummy_Opt_Treat_Not_Pred = case_when(Treatment_A == "Vol_Treated" & PredictedGroup == 0 ~1, TRUE~0)) +table(database$Treatment) +database<- filter(database,Dummy_Treated_Pred==1 ) + + + +#initialize model + +apollo_initialise() + + +### Set core controls +apollo_control = list( + modelName = "MXL_wtp_Treated_Pred", + modelDescr = "MXL_wtp_Treated_Pred", + indivID ="id", + mixing = TRUE, + HB= FALSE, + nCores = n_cores, + outputDirectory = "Estimation_results/mxl/prediction/Split_samples" +) + +##### Define model parameters depending on your attributes and model specification! #### +# set values to 0 for conditional logit model + +apollo_beta=c(mu_natural = 15, + mu_walking = -1, + mu_rent = -2, + ASC_sq = 0, + sig_natural = 15, + sig_walking = 2, + sig_rent = 2, + sig_ASC_sq = 0) + +### specify parameters that should be kept fixed, here = none +apollo_fixed = c() + +### Set parameters for generating draws, use 2000 sobol draws +apollo_draws = list( + interDrawsType = "sobol", + interNDraws = n_draws, + interUnifDraws = c(), + interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), + intraDrawsType = "halton", + intraNDraws = 0, + intraUnifDraws = c(), + intraNormDraws = c() +) + +### Create random parameters, define distribution of the parameters +apollo_randCoeff = function(apollo_beta, apollo_inputs){ + randcoeff = list() + + randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural + randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking + randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) + randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc + + return(randcoeff) +} + + +### validate +apollo_inputs = apollo_validateInputs() +apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ + + ### Function initialisation: do not change the following three commands + ### Attach inputs and detach after function exit + apollo_attach(apollo_beta, apollo_inputs) + on.exit(apollo_detach(apollo_beta, apollo_inputs)) + + ### Create list of probabilities P + P = list() + + #### List of utilities (later integrated in mnl_settings below) #### + # Define utility functions here: + + V = list() + V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 - + Rent_1) + + V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 - + Rent_2) + + V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 - + Rent_3) + + + ### Define settings for MNL model component + mnl_settings = list( + alternatives = c(alt1=1, alt2=2, alt3=3), + avail = 1, # all alternatives are available in every choice + choiceVar = choice, + V = V#, # tell function to use list vector defined above + + ) + + ### Compute probabilities using MNL model + P[['model']] = apollo_mnl(mnl_settings, functionality) + + ### Take product across observation for same individual + P = apollo_panelProd(P, apollo_inputs, functionality) + + ### Average across inter-individual draws - nur bei Mixed Logit! + P = apollo_avgInterDraws(P, apollo_inputs, functionality) + + ### Prepare and return outputs of function + P = apollo_prepareProb(P, apollo_inputs, functionality) + return(P) +} + + + +# ################################################################# # +#### MODEL ESTIMATION ## +# ################################################################# # +# estimate model with bfgs algorithm + +model = apollo_estimate(apollo_beta, apollo_fixed, + apollo_probabilities, apollo_inputs, + estimate_settings=list(maxIterations=400, + estimationRoutine="bfgs", + hessianRoutine="analytic")) + + + +# ################################################################# # +#### MODEL OUTPUTS ## +# ################################################################# # +apollo_saveOutput(model) + +apollo_modelOutput(model) + diff --git a/Scripts/visualize_distr_spli.R b/Scripts/visualize_distr_spli.R new file mode 100644 index 0000000000000000000000000000000000000000..e39949caa4bacb1d93ee429b8774cd4347094536 --- /dev/null +++ b/Scripts/visualize_distr_spli.R @@ -0,0 +1,55 @@ +# Load models +MXL_wtp_Control_Not_Pred_model <- readRDS("C:/nextcloud/Hot_Topic_Cool_Choices/Estimation_results/mxl/prediction/Split_samples/MXL_wtp_Control_Not_Pred_model.rds") +MXL_wtp_Control_Pred_model <- readRDS("C:/nextcloud/Hot_Topic_Cool_Choices/Estimation_results/mxl/prediction/Split_samples/MXL_wtp_Control_Pred_model.rds") +MXL_wtp_Opt_Not_Pred_model <- readRDS("C:/nextcloud/Hot_Topic_Cool_Choices/Estimation_results/mxl/prediction/Split_samples/MXL_wtp_Opt_Not_Pred_model.rds") +MXL_wtp_Opt_Pred_model <- readRDS("C:/nextcloud/Hot_Topic_Cool_Choices/Estimation_results/mxl/prediction/Split_samples/MXL_wtp_Opt_Pred_model.rds") +MXL_wtp_Treated_Not_Pred_model <- readRDS("C:/nextcloud/Hot_Topic_Cool_Choices/Estimation_results/mxl/prediction/Split_samples/MXL_wtp_Treated_Not_Pred_model.rds") +MXL_wtp_Treated_Pred_model <- readRDS("C:/nextcloud/Hot_Topic_Cool_Choices/Estimation_results/mxl/prediction/Split_samples/MXL_wtp_Treated_Pred_model.rds") + +# List of models +models <- list( + "Treated Not Pred" = MXL_wtp_Treated_Not_Pred_model, + "Control Not Pred" = MXL_wtp_Control_Not_Pred_model, + "Control Pred" = MXL_wtp_Control_Pred_model, + "Opt Not Pred" = MXL_wtp_Opt_Not_Pred_model, + "Opt Pred" = MXL_wtp_Opt_Pred_model, + "Treated Pred" = MXL_wtp_Treated_Pred_model +) + +# Define the x-range for plotting (1000 values) +x_range <- seq(-10, 100, length.out = 1000) + +# Define colors and line types for each model +colors <- c("blue", "red", "green", "purple", "orange", "brown") +line_types <- 1:6 + +# Initialize the plot with the first model +model <- models[["Treated Not Pred"]] +coef <- summary(model)$estimate +mean <- coef["mu_natural", "Estimate"] +sd <- coef["sig_natural", "Estimate"] +y <- dnorm(x_range, mean, sd) + +plot(x_range, y, type = "l", col = colors[1], lwd = 2, lty = line_types[1], + ylim = c(0, max(y)), xlab = "x", ylab = "Density", + main = "Normal Distributions from Multiple MXL Models") + +# Loop through the remaining models and add their distributions to the plot +for (i in 2:length(models)) { + model <- models[[i]] + + # Extract mean and standard deviation for 'mu_natural' and 'sig_natural' + coef <- summary(model)$estimate + mean <- coef["mu_natural", "Estimate"] + sd <- coef["sig_natural", "Estimate"] + + # Compute the normal distribution based on extracted mean and sd + y <- dnorm(x_range, mean, sd) + + # Add the distribution to the existing plot + lines(x_range, y, col = colors[i], lwd = 2, lty = line_types[i]) +} + +# Add a legend +legend("topright", inset = c(-0.25, 0), legend = names(models), col = colors, + lty = line_types, lwd = 2, xpd = TRUE)