diff --git a/src/model_fitting/abundance_model.R b/src/model_fitting/abundance_model.R index 9ccafdc7b3e7e50abfb3b160f0995b75300fa42b..a2492f716d75943043f7916c6a69d6fe7983afd1 100644 --- a/src/model_fitting/abundance_model.R +++ b/src/model_fitting/abundance_model.R @@ -338,8 +338,8 @@ if (!is.na(exclude_rand)){ ids_to_exclude <- sample(predictors_obs$id, size = nrow(predictors_obs)/100 * exclude_rand_perc, replace = FALSE) - predictors_excluded <- predictors_obs[predictors_obs$bin_id %in% ids_to_exclude, ] - predictors_obs <- predictors_obs[!predictors_obs$bin_id %in% ids_to_exclude, ] + predictors_excluded <- predictors_obs[predictors_obs$id %in% ids_to_exclude, ] + predictors_obs <- predictors_obs[!predictors_obs$id %in% ids_to_exclude, ] nr_excluded <- nrow(predictors_excluded) } @@ -516,7 +516,7 @@ results_res <- foreach(i = 1:nrow(all_model_terms), predictors_excluded_pred <- predictors_excluded predictors_excluded_pred$offset_term <- 0 prediction_transect_excluded <- predict.glm(res, - newdata = predictors_excluded, + newdata = predictors_excluded_pred, type = "response") cross_lm = lm(log(predictors_excluded$ou_dens+ 1) ~ log(prediction_transect_excluded + 1))