Persefone.jl User Manual

Daniel Vedder, Marco C. Matthies, Guy Pe’er

http://persefone-model.eu

January 15, 2025

v0.6.0

http://persefone-model.eu

Contents

Contents
I Introduction
Il User guide
1 The Persefone.jl Package
1.1 Installation L e e e e e
1.2 Running from the command line e e e e e e e e
1.3 Running from within Julia L e
2 Graphical User Interface
2.1 Quickstart L e e e e e
2.2 Runningfromtherepo e e e e e e e e
2.3 Userinterface o e e e e e e e e e e e
Control bar L e e e e
Menu bar L e e e e e e
3 Configuration
Il Scientific documentation
4 Farm management
4.1 Crop rotations and management L L L e e e e e e e e e e
4.2 Environmental regulations L L L e
5 Crop models
5.1 ALMaSS e
5.2 AQUACIOP . . . v v e e e e e e e e e e e e e e e
6 Skylark
6.1 1. PUMPOSE . . . v o e e e e e e e e e e e e e e e e e e e
6.2 2. Entities, state variables, andscales L e e
2.1 Landscape o o e e e e e e e e e e
2.2 AniMals . . . L e e e e e e e e e
6.3 3. Process overview and scheduling L e e e e
6.4 4. Design concepts e e e e e e e e e e e e e e e e e
4.1 Basic principles L e e e e e e e e

11

12
12
12

13
13
13

CONTENTS

6.5
6.6
6.7

6.8

4.2 EMErgence o e e e e e e e e e e e e e e e e e e
4.3 Adaptation e e e e e e e e e e e e e e e e e
4.4 0bjectives L e e e e
4.5Learning e e e e e e e e e e
4.6 Prediction e e e e e
4.7 SENSING . v v e
4.8 Interaction L L e e e e e e
4.9 Stochasticity L e e e e e e
4.10 Collectives o e e e
4.11 Observation L e e e e e e e
5. Initialisation L L e e e e e e
6. Inputdata e e e e e e e e e e
7.Submodels . .. e e e e e e e e e e e
7.1 Territory formation L L e e e e e e e e e
7.2 Juvenile mortality L L L e e e e e e e
8. References L e e e e

IV Developer guide

7 Developing Persefone

7.1

7.2
7.3

Setting up L e e e e
Visual Studio Code on Windows L e e e e e e e
Emacson Linux L e e e e e e e e e
Development workflow L e e e e e e e e e e e
Important libraries L e e e e
Revise.jl . . . o e e e
Test . . o e e e e e e e
Documenter.jl L e e e e e e e e e e e e
Graphics and userinterface L L e e e e e e e
Unitful.jl . . . o o o e e e e e
Dates e e e e e e e e e

8 Adapting Persefone

Changing the parameters e e e e e e e e e e
Changing theregion L e e e e
Adding new animal species L e e e e e e e e e
Adding NewW Crop SPECIES v i i e e e e e e e e e e e e e e e e e
Adding new farmer behaviour L L L e e e e e e
Adding a new submodel L L e e e e e e e
Linking to another model L.

9 Source code architecture

10 Model components

11 Important implementation details

The model object L e e e e e
Model configuration/the @parammacroo e e e e
Outputdata e e e e e e e e e e e e
Farmevents L L e e e
Random numbersand logging e e e e e e

16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18

20

21
21
21
21
22
22
22
22
23
23
23
23

24
24
24
24
24
24
24
25

26

27

CONTENTS

12

13

14

15

16

17

18

19

Maps and weather data
12.1 Land COVEr MAPS .« v v v v e

12.2 Field ID maps
12.3 Soil data . .
12.4 Weather data

Defining new species

Software API

Simulation

14.1 Persefone.jl
14.2 simulation.jl
14.3 landscape.jl
14.4 weather.jl .

Input and Output
15.1 input.jl . . .
15.2 output.jl . .
15.3 makieplots.jl

Nature submodel
16.1 nature.jl . .
16.2 macros.jl . .
16.3 individuals.jl
16.4 populations.jl

16.5 ecologicaldata.jl L e e e e e e

Species models
17.1 Skylark . . .

Crop submodel
18.1 farmplot.jl .
18.2 crops.jl . . .

Farm submodel
19.1 farm.jl . . .

31
31
31
32
32

34

36

37
37
39
41
44

47
47
48
51

53
53
55
63
64
67

69
69

72
72
74

75

Part |

Introduction

CONTENTS 2

J

Figure 0.1: Persefone.jl splash screen

Persefone.jl models agricultural practice and how it impacts animal species at a landscape scale. It includes a
farm submodel, a crop growth submodel, and individual-based models of multiple indicator species. Its aim is
to investigate how changes in farm operations (e.g. through policy changes in the CAP) influence biodiversity.

The model is open-source software available on Gitlab.

This documentation was last updated on 2025-01-15 for Persefone.jl v0.6.0 (commit {324167).

https://persefone-model.eu
https://persefone-model.eu
https://git.idiv.de/persefone/persefone-model
https://git.idiv.de/persefone/persefone-model/-/commit/f324167

Part i

User guide

Chapter 1

The Persefone.jl Package

This page describes how to run Persefone.jl as a command line application or Julia package, which is the default
mode. To use the model with a graphical user interface, see here.

1.1 Installation

For more detailed installation instructions, see here.

Install the latest version of the Julia programming language (1.10+4). The recommended editors are VVSCode or
Emacs. To install the package dependencies, open a Julia REPL in this folder and run:

using Pkg
Pkg.activate(".")
Pkg.instantiate()

1.2 Running from the command line
This is the normal mode of operation. Simply execute run. jl in a terminal, typically like so (in Linux):

> julia run.jl -c <config>

where <config> specifies the configuration file to use. The recommended workflow is to copy scr/parameters.toml
to a location of your choice and edit the copy to suit your requirements. The adapted config file can then be
passed to run. jl. (If no configuration file is specified, Persefone will run with its default settings.)

The full list of commandline arguments is:

usage: run.jl [-c CONFIGFILE] [-s SEED] [-o OUTDIR] [-1 LOGLEVEL]
[--version] [-h]

optional arguments:
-c, --configfile CONFIGFILE
name of the configuration file
-s, --seed SEED inital random seed (type: Int64)
-0, --outdir OUTDIR location of the output directory
-1, --loglevel LOGLEVEL
verbosity: "debug", "info", or "quiet"

gui.md
developing.md
https://julialang.org/downloads/
https://www.julia-vscode.org/
https://www.emacswiki.org/emacs/JuliaProgrammingLanguage

CHAPTER 1. THE PERSEFONE.JL PACKAGE 5

--version
-h, --help

show version information and exit
show this help message and exit

To run the test suite, switch to the test directory and execute runtests.jl.

If you are on Linux or MacOS, you can also use make:

make
make
make
make
make

V V V V V

run
test
profile
docs
release

#
#
#
#
#

run a simulation with default values
run the test suite

run and profile a default simulation
build the documentation

create a release

1.3 Running from within Julia

To use the model from within Julia (either inside an interactive REPL or if you want to import it from your own
software), do the following:

using Pkg
Pkg.activate(".") # assuming you're in the Persefone root folder

using Persefone

You can then access all Persefone functions, such as simulate, initialise, stepsimulation!, simulate!, or
visualiseoutput. (See src/Persefone.j1 for a list of exported functions.)

Chapter 2

Graphical User Interface

Due to the computational demands of simulating many individuals at high temporal and spatial resolution,
Persefone.jl is primarily designed to be run non-interactively on an HPC. However, to allow interactive ex-
ploratory simulations to be conducted while learning or developing the model, a graphical user interface is
available as an additional package: Persefone Desktop.

2.1 Quick start

Follow these instructions if you simply want to try out the software as a user. If you want to play around with
the source code, see the next section.

