Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
manuscript_code
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maria Voigt
manuscript_code
Commits
2d8a0c0d
Commit
2d8a0c0d
authored
8 years ago
by
Maria Voigt
Browse files
Options
Downloads
Patches
Plain Diff
changing the scaling to abundance_model
away from pproc scripts
parent
e8fafa83
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/model_fitting/abundance_model.R
+123
-20
123 additions, 20 deletions
src/model_fitting/abundance_model.R
with
123 additions
and
20 deletions
src/model_fitting/abundance_model.R
+
123
−
20
View file @
2d8a0c0d
...
@@ -127,43 +127,146 @@ predictors_path <- path.to.current(indir, "predictors_observation", "rds")
...
@@ -127,43 +127,146 @@ predictors_path <- path.to.current(indir, "predictors_observation", "rds")
if
(
is_verbose
){
print
(
paste
(
"predictors-path"
,
predictors_path
))}
if
(
is_verbose
){
print
(
paste
(
"predictors-path"
,
predictors_path
))}
predictors
<-
readRDS
(
predictors_path
)
predictors
<-
readRDS
(
predictors_path
)
# calculate x and y center
geography
$
unscaled_x_center
<-
rowMeans
(
cbind
(
geography
$
x_start
,
geography
$
x_end
),
na.rm
=
T
)
geography
$
unscaled_y_center
<-
rowMeans
(
cbind
(
geography
$
y_start
,
geography
$
y_end
),
na.rm
=
T
)
#--------------------------------#
# Transform and scale predictors #
#--------------------------------#
# Transform predictors
predictors
[
predictors
$
predictor
==
"distance_PA"
,
"value"
]
<-
sqrt
(
predictors
[
predictors
$
predictor
==
"distance_PA"
,
"value"
])
predictors
[
predictors
$
predictor
==
"human_pop_dens"
,
"value"
]
<-
log
(
predictors
[
predictors
$
predictor
==
"human_pop_dens"
,
"value"
]
+
1
)
predictors
[
predictors
$
predictor
==
"deforestation_gaveau"
,
"value"
]
<-
sqrt
(
predictors
[
predictors
$
predictor
==
"deforestation_gaveau"
,
"value"
])
predictors
[
predictors
$
predictor
==
"plantation_distance"
,
"value"
]
<-
log
(
predictors
[
predictors
$
predictor
==
"plantation_distance"
,
"value"
]
+
1
)
predictors
[
predictors
$
predictor
==
"pulp_distance"
,
"value"
]
<-
log
(
predictors
[
predictors
$
predictor
==
"pulp_distance"
,
"value"
]
+
1
)
predictors
[
predictors
$
predictor
==
"palm_distance"
,
"value"
]
<-
log
(
predictors
[
predictors
$
predictor
==
"palm_distance"
,
"value"
]
+
1
)
# STARTING THE SCALING
# SCALE PREDICTORS
# these are the predictors that will be used in the model
# these are the predictors that will be used in the model
predictor_names
<-
c
(
"year"
,
"temp_mean"
,
"rain_var"
,
"rain_dry"
,
"dom_T_OC"
,
predictor_names_for_scaling
<-
c
(
"dem"
,
"slope"
,
"temp_mean"
,
"rain_dry"
,
"rain_var"
,
"peatswamp"
,
"lowland_forest"
,
"ou_killings"
,
"ou_killing_prediction"
,
"human_pop_dens"
,
"lower_montane_forest"
,
"deforestation_hansen"
,
"perc_muslim"
,
"peatswamp"
,
"lowland_forest"
,
"lower_montane_forest"
,
"human_pop_dens"
,
"ou_killing_prediction"
,
"road_dens"
,
"distance_PA"
,
"fire_dens"
,
"deforestation_hansen"
,
"perc_muslim"
)
"deforestation_gaveau"
,
"plantation_distance"
,
"pulp_distance"
,
"palm_distance"
,
"dom_T_OC"
,
"dom_T_PH"
)
# predictors used in model
predictor_names
<-
c
(
"year"
,
"temp_mean"
,
"rain_var"
,
"rain_dry"
,
"dom_T_OC"
,
"peatswamp"
,
"lowland_forest"
,
"lower_montane_forest"
,
"deforestation_hansen"
,
"human_pop_dens"
,
"ou_killing_prediction"
,
"perc_muslim"
)
predictors
<-
dplyr
::
select
(
predictors
,
id
,
predictor
,
unscaled_year
=
year
,
unscaled_value
=
value
)
# need to get rid of occurrence data
predictors
<-
predictors
%>%
inner_join
(
transects
,
by
=
"id"
)
# exclude aerial if that is needed
if
(
include_aerial
==
F
){
predictors
<-
filter
(
predictors
,
group
!=
"aerial"
)
}
# SCALE PREDICTORD
for
(
predictor_name
in
predictor_names_for_scaling
){
predictors
[
predictors
$
predictor
==
predictor_name
,
"value"
]
<-
as.numeric
(
as.vector
(
scale
(
predictors
[
predictors
$
predictor
==
predictor_name
,
"unscaled_value"
])))
}
geography
<-
dplyr
::
select
(
geography
,
-
year
)
predictors
$
year
<-
as.numeric
(
as.vector
(
scale
(
predictors
[
,
"unscaled_year"
]))
)
# delete all rows that have zero
if
(
is_verbose
){
print
(
"how many rows with na in scaled_value"
)
if
(
is_verbose
){
print
(
"how many rows with na in scaled_value"
)
nrow
(
predictors
[
is.na
(
predictors
$
scaled_
value
),
])}
nrow
(
predictors
[
is.na
(
predictors
$
value
),
])}
# deleting is.na values here
# deleting is.na values here
predictors
<-
predictors
[
!
