# -*- coding: utf-8 -*- """ Spyder Editor # script to prepare the grid with the resource use information # in the output file we will have a # a 1 at the first position if pixel has to be discarded # a 2 at the first position if the pixel is considered # a 1 at the second position for IDN # a 2 at the second position for MYS # a 0 - 5 at the 3rd position depending on the resource use category # the grid_id from the 4rth to the 10th position (6 positions) # # we will now clip with populations and then also do this in the # other resource use table, let's see how this looks like """ import numpy as np import MacPyver as mp import os """ # absence os.system("gdal_rasterize \ -l absence_diss_exp \ -burn 1 \ -ot Float32 \ -te -1751798.359 1267454.241 -629798.359 2560454.241 -ts 1122 1293 \ /homes/mv39zilo/work/Borneo/data/response/cleaned_data/absence_shape/absence_shape_rep_expanded_22_08_17.shp \ /homes/mv39zilo/work/Borneo/data/response/cleaned_data/absence_shape/absence_shape_rep_expanded_22_08_17.tif") os.system("gdal_rasterize \ -l absence_shape_rep_expanded_22_08_17 \ -burn 1 \ -ot Float32 \ -ts 1122 1293 \ /homes/mv39zilo/work/Borneo/data/response/cleaned_data/absence_shape/absence_shape_rep_expanded_22_08_17.shp \ /homes/mv39zilo/work/Borneo/data/response/cleaned_data/absence_shape/absence_shape_rep_expanded_22_08_17.tif") os.system("gdalwarp \ -t_srs '+proj=aea +lat_1=7 +lat_2=-32 +lat_0=-15 +lon_0=125 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs' \ -ot Float64 -r bilinear \ -te -1751798.359 1267454.241 -629798.359 2560454.241 \ -ts 1122 1293 \ -overwrite \ /homes/mv39zilo/work/Borneo/data/response/cleaned_data/absence_shape/absence_shape_rep_expanded_22_08_17.tif \ /homes/mv39zilo/work/Borneo/data/response/cleaned_data/absence_shape/absence_shape_expanded_22_08_17_repro_res.tif" ) os.system("gdalwarp \ -t_srs '+proj=aea +lat_1=7 +lat_2=-32 +lat_0=-15 +lon_0=125 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs' \ -ot Float64 -r near \ -te -1751798.359 1267454.241 -629798.359 2560454.241 \ -ts 1122 1293 \ -overwrite \ /homes/mv39zilo/work/Borneo/data/future/grid.tif \ /homes/mv39zilo/work/Borneo/data/future/grid_repro_res.tif" ) os.system("gdalwarp \ -t_srs '+proj=aea +lat_1=7 +lat_2=-32 +lat_0=-15 +lon_0=125 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs' \ -ot Float64 -r near \ -te -1751798.359 1267454.241 -629798.359 2560454.241 \ -ts 1122 1293 \ -overwrite \ /homes/mv39zilo/work/Borneo/data/predictors/cleaned_data/cleaned_predictors/dem.tif \ /homes/mv39zilo/work/Borneo/data/predictors/cleaned_data/cleaned_predictors/dem_repro_res.tif" ) """ absence_path = "/homes/mv39zilo/work/Borneo/data/response/cleaned_data/absence_shape/absence_shape_expanded_22_08_17_repro_res.tif" absence = mp.tiff.read_tif(absence_path, 1) grid_layer_path = "/homes/mv39zilo/work/Borneo/data/future/grid_repro_res.tif" grid = mp.tiff.read_tif(grid_layer_path, 1) #grid = np.where(absence == 0, grid, 0) np.unique(grid) # now assigning number for each resource use # 0 - absence # 1 - plantation # 2 - deforestation # 3 - logging # 4 - primary forest < 750m # 5 - primary forest > 750 # 6 - regrowth # 7 - plantations before 2000 # 8 - other gaveau_defor_path = "/homes/mv39zilo/work/Borneo/data/predictors/raw_data/Remaining_forest_in_2015_and_deforestation_1973-2015/REGIONBorneo_FCDefDeg_1973to2015_CIFOR_repro_res.tif" gaveau_defor_raw = mp.tiff.read_tif(gaveau_defor_path, 