diff --git a/Scripts/logit/chr_vol_treat.R b/Scripts/logit/chr_vol_treat.R index 6a805fe3d477d91193e8e1b2d441d60bc4809696..6b67cc141870388df191f02e7428f3026cd0de91 100644 --- a/Scripts/logit/chr_vol_treat.R +++ b/Scripts/logit/chr_vol_treat.R @@ -1,13 +1,10 @@ library(dplyr) library(tidyr) library(margins) -<<<<<<< HEAD library(lubridate) library(caret) library(randomForest) -======= library(pROC) ->>>>>>> e410a7a5c52ecf34b454cff74f0b641cd5615679 library(xgboost) # Test treatment effect @@ -67,7 +64,7 @@ data$predicted.classes <- ifelse(data$probabilities >= cut_off, 1, 0) # Model accuracy mean(data$predicted.classes == data$Choice_Treat, na.rm = T) -<<<<<<< HEAD + @@ -145,7 +142,8 @@ table(labeled_data$Choice_Treat, labeled_data$PredictedGroup) unlabeled_predictions <- predict(model3, newdata = unlabeled_data) unlabeled_data$PredictedGroup <- unlabeled_predictions print(model3$bestTune) -======= + + table(data$predicted.classes ,data$Choice_Treat) calculate_metrics <- function(confusion_matrix) {