#### Apollo standard script ##### library(apollo) # Load apollo package database <- database_full %>% filter(!is.na(Treatment_A)) %>% mutate(Dummy_Treated = case_when(Treatment_A == "Treated" ~ 1, TRUE ~ 0), Dummy_Vol_Treated = case_when(Treatment_A == "Vol_Treated" ~ 1, TRUE ~ 0)) #initialize model apollo_initialise() ### Set core controls apollo_control = list( modelName = "MXL_wtp Case A", modelDescr = "MXL_wtp Case A", indivID ="id", mixing = TRUE, HB= FALSE, nCores = n_cores, outputDirectory = "Estimation_results/mxl" ) ##### Define model parameters depending on your attributes and model specification! #### # set values to 0 for conditional logit model apollo_beta=c(mu_natural = 15, mu_walking = -1, mu_rent = -2, ASC_sq = 0, mu_nat_T = 0, mu_wd_T= 0, mu_asc_T = 0, mu_nat_VT = 0, mu_wd_VT= 0, mu_asc_VT = 0, sig_natural = 15, sig_walking = 2, sig_rent = 2, sig_ASC_sq = 2) ### specify parameters that should be kept fixed, here = none apollo_fixed = c() ### Set parameters for generating draws, use 2000 sobol draws apollo_draws = list( interDrawsType = "sobol", interNDraws = n_draws, interUnifDraws = c(), interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"), intraDrawsType = "halton", intraNDraws = 0, intraUnifDraws = c(), intraNormDraws = c() ) ### Create random parameters, define distribution of the parameters apollo_randCoeff = function(apollo_beta, apollo_inputs){ randcoeff = list() randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent) randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc return(randcoeff) } ### validate apollo_inputs = apollo_validateInputs() apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ ### Function initialisation: do not change the following three commands ### Attach inputs and detach after function exit apollo_attach(apollo_beta, apollo_inputs) on.exit(apollo_detach(apollo_beta, apollo_inputs)) ### Create list of probabilities P P = list() #### List of utilities (later integrated in mnl_settings below) #### # Define utility functions here: V = list() V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 + mu_nat_T * Naturalness_1 * Dummy_Treated + mu_wd_T * WalkingDistance_1 * Dummy_Treated+ mu_nat_VT * Naturalness_1 * Dummy_Vol_Treated + mu_wd_VT * WalkingDistance_1 * Dummy_Vol_Treated - Rent_1) V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 + mu_nat_T * Naturalness_2 * Dummy_Treated + mu_wd_T * WalkingDistance_2 * Dummy_Treated + mu_nat_VT * Naturalness_2 * Dummy_Vol_Treated + mu_wd_VT * WalkingDistance_2 * Dummy_Vol_Treated - Rent_2) V[['alt3']] = -b_mu_rent*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + mu_asc_T * Dummy_Treated + mu_asc_VT * Dummy_Vol_Treated +mu_nat_T * Naturalness_3 * Dummy_Treated + mu_wd_T * WalkingDistance_3 * Dummy_Treated + mu_nat_VT * Naturalness_3 * Dummy_Vol_Treated + mu_wd_VT * WalkingDistance_3 * Dummy_Vol_Treated - Rent_3) ### Define settings for MNL model component mnl_settings = list( alternatives = c(alt1=1, alt2=2, alt3=3), avail = 1, # all alternatives are available in every choice choiceVar = choice, V = V#, # tell function to use list vector defined above ) ### Compute probabilities using MNL model P[['model']] = apollo_mnl(mnl_settings, functionality) ### Take product across observation for same individual P = apollo_panelProd(P, apollo_inputs, functionality) ### Average across inter-individual draws - nur bei Mixed Logit! P = apollo_avgInterDraws(P, apollo_inputs, functionality) ### Prepare and return outputs of function P = apollo_prepareProb(P, apollo_inputs, functionality) return(P) } # ################################################################# # #### MODEL ESTIMATION ## # ################################################################# # # estimate model with bfgs algorithm mxl_wtp_case_a = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs, estimate_settings=list(maxIterations=400, estimationRoutine="bfgs", hessianRoutine="analytic")) # ################################################################# # #### MODEL OUTPUTS ## # ################################################################# # apollo_saveOutput(mxl_wtp_case_a)