#### Apollo standard script ##### library(apollo) # Load apollo package # Remove crazy outliers for testing the model database <- database %>% filter(Rent_SQ <= 10000, WalkingDistance_SQ <= 300) # Test treatment effect database <- database %>% filter(!is.na(Treatment_new)) %>% mutate(Dummy_Video_1 = case_when(Treatment_new == 1 ~ 1, TRUE ~ 0), Dummy_Video_2 = case_when(Treatment_new == 5 ~ 1, TRUE ~ 0), Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0), Dummy_Info_nv1 = case_when(Treatment_new == 2 ~1, TRUE~0), Dummy_Info_nv2 = case_when(Treatment_new == 4 ~1 , TRUE~0)) #initialize model apollo_initialise() ### Set core controls apollo_control = list( modelName = "Clogit_wtp", modelDescr = "Conditonal logit model wtp space", indivID ="id", mixing = FALSE, HB= FALSE, nCores = 1, outputDirectory = "Estimation_results" ) ##### Define model parameters depending on your attributes and model specification! #### # set values to 0 for conditional logit model apollo_beta=c(mu_natural = 0, mu_walking = 0, mu_rent = 0, ASC_sq = 0, mu_nat_vid1 =0, mu_nat_vid2 = 0, mu_nat_no_info = 0, mu_nat_info_nv1 = 0, mu_nat_info_nv2 = 0) ### specify parameters that should be kept fixed, here = none apollo_fixed = c() ### validate apollo_inputs = apollo_validateInputs() apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ ### Function initialisation: do not change the following three commands ### Attach inputs and detach after function exit apollo_attach(apollo_beta, apollo_inputs) on.exit(apollo_detach(apollo_beta, apollo_inputs)) ### Create list of probabilities P P = list() #### List of utilities (later integrated in mnl_settings below) #### # Define utility functions here: V = list() V[['alt1']] = -mu_rent*(mu_natural * Naturalness_1 + mu_walking * WalkingDistance_1 + mu_nat_vid1 * Naturalness_1 *Dummy_Video_1 + mu_nat_no_info * Naturalness_1 * Dummy_no_info + mu_nat_info_nv1 * Naturalness_1 *Dummy_Info_nv1 + mu_nat_vid2 * Naturalness_1 * Dummy_Video_2 + mu_nat_info_nv2 * Naturalness_1 *Dummy_Info_nv2 - Rent_1) V[['alt2']] = -mu_rent*(mu_natural * Naturalness_2 + mu_walking * WalkingDistance_2 + mu_nat_vid1 * Naturalness_2 *Dummy_Video_1 + mu_nat_no_info * Naturalness_2 * Dummy_no_info + mu_nat_info_nv1 * Naturalness_2 *Dummy_Info_nv1 + mu_nat_vid2 * Naturalness_2 * Dummy_Video_2 + mu_nat_info_nv2 * Naturalness_2 *Dummy_Info_nv2 - Rent_2) V[['alt3']] = -mu_rent*(ASC_sq + mu_natural * Naturalness_3 + mu_walking * WalkingDistance_3 + mu_nat_vid1 * Naturalness_3 *Dummy_Video_1 + mu_nat_no_info * Naturalness_3 * Dummy_no_info + mu_nat_info_nv1 * Naturalness_3 *Dummy_Info_nv1 + mu_nat_vid2 * Naturalness_3 * Dummy_Video_2 + mu_nat_info_nv2 * Naturalness_3 *Dummy_Info_nv2 - Rent_3) ### Define settings for MNL model component mnl_settings = list( alternatives = c(alt1=1, alt2=2, alt3=3), avail = 1, # all alternatives are available in every choice choiceVar = choice, V = V#, # tell function to use list vector defined above ) ### Compute probabilities using MNL model P[['model']] = apollo_mnl(mnl_settings, functionality) ### Take product across observation for same individual P = apollo_panelProd(P, apollo_inputs, functionality) ### Average across inter-individual draws - nur bei Mixed Logit! #P = apollo_avgInterDraws(P, apollo_inputs, functionality) ### Prepare and return outputs of function P = apollo_prepareProb(P, apollo_inputs, functionality) return(P) } # ################################################################# # #### MODEL ESTIMATION ## # ################################################################# # # estimate model with bfgs algorithm clogit_wtp = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, estimate_settings=list(maxIterations=400, estimationRoutine="bfgs", hessianRoutine="analytic")) # ################################################################# # #### MODEL OUTPUTS ## # ################################################################# # apollo_saveOutput(clogit_wtp)