1) gaveau_deforested = np.where((gaveau_defor_raw > 6 ) & (gaveau_defor_raw < 10), 1, 0) gaveau_logged = np.where(gaveau_defor_raw == 2, 1, 0) gaveau_primary_forest = np.where(gaveau_defor_raw == 1, 1, 0) gaveau_regrowth = np.where(gaveau_defor_raw == 4, 1, 0) #plantation plantation_path = "/homes/mv39zilo/work/Borneo/data/predictors/raw_data/Land_cover_trajectory_before_oil-palm_and_pulpwood_establishment/raster_plantation.tif" plantations = mp.tiff.read_tif(plantation_path, 1) # old plantations old_plantations_path = "/homes/mv39zilo/work/Borneo/data/predictors/raw_data/Land_cover_trajectory_before_oil-palm_and_pulpwood_establishment/raster_plantation_old_repro_res.tif" old_plantations = mp.tiff.read_tif(old_plantations_path, 1) dem_path = "/homes/mv39zilo/work/Borneo/data/predictors/cleaned_data/cleaned_predictors/dem_repro_res.tif" dem = mp.tiff.read_tif(dem_path, 1) # elevation # --> how much of primary forest in high elevation # we can save some computing time by only considering # the grid and not everything, because abundance will only be # in rid grid = np.where((plantations == 1) & (grid == 1), 1 , grid) grid = np.where((plantations == 0) & (gaveau_deforested == 1)& (grid == 1), 2 , grid) # 3 logged grid = np.where((plantations == 0) & (gaveau_deforested == 0)& (gaveau_logged == 1) & (grid == 1), 3 , grid) # 4 primary forest grid = np.where((plantations == 0) & (gaveau_deforested == 0)& (gaveau_logged == 0) & (gaveau_primary_forest == 1) & (grid == 1), 4 , grid) # add here primary forest at high altitudes # because everywhere where we have primary forest # we no longer have a 1 in grid but a six we do it differently # 5 primary montane grid = np.where((grid == 4) & (dem > 750), 5, grid) # 6 regrowth grid = np.where((plantations == 0) & (gaveau_deforested == 0)& (gaveau_logged == 0) & (gaveau_primary_forest == 0) & (gaveau_regrowth ==1) & (grid == 1), 6 , grid) # 7 is old plantations grid = np.where((plantations == 0) & (gaveau_deforested == 0)& (gaveau_logged == 0) & (gaveau_primary_forest == 0) & (gaveau_regrowth == 0) & (old_plantations == 1) & (grid == 1), 7 , grid) # 8 is other grid = np.where((plantations == 0) & (gaveau_deforested == 0)& (gaveau_logged == 0) & (gaveau_primary_forest == 0) & (gaveau_regrowth ==0) & (grid == 1), 8, grid) np.unique(grid) mp.tiff.write_tif(file_with_srid = grid_layer_path, full_output_name = "/homes/mv39zilo/work/Borneo/data/resource_use/resource_use_grid.tif", data = grid, dtype = 0) # grid map with four categories # 0 - absence - 0 # 1 - plantation - 1 # 2 - deforestation - 1 # 3 - logging - 1 # 4 - primary forest < 750m - 2 # 5 - primary forest > 750 - 2 # 6 - regrowth - 2 # 7 - plantations before 2000 - 3 # 8 - other - 3 grid_map = np.where((grid <= 2) & (grid > 0), 1, 0) grid_map = np.where((grid <= 3) & (grid > 2), 2, grid_map) grid_map = np.where((grid <= 6) & (grid > 3), 3, grid_map) grid_map = np.where((grid <= 8) & (grid > 6), 4, grid_map) # need to clip this with the area in which we have orangutans in 1999 year = 1999 abundance_path = "/homes/mv39zilo/work/Borneo/analysis/model_prep_and_running/results/abundMod/testing_ae_and_absence/pipeline_results/ppln_ae75m_50-2017-02-28T18-00-52/prediction_map_" + str(year) + "_2017-02-28_repro_res.tif" abundance = mp.tiff.read_tif(abundance_path, 1) #grid_map = np.where(abundance > 0.000001, grid_map, 0) np.unique(grid_map) mp.tiff.write_tif(file_with_srid = grid_layer_path, full_output_name = "/homes/mv39zilo/work/Borneo/data/resource_use/resource_use_grid_map.tif", data = grid_map, dtype = 0) # ignite talk map pop_path = "/homes/mv39zilo/work/Borneo/data/populations_phva/meta_kalsarsab_20002015_diss_repro_res.tif" pop = mp.tiff.read_tif(pop_path, 1) grid_map = np.where((grid <= 3) & (grid > 0), 1, 0) grid_map = np.where((grid <= 5) & (grid > 3), 2, grid_map) grid_map = np.where((grid <= 8) & (grid > 6), 3, grid_map) # need to clip this with the area in which we have orangutans in 1999 year = 1999 abundance_path = "/homes/mv39zilo/work/Borneo/analysis/model_prep_and_running/results/abundMod/testing_ae_and_absence/pipeline_results/ppln_ae75m_50-2017-02-28T18-00-52/prediction_map_" + str(year) + "_2017-02-28_repro_res.tif" abundance = mp.tiff.read_tif(abundance_path, 1) grid_map = np.where(pop>0, grid_map, 0) grid_map = np.where(abundance > 0.001, grid_map, 0) np.unique(grid_map) mp.tiff.write_tif(file_with_srid = grid_layer_path, full_output_name = "/homes/mv39zilo/work/Borneo/data/resource_use/resource_use_grid_map_ignite.tif", data = grid_map, dtype = 0) """ # test indir = "/homes/mv39zilo/work/Borneo/analysis/model_prep_and_running/results/resource_use" abundance_layer_path = indir + "/abundance_pred_2015_no_absence.tif" # read the data abundance_data = mp.tiff.read_tif(abundance_layer_path, 1) test = np.where((grid == 0) & (abundance_data > 0), abundance_data, 0) np.sum(test) mp.tiff.write_tif(file_with_srid = grid_layer_path, full_output_name = "/homes/mv39zilo/work/Borneo/data/bootstrap/test.tif", data = test, dtype = 4) """ # rasterize borneo with info on country or province """ os.system("gdal_rasterize \ -a ID_1 \ -l Borneo \ -ot Float32 \ -te -1751798.359 1267454.241 -629798.359 2560454.241 -ts 1122 1293 \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo.shp \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo_province.tif") os.system("gdal_rasterize \ -a ID_1 \ -l Borneo \ -ot Float32 \ -ts 1122 1293 \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo.shp \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo_province.tif") os.system("gdalwarp \ -r near -t_srs '+proj=aea +lat_1=7 +lat_2=-32 +lat_0=-15 +lon_0=125 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs' \ -te -1751798.359 1267454.241 -629798.359 2560454.241 -ts 1122 1293 \ -overwrite \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo_province.tif \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo__province_repro_res.tif") os.system("gdal_rasterize \ -a ID_0 \ -l Borneo \ -ot Float32 \ -te -1751798.359 1267454.241 -629798.359 2560454.241 -ts 1122 1293 \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo.shp \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo_country.tif") os.system("gdal_rasterize \ -a ID_0 \ -l Borneo \ -ot Float32 \ -ts 1122 1293 \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo.shp \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo_country.tif") os.system("gdalwarp \ -r near -t_srs '+proj=aea +lat_1=7 +lat_2=-32 +lat_0=-15 +lon_0=125 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs' \ -te -1751798.359 1267454.241 -629798.359 2560454.241 -ts 1122 1293 \ -overwrite \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo_country.tif \ /homes/mv39zilo/work/Borneo/data/auxiliary_additional_data/Borneo_shape/cleaned_data/Borneo_country_repro_res.tif") """