1. Download the Julia programming language and install it on
your computer.

1. StartJulia. This should launch a commandline interface/REPL.

2. Execute the following commands (copy-and-paste should work):

using Pkg
Pkg.add(url="https://git.idiv.de/persefone/persefone-model.git")
Pkg.add(url="https://git.idiv.de/persefone/persefone-desktop.git")
using PersefoneDesktop

ENV["QSG_RENDER LOOP"] = "basic" # only needed on Windows

launch()

2.2 Running from the repo

Follow these instructions if you want to get to grips with the source code. For more detailed installation
instructions, see here.

To install: Install Julia and download/clone the repository. Open a Julia REPL in the downloaded folder and
execute the following to install all dependencies:

https://git.idiv.de/persefone/persefone-desktop
https://julialang.org/downloads/
developing.md
https://julialang.org/downloads/
https://git.idiv.de/persefone/persefone-desktop

CHAPTER 2. GRAPHICAL USER INTERFACE 7

Persefone.jl Desktop

Simulation Data Help

06 June 2022

Figure 2.1: Persefone.jl Desktop screenshot

using Pkg
Pkg.activate(".")
Pkg.instantiate()

To run: Run desktop. jl. Alternatively, open a Julia REPL in this folder and run:

using Pkg
Pkg.activate(".")
using PersefoneDesktop
launch()

Note: Due to the necessary pre-compilation done by Julia, installing and launching the application can take
quite a long time. (Start-up time with desktop.jl is currently about 2 minutes.) We will reduce this as much
as possible in future releases.

CHAPTER 2. GRAPHICAL USER INTERFACE 8

2.3

User interface

The main window component is the map view. This displays a land cover map of the simulated region: dark
green are forests, light green grassland, yellow fields, red built-up areas and blue water. On it, little circles
show the position of individual animals, with different species denoted by different colours.

Control bar

Back button: Rewind the simulation by one day.

Step button: Advance the simulation by one day.

Run button: Run the simulation until the button is pressed again or the end date is reached.
Progress bar: Shows the percentage of time elapsed between the start and end dates of the simulation.
Speed slider: Set the time delay between each simulation step when running.

Date: Shows the simulation date currently displayed on the map.

Menu bar

Simulation:

Data:

Help:

New simulation: Reset the model and start over.

Configure simulation: Change the model settings (not yet implemented).
Load saved state: Load a model object file saved by a previous simulation run.
Save current state: Save a model object file for later use.

Quit: Close the application.

Show population graph: Show a window with a graph of population sizes over time in the current
model run.

Save simulation output: Save the model output data to file (saves both raw CSV data and generated
graphics).

Documentation: Open the Persefone.jl online documentation in a browser.
Website: Open the main Persefone.jl website in a browser.

About: Show a window with core information about the application.

Chapter 3

Configuration

Persefone requires three input files: a configuration file and two map files. How to generate the map files is doc-
umented elsewhere. The configuration file defines parameter values and looks like this (see src/parameters.toml
for the default):

Persefone.jl - a model of agricultural landscapes and ecosystems in Europe.

###

This is the default configuration file for Persefone, containing all model parameters.
The syntax is described here: https://toml.io/en/

[core]

configfile = "src/parameters.toml" # location of the configuration file
outdir = "results" # location and name of the output folder

overwrite = "ask" # overwrite the output directory? (true/false/"ask")

logoutput = "both" # log output to screen/file/both

csvoutput = true # save collected data in CSV files

visualise = true # generate result graphs

storedata = true # keep collected data in memory

loglevel = "debug" # verbosity level: "debug", "info", "warn"
processors = 2 # number of processors to use on parallel runs
seed = 2 # seed value for the RNG (0 -> random value)
startdate = 2022-01-01 # first day of the simulation

enddate = 2022-12-31 # last day of the simulation

[world]

landcovermap = "data/regions/jena/landcover.tif" # location of the landcover map
farmfieldsmap = "data/regions/jena/fields.tif" # location of the field geometry map
weatherfile = "data/regions/jena/weather.csv" # location of the weather data file

[farm]

farmmodel = "FieldManager" # which version of the farm model to use (not yet implemented)
[nature]

targetspecies = ["Wolpertinger", "Wyvern"] # list of target species to simulate
popoutfreq = "daily" # output frequency population-level data, daily/monthly/yearly/end/never
indoutfreq = "end" # output frequency individual-level data, daily/monthly/yearly/end/never

insectmodel = ["season", "habitat", "pesticides", "weather"] # factors affecting insect growth
[crop]

cropmodel = "almass" # crop growth model to use, "almass" or "aquacrop"

cropfile = "data/crops/almass/crop data general.csv" # file with general crop parameters

io.md
gis.md

CHAPTER 3. CONFIGURATION 10

growthfile = "data/crops/almass/almass crop growth curves.csv" # file with crop growth
< parameters

Parameter scanning

Part 11l

Scientific documentation

11

Chapter 4

Farm management

TODO

4.1 Crop rotations and management

4.2 Environmental regulations

12

Chapter 5

Crop models

TODO

5.1 ALMaSS

5.2 AquaCrop

13

Chapter 6

Skylark

Alauda arvensis is a common and charismatic species of agricultural landscapes. This animal model is one
component of the nature submodel of Persefone.jl.

The model description follows the ODD (Overview, Design concepts, Details) protocol (Grimm et al., 2006;
2010; 2020):

6.1 1. Purpose

The purpose of this animal model is to simulate the abundance and distribution of a population of Alauda
arvensis in response to farm management in Central European agricultural landscapes.

6.2 2. Entities, state variables, and scales

2.1 Landscape

The simulated landscape consists of a grid of pixels with a resolution of 10m and can have an extent of 20km?2-
200km? (approximately; depending on the chosen input map). Each pixel is assigned a land cover class. It may
also be associated with a farm plot, in which case it will contain information about the type and growth stage
of the crop planted here. Farm management determines which crops are grown when, and when disturbance
(e.g. mowing, harvesting, tillage) takes place.
2.2 Animals
The simulated individuals (a.k.a. agents) are mature skylarks. Each skylark is characterised by the following
variables:

* ID A unique identifier for this individual, which can be used to link it to its parents and its offspring.

¢ sex Male or female.

¢ phase The individual's current stage in the annual/life cycle. May be one of: migration, nonbreeding,
territorysearch, occupation, matesearch, nesting, breeding.

e position The individual's position in the simulated landscape.
* mate The ID of the individual with which this individual has mated this year, if any.

* territory A list of coordinates of the positions in the landscape that this individual claims as its nesting
and feeding territory.

14

architecture.html
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2010.08.019
https://doi.org/10.18564/jasss.4259
gis.html
management.html
species.html#Skylark

CHAPTER 6. SKYLARK 15

* nest A coordinate giving the location of the currently active nest.

¢ clutch The number of juvenile (i.e. not yet independent) skylarks that this individual is currently raising.

6.3 3. Process overview and scheduling

The simulation proceeds in time steps of one day. Every day, each individual executes the function associated
with their current life phase:

e migration: The individual is held in a separate data structure (apart from the model landscape) and
does nothing until its return date is reached. Then, it is re-introduced to the landscape and assigned the
phase territorysearch (for males) or matesearch (for females).

e territorysearch: Males return first from migration. If they already have a territory from a previous
year, they return to this. Otherwise, they move randomly through the landscape until they find a con-
tiguous territory that satisfies their habitat requirements. Once a male has a territory, it changes its
phase to occupation.

* matesearch: Females return later than males from their winter migration. If they already had a partner
the previous year, they have a given probability of remaining with this partner. Otherwise, they move
randomly through the landscape, looking for a male with a territory and without a partner. Once the
female has a partner, it changes its phase to nesting.