is.na
(
predictors
$
scaled_value
),
]
predictors
<-
predictors
[
!
is.na
(
predictors
$
value
),
]
geography
<-
dplyr
::
select
(
geography
,
-
c
(
year
))
# Rename here1
# Rename here1
predictors_obs
<-
predictors
%>%
predictors_obs
<-
predictors
%>%
dplyr
::
filter
(
predictor
%in%
predictor_names
)
%>%
dplyr
::
filter
(
predictor
%in%
predictor_names
)
%>%
dcast
(
id
+
year
~
predictor
,
value.var
=
"
scaled_
value"
)
%>%
dcast
(
id
+
year
~
predictor
,
value.var
=
"value"
)
%>%
inner_join
(
geography
,
by
=
"id"
)
%>%
inner_join
(
geography
,
by
=
"id"
)
%>%
dplyr
::
select
(
-
group
)
%>%
dplyr
::
select
(
-
group
)
%>%
inner_join
(
transects
,
by
=
"id"
)
inner_join
(
transects
,
by
=
"id"
)
# SCALE YEAR
predictors_obs_unscaled
<-
predictors
%>%
scaled_year
<-
as.vector
(
scale
(
predictors_obs
$
year
))
dplyr
::
filter
(
predictor
%in%
predictor_names
)
%>%
predictors_obs
$
unscaled_year
<-
predictors_obs
$
year
dcast
(
id
+
unscaled_year
~
predictor
,
value.var
=
"unscaled_value"
)
predictors_obs
$
year
<-
as.numeric
(
scaled_year
)
# calculate x and y center
predictors_obs
$
x_center
<-
rowMeans
(
cbind
(
predictors_obs
$
x_start
,
predictors_obs
$
x_end
),
na.rm
=
T
)
names
(
predictors_obs_unscaled
)[
-
c
(
1
,
2
)]
<-
paste0
(
"unscaled_"
,
names
(
predictors_obs_unscaled
)[
-
c
(
1
,
2
)])
predictors_obs
$
y_center
<-
rowMeans
(
cbind
(
predictors_obs
$
y_start
,
predictors_obs
$
y_end
),
na.rm
=
T
)
predictors_obs
<-
left_join
(
predictors_obs
,
predictors_obs_unscaled
,
by
=
"id"
)
# scale x and y center
predictors_obs
$
x_center
<-
as.numeric
(
as.vector
(
scale
(
predictors_obs
[
,
"unscaled_x_center"
])))
predictors_obs
$
y_center
<-
as.numeric
(
as.vector
(
scale
(
predictors_obs
[
,
"unscaled_y_center"
])))
# work on aerial transects
aerial_predictors_obs
<-
dplyr
::
filter
(
predictors_obs
,
group
==
"aerial"
)
# density
aerial_predictors_obs
$
ou_dens
<-
(
aerial_predictors_obs
$
nr_nests
/
(
aerial_predictors_obs
$
length_km
*
ESW_aerial
*
2
))
*
(
1
/
(
aerial_predictors_obs
$
nest_decay
*
NCS
*
PNB
))
# offset
aerial_predictors_obs
$
offset_term
<-
log
(
aerial_predictors_obs
$
length_km
*
ESW_aerial
*
2
*
aerial_predictors_obs
$
nest_decay
*
NCS
*
PNB
)
# work on ground transects
other_predictors_obs
<-
filter
(
predictors_obs
,
group
!=
"aerial"
)
# density
other_predictors_obs
$
ou_dens
<-
(
other_predictors_obs
$
nr_nests
/
(
other_predictors_obs
$
length_km
*
ESW
*
2
))
*
(
1
/
(
other_predictors_obs
$
nest_decay
*
NCS
*
PNB
))
# offset
other_predictors_obs
$
offset_term
<-
log
(
other_predictors_obs
$
length_km
*
ESW
*
2
*
other_predictors_obs
$
nest_decay
*
NCS
*
PNB
)
names_predictors_obs
<-
names
(
other_predictors_obs
)
# bind the two together
predictors_obs
<-
aerial_predictors_obs
%>%
bind_rows
(
other_predictors_obs
)
%>%
arrange
(
id
)
%>%
dplyr
::
select
(
id
,
group
,
x_start
:
LU
,
length_km
:
nest_decay
,
year
,
deforestation_hansen
:
temp_mean
,
x_center
,
y_center
,
unscaled_year
:
unscaled_temp_mean
,
unscaled_x_center
,
unscaled_y_center
,
ou_dens
,
offset_term
)
%>%
as.data.frame
(
.
)
if
(
is_verbose
){
print
(
"look at predictors_obs"
)
if
(
is_verbose
){
print
(
"look at predictors_obs"
)
str
(
predictors_obs
)
str
(
predictors_obs
)
summary
(
predictors_obs
)}
summary
(
predictors_obs
)}
# now exclude the year that needs to be excluded
# now exclude the year that needs to be excluded
if
(
!
is.na
(
exclude_year
)){
if
(
!
is.na
(
exclude_year
)){
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment