#### Apollo standard script ##### library(apollo) # Load apollo package # Test treatment effect database <- database_full %>% filter(!is.na(Treatment_new)) %>% mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0), Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0), Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) table(database$Dummy_Treated) table(database$Dummy_Vol_Treated) table(database$Dummy_no_info) #initialize model apollo_initialise() ### Set core controls apollo_control = list( modelName = "MXL_wtp_Case_D_X", modelDescr = "MXL wtp space Case D Interactions", indivID ="id", mixing = TRUE, HB= FALSE, nCores = n_cores, outputDirectory = "Estimation_results/mxl" ) ##### Define model parameters depending on your attributes and model specification! #### # set values to 0 for conditional logit model apollo_beta=c(mu_natural = 15, mu_walking = -1, mu_rent = -2, ASC_sq = 0, mu_ASC_sq_treated = 0, mu_ASC_sq_vol_treated = 0, mu_ASC_sq_no_info = 0, mu_ASC_NR = 0, mu_ASC_Age = 0, mu_ASC_Income = 0, mu_rent_treated = 0, mu_rent_vol_treated = 0, mu_rent_no_info = 0, mu_rent_NR = 0, mu_rent_Age = 0, mu_rent_Income = 0, mu_nat_treated =0, mu_nat_vol_treated = 0, mu_nat_no_info = 0, mu_nat_NR = 0, mu_nat_Age = 0, mu_nat_Income = 0, mu_walking_treated =0, mu_walking_vol_treated = 0, mu_walking_no_info = 0, mu_walking_NR = 0, mu_walking_Age = 0, mu_walking_Income = 0, sig_natural = 15, sig_walking = 2, sig_rent = 2, sig_ASC_sq = 2) ### specify parameters that should be kept fixed, here = none apollo_fixed = c() ### Set parameters for generating draws, use 2000 sobol draws apollo_draws = list( interDrawsType = "sobol", interNDraws = n_draws, interUnifDraws = c(), interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), intraDrawsType = "halton", intraNDraws = 0, intraUnifDraws = c(), intraNormDraws = c() ) ### Create random parameters, define distribution of the parameters apollo_randCoeff = function(apollo_beta, apollo_inputs){ randcoeff = list() randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc return(randcoeff) } ### validate apollo_inputs = apollo_validateInputs() apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ ### Function initialisation: do not change the following three commands ### Attach inputs and detach after function exit apollo_attach(apollo_beta, apollo_inputs) on.exit(apollo_detach(apollo_beta, apollo_inputs)) ### Create list of probabilities P P = list() #### List of utilities (later integrated in mnl_settings below) #### # Define utility functions here: V = list() V[['alt1']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * Income_mean)* (b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + + mu_nat_treated * Naturalness_1 *Dummy_Treated + mu_nat_no_info * Naturalness_1 * Dummy_no_info + mu_nat_vol_treated * Naturalness_1 * Dummy_Vol_Treated + mu_walking_treated * WalkingDistance_1 *Dummy_Treated + mu_walking_no_info * WalkingDistance_1 * Dummy_no_info + mu_walking_vol_treated * WalkingDistance_1 * Dummy_Vol_Treated + mu_nat_NR * Z_Mean_NR *Naturalness_1 + mu_nat_Age * Age_mean * Naturalness_1 + mu_nat_Income * Income_mean * Naturalness_1 + mu_walking_NR * Z_Mean_NR * WalkingDistance_1 + mu_walking_Age * Age_mean * WalkingDistance_1 + mu_walking_Income * Income_mean * WalkingDistance_1 - Rent_1) V[['alt2']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * Income_mean)* (b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + mu_nat_treated * Naturalness_2 *Dummy_Treated + mu_nat_no_info * Naturalness_2 * Dummy_no_info + mu_nat_vol_treated * Naturalness_2 * Dummy_Vol_Treated + mu_walking_treated * WalkingDistance_2 *Dummy_Treated + mu_walking_no_info * WalkingDistance_2 * Dummy_no_info + mu_walking_vol_treated * WalkingDistance_2 * Dummy_Vol_Treated + mu_nat_NR * Z_Mean_NR *Naturalness_2 + mu_nat_Age * Age_mean * Naturalness_2 + mu_nat_Income * Income_mean * Naturalness_2 + mu_walking_NR * Z_Mean_NR * WalkingDistance_2 + mu_walking_Age * Age_mean * WalkingDistance_2 + mu_walking_Income * Income_mean * WalkingDistance_2 - Rent_2) V[['alt3']] = -(b_mu_rent + mu_rent_treated *Dummy_Treated + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_NR * Z_Mean_NR + mu_rent_Age * Age_mean + mu_rent_Income * Income_mean)* (b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + mu_nat_treated * Naturalness_3 *Dummy_Treated + mu_nat_no_info * Naturalness_3 * Dummy_no_info + mu_nat_vol_treated * Naturalness_3 * Dummy_Vol_Treated + mu_walking_treated * WalkingDistance_3 *Dummy_Treated + mu_walking_no_info * WalkingDistance_3 * Dummy_no_info + mu_walking_vol_treated * WalkingDistance_3 * Dummy_Vol_Treated + mu_ASC_sq_treated * Dummy_Treated + mu_ASC_sq_vol_treated * Dummy_Vol_Treated + mu_ASC_sq_no_info * Dummy_no_info + mu_ASC_NR * Z_Mean_NR + mu_ASC_Age * Age_mean + mu_ASC_Income * Income_mean + mu_nat_NR * Z_Mean_NR *Naturalness_3 + mu_nat_Age * Age_mean * Naturalness_3 + mu_nat_Income * Income_mean * Naturalness_3 + mu_walking_NR * Z_Mean_NR * WalkingDistance_3 + mu_walking_Age * Age_mean * WalkingDistance_3 + mu_walking_Income * Income_mean * WalkingDistance_3 - Rent_3) ### Define settings for MNL model component mnl_settings = list( alternatives = c(alt1=1, alt2=2, alt3=3), avail = 1, # all alternatives are available in every choice choiceVar = choice, V = V#, # tell function to use list vector defined above ) ### Compute probabilities using MNL model P[['model']] = apollo_mnl(mnl_settings, functionality) ### Take product across observation for same individual P = apollo_panelProd(P, apollo_inputs, functionality) ### Average across inter-individual draws - nur bei Mixed Logit! P = apollo_avgInterDraws(P, apollo_inputs, functionality) ### Prepare and return outputs of function P = apollo_prepareProb(P, apollo_inputs, functionality) return(P) } # ################################################################# # #### MODEL ESTIMATION ## # ################################################################# # # estimate model with bfgs algorithm mxl_wtp_case_d_rentX = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, estimate_settings=list(maxIterations=400, estimationRoutine="bfgs", hessianRoutine="analytic")) # ################################################################# # #### MODEL OUTPUTS ## # ################################################################# # apollo_saveOutput(mxl_wtp_case_d_rentX)