If an individual fails to find a territory or a mate, it changes its phase to nonbreeding once the breeding season
is over.

e occupation: The male moves at random about its territory until the breeding season is over. Then
it changes its phase to nonbreeding. (Note: Skylark males actively help with feeding their chicks.
However, feeding is only modelled indirectly here, through the process of habitat selection when the
male forms its territory - see section 4.1.)

* nesting: The female selects a suitable location within the male's territory for the nest. Building the nest
and laying eggs takes a number of days, during which she does nothing else. Then, she changes her
phase to breeding.

* breeding: The female checks for mortality. The probability of brood loss varies with the age of the clutch
and the nesting habitat. If and when the chicks reach independence (30 days after hatching), they are
instantiated as new individuals in the nonbreeding phase.

If a nest fails due to predation or disturbance, or a brood leaves the nest successfully, the female resets her
phase to nesting and begins again if the breeding season is not yet over. If it is, she changes her phase to
nonbreeding.

* nonbreeding: Non-breeding mature birds move randomly around the landscape, keeping close to other
individuals (flocking behaviour). Once their individual migration date is reached, they are removed from
the landscape until the following year (see above). Mature birds have a mortality probability for their
first summer, and others thereafter for each winter.

CHAPTER 6. SKYLARK 16

6.4 4. Design concepts

4.1 Basic principles

This model assumes that the two most important drivers of skylark distribution and abundance are habi-
tat availability and juvenile mortality (see literature below). The factors and processes affecting these
are therefore given the most attention in the model, while other factors and processes are only included su-
perficially, indirectly, or not at all. Specifically, this means that the phases territorysearch, nesting, and
breeding are the most relevant and detailed parts of the model, as these determine the selection of habitat
and the survival of offspring.

Furthermore, the model concentrates on predation and anthropogenic disturbance (through management ac-
tions such as mowing) as the main causes of juvenile mortality. Other causes, such as hunger or bad weather,
are currently ignored as they are usually not significant.

The focus on habitat availability and juvenile mortality opens up two avenues by which agricultural manage-
ment influences skylark populations. First, the farmers' choice of crops and date of sowing determines the
quality of the habitat when skylarks select a territory. (For example, unlike summer grain, winter grain is al-
ready so high and dense in spring that it is generally avoided for nesting.) Secondly, the frequency and timing
of management actions (especially mowing) is a major cause of brood loss. This means that there are direct
causal links between agriculture and population trends.

Concentrating on these two drivers allows the rest of the model to be kept simple, reducing both the scientific
complexity and computational costs. Thus, foraging movement (both during and after the breeding season)
can be ignored or represented as random movement, as it does not directly impact either of the drivers.
Likewise, chick growth and winter migration are represented very simply.

4.2 Emergence

Multiple patterns emerge from the basic principles outlined above. The most important are listed here:

* Territory size and population density: The model assumes that skylarks occupy only as much area
as they need to satisfy their nesting and foraging requirements, and that population size is limited by
the amount of available habitat. This means that territories in high-quality habitat are smaller than in
low-quality habitat. Scaling up, this leads to a pattern whereby population densities are highest in open
landscapes with a diversity of crops, grassland, semi-natural habitat, and lower in landscapes with low
habitat diversity or many woody features.

* Ecological traps: Jenny (1990) describes a strong ecological trap effect whereby skylarks avoid win-
ter grain crops, preferentially nesting in more open grassland sites. However, the mowing frequency
associated with modern agriculture means that nest loss in grassland is almost assured, since there is
insufficient time between two mowing dates to raise a brood. This means that landscape composition
leads skylarks to breed in habitats that have a high mortality, resulting in population declines.

4.3 Adaptation

In the model, skylarks primarily adapt to their surroundings by choosing suitable territories. These are chosen
by evaluating the quality of surrounding habitats for breeding and foraging, and occupying as much area as
needed to satisfy requirements (see section 7.1).

4.4 Objectives

Skylarks' main objective in the model is to have sufficient habitat available to raise a brood. Habitat quality is
calculated as a function of habitat type, vegetation height, vegetation cover, and distance to vertical structures
(see section 7.1).

CHAPTER 6. SKYLARK 17

4.5 Learning

The model includes no learning by individuals.

4.6 Prediction

The model includes no predictions by individuals.

4.7 Sensing

Skylarks can perceive the landscape structure in a given radius around them (habitat type, vegetation height
and cover). They can also see nearby conspecifics and are aware of the territories claimed by other individuals.
When mating, they recognise whether another individual already has a mate, and mated individuals share
information about their territory and brood status.

4.8 Interaction

The model includes two direct forms of interaction. First, during mating, females move around the landscape
looking for males who have a territory but no mate yet. Once they have found one, the two individuals set each
other as their mate. Secondly, after the breeding seasons, individuals move around the landscape, keeping
close to other individuals in their vicinity (flocking behaviour).

There are also indirect interactions, in that there is a competition for habitat (territory that has been claimed
by one male cannot be occupied by another) and males (males that have mated with one female will not mate
with another in the same season).

4.9 Stochasticity

Stochasticity is used when modelling mortality and movement. Predation mortality is modelled as an age- and
habitat-dependent probability, while migration mortality is a simple probability. Dispersal movement (when
searching for a territory or a mate) is modelled as a random walk, as it is assumed that skylarks are not
significantly impeded in their long-range movement by habitats that are unsuitable for foraging or nesting.
Foraging movement by the male and by non-breeding individuals is also random, as it is desirable to show
movement (to help model analysis) but unimportant to model this exactly.

4.10 Collectives
After the breeding season, skylarks move around in loose agglomerations (flocking behaviour). However, this
has no relevant ecological effect.

4.11 Observation

TODO

6.5 5. Initialisation

At the beginning of a model run, pairs of skylarks are created on grassland and agricultural land, keeping a
distance of 60m to vertical structures and allowing each pair approximately 3ha of suitable habitat (an average
territory size in agricultural landscapes).

For details, see the source code and the associated documentation.

https://git.idiv.de/persefone/persefone-model/-/blob/master/src/nature/species/skylark.jl?ref_type=heads
nature.html#populations.jl

CHAPTER 6. SKYLARK 18

6.6 6. Input data

The general input to Persefone (i.e. land use maps and weather data) is described here.

The following extract from the source code lists the species parameters and values used by the Skylark model,
based on the literature cited below:

@species Skylark begin

const
const

const
const
const

movementrange: :Length = 500m #XXX arbitrary
visionrange::Length = 200m #XXX arbitrary

eggtime::Int64 = 11 # days from laying to hatching
nestlingtime: :Int64 = 9 # days from hatching to leaving nest
fledglingtime: :Int64 = 21 # days from leaving the nest to independence

#XXX predation mortality should be habitat-dependent

const
const
const
const
const

const
const
const
const
const
const

const
const
const

eggpredationmortality::Float64 = 0.03 # per-day egg mortality from predation
nestlingpredationmortality::Float64 = 0.03 # per-day nestling mortality from predation
fledglingpredationmortality: :Float64 = 0.01 # per-day fledgling mortality from predation
firstyearmortality::Float64 = 0.38 # total mortality in the first year after independence
migrationmortality::Float64 = 0.33 # chance of dying during the winter

minimumterritory = 5000m2 # size of territory under ideal conditions
mindistancetoedge = 60m # minimum distance of habitat to vertical structures
maxforageheight = 50cm # maximum preferred vegetation height for foraging
maxforagecover = 0.7 # maximum preferred vegetation cover for foraging
nestingheight = (15cm, 25cm) # min and max preferred vegetation height for nesting
nestingcover = (0.2, 0.5) # min and max preferred vegetation cover for nesting

matefaithfulness = 0.5 # chance of a female retaining her previous partner
nestingbegin: :Tuple{Int64,Int64} = (April, 10) # begin nesting in the middle of April
nestbuildingtime: :UnitRange{Int64} = 4:5 # 4-5 days needed to build a nest (doubled for

— first nest)

const
const
end

eggsperclutch: :UnitRange{Int64} = 2:5 # eggs laid per clutch
nestingend::Int64 = July # last month of nesting

6.7 7. Submodels

7.1 Territory formation

TODO

7.2 Juvenile mortality

TODO

6.8 8. References

e Bauer, H.-G., Bezzel, E., & Fiedler, W. (Eds.). (2012). Das Kompendium der Vogel Mitteleuropas: Ein
umfassendes Handbuch zu Biologie, Gefahrdung und Schutz (Einbandige Sonderausg. der 2., vollstandig
Uberarb. und erw. Aufl. 2005). AULA-Verlag

e Delius, J. D. (1965). A Population Study of Skylarks Alauda Arvensis. Ibis, 107(4), 466-492.

gis.html
https://git.idiv.de/persefone/persefone-model/-/blob/master/src/nature/species/skylark.jl?ref_type=heads
https://doi.org/10.1111/j.1474-919X.1965.tb07332.x

CHAPTER 6. SKYLARK 19

* Donald et al. (2002). Survival rates, causes of failure and productivity of Skylark Alauda arvensis nests
on lowland farmland. Ibis, 144(4), 652-664.

¢ Glutz von Blotzheim, Urs N. (Ed.). (1985). Handbuch der Vogel Mitteleuropas. Bd. 10. Passeriformes
(Teil 1) 1. Alaudidae - Hirundidae. AULA-Verlag, Wiesbaden. ISBN 3-89104-019-9

¢ Jenny, M. (1990). Territorialitat und Brutbiologie der Feldlerche Alauda arvensis in einer intensiv genutzten
Agrarlandschaft. Journal fur Ornithologie, 131(3), 241-265.

¢ Jeromin, K. (2002). Zur Ernahrungsodkologie der Feldlerche (Alauda arvensis L. 1758) in der Reproduk-
tionsphase [Doctoral thesis]. Christian-Albrechts-Universitat zu Kiel.

e PUttmanns et al. (2022). Habitat use and foraging parameters of breeding Skylarks indicate no seasonal
decrease in food availability in heterogeneous farmland. Ecology and Evolution, 12(1), e8461.

https://doi.org/10.1046/j.1474-919X.2002.00101.x
https://doi.org/10.1007/BF01640998
https://macau.uni-kiel.de/receive/diss_mods_00000968
https://doi.org/10.1002/ece3.8461

Part IV

Developer guide

20

Chapter 7

Developing Persefone

7.1 Setting up

If you haven't worked with Julia before, here are detailed instructions for how to set up your development
environment. The main development is currently done on Linux (and as the primary execution platform will be
an HPC, Linux compatibility is important), but developing on Windows works too.

Visual Studio Code on Windows

1. Download and install Julia, git and Visual Studio Code.

2. Install the Julia extension for VS Code: In VS Code, open the extensions pane (Ctrl+Shift+X). Search
for and install Julia Language Support.

3. Clone the Gitlab repository: In VS Code, open the source control pane (Ctrl+Shift+G). Click on Clone
and enter the repo URL. Then select a folder on your computer to download the files into, and let VS
Code open the project once it has been cloned.

4. Start a Julia REPL: In VS Code, bring up the command palette (Ctr1+Shift+P). Execute the command
Julia: Start REPL.Theninstall all dependencies of Persefone by runningusing Pkg; Pkg.activate(".");
Pkg.instantiate(). (This will take some time.)

5. Open thefile run.jl and click Execute (triangular button in the top right). The source code will compile
(this can take a lot of time the first time you do it) and run a default simulation.

6. Further steps: You may want to familiarise yourself with how to use git with VS Code. You may also want
to clone the Persefone Desktop repository (repeat steps 3 to 5).

Emacs on Linux
You can of course also use VS Code on Linux. In that case, follow the instructions above.

Make sure you have git and Julia installed. Git should be in your distro's repos (e.g. sudo apt install

git). To install Julia, download the binary and unpack it. For greater ease of use, copy the unpacked files to
/usr/local/lib/julia (orsimilar) and create a symlink to the executable: sudo 1n -s /usr/local/lib/julia/bin/julia
/usr/local/bin/julia. Then go the to folder that you want to use for development and run git clone
https://git.idiv.de/persefone/persefone-model.git . in your terminal.

There are a couple of addons that make working with Julia much nicer in Emacs:

1. julia-mode gives syntax highlighting. Install with M-x package-install julia-mode.

21

https://julialang.org/downloads/
https://git-scm.com/download/win
https://code.visualstudio.com/
https://www.julia-vscode.org/
https://git.idiv.de/persefone/persefone-model.git
https://code.visualstudio.com/docs/sourcecontrol/overview
https://git.idiv.de/persefone/persefone-desktop.git
https://julialang.org/downloads/

CHAPTER 7. DEVELOPING PERSEFONE 22

2. julia-snail provides IDE-like features, especially a fully-functional REPL and the ability to evaluate
code straight from inside a buffer. Note that the installation can be somewhat tricky. You first need
to manually install all the dependencies of its dependency vterm, then install vterm itself with M-x
package-install vterm, before you can do M-x package-install julia-snail. Then add it to your
init.el with (require 'julia-snail) and (add-hook 'julia-mode-hook #'julia-snail-mode).

3. company-mode integrates with Snail to give code completion. Install withM-x package-install company,
then add (add-hook 'julia-mode-hook #'company-mode) and (global-set-key (kbd "C-<tab>")
'company-complete) to your init.el.

4. magit is a great git interface for Emacs. Install with M-x package-install magit and add (global-

set-key (kbd "C-x g") 'magit-status) toyour init.el.

7.2 Development workflow

1. Pull the current version from the master branch on Gitlab: https://git.idiv.de/persefone/persefone-model.

2. If you are working on a new feature, create a new branch to avoid breaking the master branch. (The
master branch on Github should always be in a runnable and error-free state.)

3. Implement your changes.

4. Run an example simulation and the test suite to make sure everything works without crashing (make
run and make test on Linux, or execute run.jl and test/runtests.jl manually.)

5. Commit your work frequently, and try to keep each commit small. Don't forget to add relevant tests to
the test suite.

6. Once your satisfied with your work, do another pull/merge from the master branch in case somebody
else changed the branch in the meantime. Then merge your work into master and push to the Gitlab
server.

7. Repeat:-)

The Gitlab issue tracker can be used to create, discuss, and assign tasks, as well as to monitor progress towards
milestones/releases. Once we have a first release, we will start using semantic versioning and a changelog.

7.3 Important libraries

Revise.jl

Revise.jl allows one to reload code without restarting the Julia interpreter. Get it with Pkg.add("Revise"),
then add using Revise to .julia/config/startup.jl to have it automatically available.

Test

Persefone uses the inbuilt Julia testing framework. All new functions should have appropriate tests written for
them in the appropriate file in the test directory. (See test/runtests.jl for details.) There are three ways
to run the test suite: in the terminal, executing make test or cd test; julia runtests.jl; orin the Julia
REPL, Pkg.activate("."); Pkg.test().

https://github.com/gcv/julia-snail
https://github.com/akermu/emacs-libvterm
http://company-mode.github.io/
https://magit.vc/
https://git.idiv.de/persefone/persefone-model
https://git.idiv.de/persefone/persefone-model/-/boards/373
https://semver.org/
https://keepachangelog.com/en/1.0.0/
https://timholy.github.io/Revise.jl/stable/
https://docs.julialang.org/en/v1/stdlib/Test/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/test/runtests.jl

CHAPTER 7. DEVELOPING PERSEFONE 23

Documenter.jl

The HTML documentation is generated using Documenter.jl. Therefore, all new functions should have doc-
strings attached. New files need to be integrated into the relevant documentation source files in docs/src,
and if necessary into docs/builddocs.jl. To build the documentation, run make docs, or cd docs; julia
builddocs. jl (if using the latter, don't forget to update the date and commit in docs/src/index.md).

Graphics and user interface
Persefone uses Makie as a plotting library to generate its output graphics. Additionally, Persefone Desktop
uses QML.j| to create its graphical user interface.

Unitful.jl

Throughout the source code, variables can be tagged with their appropriate units using the Unitful.jl library.
This makes the code easier to understand, and also allows automatic unit conversion:

julia> lha == 10000m?2
true

julia> 2km |> m
2000 m

julia> 2km / 10m
200.0

Within Persefone, the following units and dimensions have been imported for direct usage: cm, m, km, m?, ha,
km2, mg, g, kg, Length, Area, Mass.

Dates

Persefone expands the default Dates library with the AnnualDate type, which can be used to store dates that
recur every year (e.g. migration or harvest). AnnualDates can be compared and added/subtracted just as
normal dates. Use thisyear() to convert an AnnualDate to a Date.

https://documenter.juliadocs.org
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/docs/builddocs.jl
https://makie.org/
https://github.com/JuliaGraphics/QML.jl
https://painterqubits.github.io/Unitful.jl/stable/
https://docs.julialang.org/en/v1/stdlib/Dates/

Chapter 8

Adapting Persefone

A key development goal of Persefone is to be FAIR: findable, accessible, interoperable, and reusable. We aim
to build a model that is both easy to use and easy to adapt to new situations.

There are multiple ways to adapt Persefone for a new modelling study:

Changing the parameters

The simplest way to adapt Persefone is simply by changing the parameters. Copy src/parameters.toml to a
new location, adjust it to your needs, and run the model using julia run.jl -c <configfile>.

Changing the region

To apply Persefone to a new region, you need to create new input maps of land cover and farmplots. How to
do so is described here.

You may also need to change aspects of the farm submodel. This is not yet implemented.

Adding new animal species

To implement a new species to the nature submodel, add a new file to the src/nature/species directory and
include it in src/Persefone. j1, as well as adding the name of the species to the nature.targetspecies
parameter. In the new file, implement the species using the @species syntax as described here.

Adding new crop species

Crop growth is not yet implemented.

Adding new farmer behaviour

Farmer behaviour is not yet implemented.

Adding a new submodel

To add a new submodel in addition to the existing ones (nature, crop, and farm), you need to familiarise
yourself with the software architecture. In particular, you need to understand how initialisation and scheduling
works in src/core/simulation. j1, and what information is stored in the model object.

If you want to add a new agent type, create a subtype of ModelAgent, implement a stepagent! function for it
and add it to Persefone.initmodel.

24

https://doi.org/10.1515/itit-2019-0040
gis.md
species-dsl.md
architecture.md
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/simulation.jl

CHAPTER 8. ADAPTING PERSEFONE 25

Linking to another model

Persefone can also be used as a software library and be called from another application. For this purpose,
it is set up as a Julia package, with a module exporting various model functions, types, and macros (see
src/Persefone. jl). Of particular interest are the functions simulate (set up and run a complete simulation
based on a config file), initialise (create one or more model objects from a config file), simulate! (do a
simulation run with an existing model object), and stepsimulation! (update a model object by one time step).

To interface with Julia from another language, see the Julia docs here and here.

https://pkgdocs.julialang.org/v1/
https://docs.julialang.org/en/v1/manual/modules/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/Persephone.jl
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/
https://docs.julialang.org/en/v1/manual/embedding/

Chapter 9

Source code architecture

26

Chapter 10

Model components

Persefone is divided into four components, three of which are semi-independent submodels:

1. core and world: These two directories provide the foundation of the model software, which sets up
and executes simulation runs. It also reads all input files (the configuration file, landscape maps, and
weather data), and provides data output functionality.

2. nature: This is an individual-based model of species in agricultural landscapes. It defines the Animal
agent type, and a set of macros that can be used to rapidly create new species. It also includes ecological
process functions that are useful for all species.

3. farm: Thisis an agent-based model of farmer decision making. Itis not yet implemented, but will provide
the Farmer agent type.

4. crop: This is a mathematical growth model for various crops. It is not yet implemented, but already
provides the agent type FarmPlot, representing one field and its associated extent and crop type.

inature :lcrop :nfarm :
]]]

' ' " '
' ' ' !
' U ' '
! ANIMAL :l FARMPLOT :l FARMER :
[R g [| S

! core+world :
v 5 =

s = ~
| scheduling output settings !
| |

1/

' ﬁ“@Eﬁp e '
| N ‘\ |
| landscape weather]

Figure 10.1: "model architecture"

27

CHAPTER 10. MODEL COMPONENTS 28

Conceptually, core provides functionality that is needed by all of the submodels. Decisions made by Farmers
affect the FarmPlots they own, and (directly or indirectly) the Animals in the model landscape.

Chapter 11

Important implementation details

The model object

A cursory reading of the source code will quickly show that most functions take an SimulationModel object as
one of their arguments. The concrete type for this is AgricultureModel, a struct that holds all state that is in
any way relevant to a simulation run. (Persefone has a strict "no global state" policy to avoid state-dependent
bugs and allow parallelisation.) The model object gives access to all agent instances. It also stores the con-
figuration (model.settings), the landscape (model.landscape, a matrix of Pixel objects that store the local
land cover, amongst other things), and the current simulation date (model.date). (See Persefone.initmodel
for details.)

Model configuration/the @param macro

The model is configured via a TOML file, the default version of which is at src/parameters.toml. Anindividual
run can be configured using a user-defined configuration file, commandline arguments, or function calls (when
Persefone is used as a package rather than an application). During a model run, the @param macro can be used

sy

landscape
31
date
@’ model %
Tng : : SIMULATIONMODEL logger
A
settings weather dataoutputs

Figure 11.1: "the model object"

29

https://toml.io/en/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/parameters.toml

CHAPTER 11. IMPORTANT IMPLEMENTATION DETAILS 30

to access parameter values. Note that parameter names are prepended with the name of the component they
are associated with. For example, the outdir parameter belongs to the [core] section of the TOML file, and
must therefore be referenced as @param(core.outdir). (See src/core/input.jl for details.)

@param and other macros

As @param(parameter) expands to model.settings["parameter"], it can obviously only be used in a
context where the model object is actually available. (This is the case for most functions in Persefone,
but not for all.) Similarly, many of the nature macros depend on specific variables being available
where they are called, and can therefore only be used in specific contexts (this is indicated in their
documentation).

Output data

Persefone can output model data into text files with a specified frequency (daily, monthly, yearly, or at the
simulation end). Submodels can use Persefone.newdataoutput! to plug into this system. For an example of
how to use this, see src/nature/ecologicaldata.jl. (See src/core/output.jl for details.)

Farm events

The FarmEvent struct is used to communicate farming-related events between submodels. An event can
be triggered with createevent! and affects all pixels within a FarmPlot. (See src/core/landscape.jl for
details.)

Random numbers and logging

By default in Julia, the random number generator (RNG) and the system logger are two globally accessible
variables. As Persefone needs to avoid all global data (since this would interfere with reproducibility in parallel
runs), the model object stores a local logger and a local RNG. The local logger generally does not change the
way the model uses log statements, it is only relevant for some functions in src/core/simulation.jL.

Using the model RNG

Whenever you need to use a random number, you must use the model. rng. The easiest way to do this
is with the @rand and @shuffle! macros. (Note that these, too, require access to the model object.)

https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/input.jl
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/nature/ecologicaldata.jl
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/output.jl
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/landscape.jl
https://docs.julialang.org/en/v1/stdlib/Random/
https://docs.julialang.org/en/v1/stdlib/Logging/#Logging.global_logger
https://docs.julialang.org/en/v1/stdlib/Logging/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/simulation.jl
https://docs.julialang.org/en/v1/stdlib/Random/#Base.rand

Chapter 12

Maps and weather data

Persefone.jl requires three map input files: one for land cover, one for for field geometries, and one for soil
types. Additionally, a weather input file is needed. This documents describe how to obtain and process the
data needed for each of these.

12.1 Land cover maps

Land cover maps for Germany at 10m resolution can be obtained from Mundialis. These are generated annually
from Sentinel data and comprise the following land cover classes:

10: forest

20: low vegetation
30: water

40: built-up

50: bare soil

60: agriculture

To create a Persefone map input file, you need to crop the national Mundialis map to the extent that you want
to simulate (suggestion: approx. 10x10km is a reasonable size).

To do so, download the Mundialis map and import it into QGIS. Then create a new vector layer and create a
rectangle feature to delimit the extent of your region. Then go to Raster -> Extraction -> Clip Raster
by Extent. Select the Mundialis map as the input layer, set the clipping extent by choosing your region vector
layer under Calculate from Layer and specify the output file name before clicking Run. This will generate a
TIF file that you can pass to Persefone as the landcovermap parameter.

12.2 Field ID maps

In addition to the land cover data explained above, Persefone also needs information about agricultural field
boundaries in order to assign these to the farming agents. Unfortunately, getting this is rather more compli-
cated.

In the EU, every country runs a Land Parcel Information System (LPIS) to administer CAP payments. In Germany,
this is called InVeKoS and is run by the Lander. For example, you can view and download the InVeKoS data
for Thiringen here. This gives you a vector layer which can be loaded into QGIS. However, it needs to be
converted to a raster layer and cropped to your region extent before it can be used in Persefone.

The first thing to do is to make sure that the vector layer has a numeric (!) field with a unique identifier for
each field block (check the attribute table). The Thiringen data has the FBI ("Feldblockident") field, but this

31

https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/9246503f-6adf-460b-a31e-73a649182d07
https://thueringenviewer.thueringen.de/thviewer/invekos.html

CHAPTER 12. MAPS AND WEATHER DATA 32

is a string value and therefore not usable by the rasteriser. So, we set the vector layer to edit mode, open
the field calculator, enter the information for a new field (call it "FID" and set it to a 32-bit integer), and enter
@row_number in the expression field. Then save the layer and close the calculator.

Secondly, you need to filter out all non-field/non-grassland plot types. (LPIS also has data on forests and various
landscape elements that are not relevant to our use case.) Assuming you're working with the Thiringen
InVeKoS data (other data sets may have a different structure), right-click on the layer name in QGIS' layer
overview and click on "Filter...". Then, enter this expression in the query builder: "BNK" = 'AL' OR "BNK" =
'GL" and click "OK". This will select only field and grassland plots.

Next, open the rasteriser (Raster -> Conversion -> Rasterize). Select your FID field as the "Field to use
for a burn-in value", and your land cover map (as created above - this ensures the two layers match) as the
output extent. Make sure the "fixed value to burn" is "Not set". Then choose "Georeferenced units" as the
"Out raster size units" and set horizontal and vertical resolution to 10.0. In the advanced parameters, set the
output data type to UInt32. Finally, enter an output file name and run. The resulting TIF file can be passed to
Persefone as the farmfieldmap parameter.

12.3 Soil data

Soil data for Germany is provided by the Bundesanstalt fur Geowissenschaften und Rohstoffe in form of the
Bodenatlas. This provides a (coarse, but for our purposes sufficient) map of the distribution of the basic soil
types such as clay, silt, sand, and loam.

To create the Persefone input file, you need crop this national map to the same region as the other maps, then
rasterise it (see instructions in the last paragraph of the previous section).

12.4 Weather data

Currently, Persefone uses historical weather data from the closes weather station as its weather input. (In
future, this may be changed to a more detailed raster input, which could then also provide future weather
predictions under climate change.) Weather data can be downloaded from the German weather service (DWD).
The relevant data are in the folder daily/kl/historical.

The description of this data set and the list of weather stations can be found in the Persefone repository, in
the docs folder (or downloaded from the link above). Using the list of weather stations, select the one closest
to the area of study. Note that not all stations were continuously in operation; make sure that the selected
station covers the years of interest.

* Region Jena: station number 02444 ("Jena (Sternwarte)")

* Region Eichsfeld:

* Region Thiringer Becken: station number 00896 ("Dachwig")

* Region Hohenlohe:

* Region Bodensee:

* Region Noérdlicher Oberrhein:

From the link above, download the ZIP file associated with the station number. Check the included meta-data
if there is any important missing data, or other relevant information (e.g. the station moved position).

Then use data/extract weather data.R to process the data into the format needed by Persefone:

https://bodenatlas.bgr.de/
https://www.dwd.de/DE/leistungen/cdc/cdc_ueberblick-klimadaten.html?nn=16102
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/

CHAPTER 12. MAPS AND WEATHER DATA 33

library(tidyverse)

replace this with the correct file name
weatherfile = "produkt_klima_tag 18210101 20221231 02444.txt"

data = read.table(weatherfile, sep=";", header=T)

weather = data %>%

drop values before 2000 to save space

filter(MESS DATUM>=20000101) %>%

select relevant variables and convert place-holder values to NA

select(MESS DATUM, FM, RSK, SDK, VPM, TMK, TXK, TNK) %>%

mutate(date=MESS DATUM, MESS DATUM=NULL,
mean_windspeed=na_if(FM, -999), FM=NULL,
precipitation=na if(RSK, -999), RSK=NULL,
sunshine hours=na if(SDK, -999), SDK=NULL,
mean_vapour _pressure=na_if(VPM, -999), VPM=NULL,
mean_temperature=na if(TMK, -999), TMK=NULL,
max_temperature=na if(TXK, -999), TXK=NULL,
min_temperature=na_if(TNK, -999), TNK=NULL)

replace with the desired file name
write.csv(weather, file="weather jena.csv", row.names=FALSE)

Note: for calculating the reference evapotranspiration ET_O (needed for the AquaCrop model), use the FAO
Penman-Monteith equation.

https://www.fao.org/3/X0490E/x0490e06.htm#equation
https://www.fao.org/3/X0490E/x0490e06.htm#equation

Chapter 13

Defining new species

In order to make implementing new species as easy as possible, Persefone includes a domain-specific language
(DSL) built from a collection of macros and functions.

Here is an example of what this looks like, using a hypothetical mermaid species:

@species Mermaid begin
ageofmaturity = 2
pesticidemortality = 1.0

end

@create Mermaid begin
@debug "Created $(animalid(self))."
end

@phase Mermaid life begin
@debug "$(animalid(self)) is swimming happily in its pond."
@respond pesticide @kill(self.pesticidemortality, "poisoning")
@respond harvesting @setphase(drought)
if self.sex == female &% length(@neighbours()) < 3 &&
self.age >= self.ageofmaturity && @landcover() == water
@reproduce()
end
end

@phase Mermaid drought begin
n = sum(1l for a in @neighbours())
@debug "$(animalid(self)) is experiencing drought with $n neighbour(s)."
@respond sowing @setphase(life)

end

@populate Mermaid begin
birthphase = life
initphase = life
habitat = @habitat(@landcover() == water)
pairs=true
end

A complete species definition consists of one call each to @species, @create, @populate, and one or more
calls to @phase. Another important macro is @habitat. Further macros are available to provide convenience
wrappers for common functions. (See src/nature/nature. jl for details.)

34

https://doi.org/10.1016/j.ecoinf.2015.02.005
nature.md

CHAPTER 13. DEFINING NEW SPECIES 35

The first macro to call is @species. This takes two arguments: a species name and a definition block (enclosed
in begin and end tags). Within the block, species-specific parameters and variables can be defined (and
optionally given values) that should be available throughout a species' lifetime.

Next, each species must define one or more @phase blocks. The concept behind this is that species show
different behaviours at different phases of their lifecycle. Each @phase block defines the behaviour in one of
these phases. (Technically, it defines a function that will be called daily, so long as the species' phase variable
is set to this phase.) Code in this section has access to the model object as well as a self object, which is the
currently active Animal agent. Within a phase block, @respond can be used to define the species' response to
a FarmEvent that affects the species' current location, while a variety of other macros provide wrappers to life
history and movement functions from src/nature/populations.jl.

The third macro to call is @create. Like @phase, this defines a function with access to the world and self
objects. This function is called whenever a new individual of this species is created (either at birth, or when
the model is initialised).

The last macro that must be called is [@populate]. Whereas @create regulates the creation of individual
animals, @populate determines how the population of a species is initialised at the start of a simulation. It
does this by defining values for the parameters used by initpopulation!. The full list of parameters that can
be used is documented under PopInitParams.

The final important macro is @habitat. This defines a "habitat descriptor”, i.e. a predicate function that tests
whether or not a given landscape pixel is suitable for a specified purpose. Such habitat descriptors are used
as arguments to various functions, for example for population initialisation or movement. The argument to
@habitat consists of a logical expression, which has access to the animal's current position (the pos tuple
variable) and the model. Various macros are available to easily reference information about the current loca-
tion, such as @landcover or @distancetoedge.

All of these macros are defined in src/nature/macros.jl.

nature.md
https://git.idiv.de/persefone/persefone-model/-/blob/master/src/nature/macros.jl

Part V

Software API

36

Chapter 14

Simulation

The core and world directories hold source files that are important for all submodels, including scheduling,
landscape, weather, and input/output functions.

14.1 Persefone.jl

This file defines the module, including all exported symbols and two high-level types.

Persefone.ModelAgent - Type.

ModelAgent

The supertype of all agents in the model (animal species, farmer types, farmplots).

source

Persefone.SimulationModel - Type.

SimulationModel

The supertype of AgricultureModel. This is needed to avoid circular dependencies (most types and func-
tions depend on SimulationModel, but the definition of the model struct depends on these types).

source

Persefone.AnnualDate - Type.

AnnualDate

A type to handle recurring dates (e.g. migration, harvest). Stores a month and a day, and can be compared
against normal dates. To save typing, a Tuple{Int64,Int64} is automatically converted to an AnnualDate,
allowing this syntax: nestingend: :AnnualDate = (August, 15).

source

Base. randn - Function.

37

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/Persefone.jl#L128-L132
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/Persefone.jl#L119-L125
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L21-L28

CHAPTER 14. SIMULATION 38

randn(vector)

Return a random element from the given vector, following a (mostly) normal distribution based on index
values (i.e. elements in the middle of the vector will be returned most frequently).

source

Persefone.bounds - Method.

bounds (x; max=Inf, min=0)

A utility function to make sure that a number is within a given set of bounds. Returns max/min if x is
greater/less than this.

source

Persefone.cycle! - Function.

cycle! (vector, n=1)

Move the first element of the vector to the end, repeat n times.

source
Persefone.thisyear - Method.
thisyear(annualdate, model)

nextyear(annualdate, model)
lastyear(annualdate, model)

Convert an AnnualDate to a Date, using the current/next/previous year of the simulation run.

source

Persefone.@areaof - Macro.

@areaof(npixels)

Calculate the area of a given number of landscape pixels, knowing the resolution of the world map (requires
the model object to be available).

source

Persefone.@chance - Macro.

@chance(odds)

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L102-L107
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L161-L166
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L177-L181
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L89-L95
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L190-L195

CHAPTER 14. SIMULATION 39

Return true if a random number is less than the odds (0.0 <= odds <= 1.0), using the model RNG. This is
a utility wrapper that can only be used a context where the model object is available.

source

Persefone.@rand - Macro.

@rand(args...)

Return a random number or element from the sample, using the model RNG. This is a utility wrapper that
can only be used a context where the model object is available.

source

Persefone.@randn - Macro.

@randn(vector)

Return a normally-distributed random number or element from the sample, using the model RNG. This is
a utility wrapper that can only be used a context where the model object is available.

source

Persefone.@shuffle! - Macro.

@shuffle! (collection)

Shuffle the given collection in place, using the model RNG. This is a utility wrapper that can only be used
a context where the model object is available.

source

14.2 simulation.jl

This file includes the basal functions for initialising and running simulations.

Persefone.AgricultureModel - Type.

AgricultureModel

This is the heart of the model - a struct that holds all data and state for one simulation run. It is created
by initialise and passed as input to most model functions.

source

Persefone.finalise! - Method.

finalise! (model)

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L148-L154
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L126-L132
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L115-L121
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/utils.jl#L137-L143
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L8-L14

CHAPTER 14. SIMULATION 40

Wrap up the simulation. Finalises and visualises output, then terminates.

source

Persefone.initialise - Method.

initialise(configfile=PARAMFILE, params=Dict())

Initialise the model: read in parameters, create the output data directory, and instantiate the Simulation-
Model object(s). Optionally allows specifying the configuration file and overriding specific parameters. This
returns a single model object, unless the config file contains multiple values for one or more parameters,
in which case it creates a full-factorial simulation experiment and returns a vector of model objects.

source

Persefone.initmodel - Method.

initmodel(settings)

Initialise a model object using a ready-made settings dict. This is a helper function for initialise().

source

Persefone.nagents - Method.

nagents(model)

Return the total number of agents in a model object.

source

Persefone.paramscan - Method.

paramscan(settings)

Create a list of settings dicts, covering all possible parameter combinations given by the input settings (i.e.
a full-factorial experiment). This is a helper function for initialise().

source

Persefone.simulate! - Method.

simulate! (model)

Carry out a complete simulation run using a pre-initialised model object.

source

Persefone.simulate - Method.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L198-L202
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L77-L86
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L96-L101
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L31-L35
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L146-L152
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L64-L68

CHAPTER 14. SIMULATION 41

simulate(configfile=PARAMFILE, params=Dict())

Initialise one or more model objects and carry out a full simulation experiment, optionally specifying a
configuration file and/or specific parameters.

This is the default way to run a Persefone simulation.

source

Persefone.stepagent! - Method.
stepagent! (agent, model)

All agent types must define a stepagent!() method that will be called daily.

source

Persefone.stepsimulation! - Method.

stepsimulation! (model)

Execute one update of the model.

source

14.3 landscape.jl

This file manages the landscape maps that underlie the model.

Persefone.FarmEvent - Type.

FarmEvent

A data structure to define a landscape event, giving its type, spatial extent, and duration.

source
Persefone.LandCover - Type
The land cover classes encoded in the Mundialis Sentinel data.
source
Persefone.Management - Type.
The types of management event that can be simulated
source

Persefone.Pixel - Type.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L49-L56
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L40-L44
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/simulation.jl#L174-L178
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L36-L41
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L7
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L14

CHAPTER 14. SIMULATION 42

Pixel

A pixel is a simple data structure to combine land use and ownership information in a single object. The
model landscape consists of a matrix of pixels. (Note: further landscape information may be added here
in future.)

source

Persefone.createevent! - Function.

createevent! (model, pixels, name, duration=1)

Add a farm event to the specified pixels (a vector of position tuples) for a given duration.

source

Persefone.directionto - Method.

directionto(pos, model, habitatdescriptor)

Calculate the direction from the given location to the closest location matching the habitat descriptor
function. Returns a coordinate tuple (target - position), or nothing if no matching habitat is found. Caution:
can be computationally expensive!

source

Persefone.directionto - Method.

directionto(pos, model, habitattype)

Calculate the direction from the given location to the closest habitat of the specified type. Returns a coor-
dinate tuple (target - position), or nothing if no matching habitat is found. Caution: can be computationally
expensive!

source

Persefone.distanceto - Method.

distanceto(pos, model, habitatdescriptor)

Calculate the distance from the given location to the closest location matching the habitat descriptor
function. Caution: can be computationally expensive!

source

Persefone.distanceto - Method.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L17-L23
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L100-L104
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L132-L138
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L171-L177
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L183-L188

CHAPTER 14. SIMULATION 43

distanceto(pos, model, habitattype)

Calculate the distance from the given location to the closest habitat of the specified type. Caution: can be
computationally expensive!

source

Persefone.distancetoedge - Method.

distancetoedge(pos, model)

Calculate the distance from the given location to the closest neighbouring habitat. Caution: can be com-
putationally expensive!

source

Persefone.farmplot - Method.

farmplot(position, model)

Return the farm plot at this position, or nothing if there is none (utility wrapper).
source

Persefone.inbounds - Method.

inbounds(pos, model)

Is the given position within the bounds of the model landscape?
source

Persefone.initlandscape - Method.

initlandscape(directory, landcovermap, farmfieldsmap)

Initialise the model landscape based on the map files specified in the configuration. Returns a matrix of
pixels.

source

Persefone.landcover - Method.

landcover(position, model)

Return the land cover class at this position (utility wrapper).

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L196-L201
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L207-L212
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L122-L126
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L246-L250
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L48-L53
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L113-L117

CHAPTER 14. SIMULATION 44

Persefone.randomdirection - Method.

randomdirection(model, distance)

Get a random direction coordinate tuple within the specified distance.

source

Persefone. randompixel - Function.

randompixel(position, model, range, habitatdescriptor)

Find a random pixel within a given range of the position that matches the habitatdescriptor (create this
using @habitat).

source

Persefone.safebounds - Method.

safebounds (pos, model)

Make sure that a given position is within the bounds of the model landscape.

source

Persefone.updateevents! - Method.

updateevents! (model)

Cycle through the list of events, removing those that have expired.

source

14.4 weather.jl

This file reads in weather data and makes it available to the model.

Persefone.Weather - Type.

Weather

A single weather datum, combining the observations from one day.

source

Persefone.initweather - Method.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L236-L240
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L218-L223
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L256-L260
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/landscape.jl#L79-L83
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L7-L11

CHAPTER 14. SIMULATION 45

initweather(weatherfile, startdate, enddate)

Load a weather file, extract the values that are relevant to this model run (specified by start and end
dates), and return a dictionary of Weather objects mapped to dates.

Note: This requires a weather file in the format produced by data/extract weather data.R.

source

Persefone.maxtemp - Method.

maxtemp (model)

Return today's maximum temperature in °C.

source

Persefone.meantemp - Method.

meantemp (model)

Return today's mean temperature in °C.

source

Persefone.mintemp - Method.

mintemp(model)

Return today's minimum temperature in °C.

source

Persefone.precipitation - Method.

precipitation(model)

Return today's total precipitation in mm.

source

Persefone.sunshine - Method.

sunshine(model)

Return today's sunshine duration in hours.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L22-L30
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L96-L100
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L87-L91
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L105-L109
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L60-L64
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L69-L73

CHAPTER 14. SIMULATION

Persefone.vapourpressure - Method.

vapourpressure (model)

Return today's average vapour pressure in hPa.

source

Persefone.windspeed - Method.

windspeed(model)

Return today's average windspeed in m/s.

source

46

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L78-L82
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/world/weather.jl#L51-L55

Chapter 15

Input and Output

These functions are responsible for reading in all model configurations (passed by config file or commandline),
administrating them during a run, and printing or plotting any output.

15.1 input.jl

Persefone.AVAILABLE_CROPMODELS - Constant.

The crop models that can be used in the simulation.

source
Persefone.PARAMFILE - Constant.

The file that stores all default parameters: src/parameters.toml

source

Persefone.flattenTOML - Method.

flattenTOML (dict)

An internal utility function to convert the two-dimensional dict returned by TOML.parsefile() into a one-
dimensional dict, so that instead of writing settings["domain"]["param"] one canuse settings["domain
Can be reversed with prepareTOML.

source

Persefone.getsettings - Function.

getsettings(configfile, userparams=Dict())

Combines all configuration options to produce a single settings dict. Precedence: function arguments -
commandline parameters - user config file - default values

source

Persefone.loadmodelobject - Method.

47

.param"].

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L20-L22
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L10-L12
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L132-L139
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L43-L48

CHAPTER 15. INPUT AND OUTPUT 48

loadmodelobject (fullfilename)

Deserialise a model object that was previously saved with [savemodelobject] (@ref).

source

Persefone.parsecommandline - Method.

parsecommandline()

Certain software parameters can be set via the commandline.

source

Persefone.preprocessparameters - Method.

preprocessparameters(settings)

Take the raw input parameters and process them where necessary (e.g. convert types or perform checks).
This is a helper function for getsettings.

source

Persefone.@param - Macro.

@param(domainparam)

Return a configuration parameter from the global settings. The argument should be in the form <domain>.<parameter>,
for example @param(core.outdir). Possible values for <domain> are core, nature, farm, or crop. For a
full list of parameters, see src/parameters.toml.

Note: this macro only works in a context where the model object is available!

source

15.2 output.jl

Persefone.LOGFILE - Constant.

Log output is saved to simulation.log in the output directory

source
Persefone.RECORDDIR - Constant.

All input data are copied to the inputs folder within the output directory

source

Persefone.DataOutput - Type.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L187-L191
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L150-L154
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L82-L87
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/input.jl#L25-L36
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L8
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L11

CHAPTER 15. INPUT AND OUTPUT 49

DataOutput

A struct for organising model output. This is used to collect model data in an in-memory dataframe or for
CSV output. Submodels can register their own output functions using newdataoutput!.

Struct fields: - frequency: how often to call the output function (daily/monthly/yearly/end/never) - databuffer:
a vector of vectors that temporarily saves data before it is stored permanently or written to file - datastore:
a data frame that stores data until the end of the run - outputfunction: a function that takes a model object
and returns data values to record (formatted as a vector of vectors) - plotfunction: a function that takes a
model object and returns a Makie figure object (optional)

source

Persefone.createdatadir - Method.

createdatadir(outdir, overwrite)

Creates the output directory, dealing with possible conflicts.

source
Persefone.data - Method.

Retrieve the data stored in a DataOutput (assumes core.storedata is true).

source

Persefone.modellogger - Function.

modellogger(loglevel, outdir, output="both")

Create a logger object that writes output to screen and/or a logfile. This object is stored as model. logger
and can then be used with with logger(). Note: requires createdatadir to be run first.

source

Persefone.newdataoutput! - Function.

newdataoutput! (model, name, header, frequency, outputfunction, plotfunction)

Create and register a new data output. This function must be called by all submodels that want to have
their output functions called regularly.

source

Persefone.outputdata - Function.

outputdata(model, force=false)

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L148-L161
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L17-L21
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L170
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L39-L45
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L176-L181

CHAPTER 15. INPUT AND OUTPUT 50

Cycle through all registered data outputs and activate them according to their configured frequency. If
force is true, activate all outputs regardless of their configuration.

source

Persefone.prepareTOML - Method.

prepareTOML (dict)

An internal utility function to re-convert the one-dimensional dict created by flattenTOML into the two-
dimensional dict needed by TOML.print, and convert any data types into TOML-compatible types where
necessary.

source

Persefone.record! - Method.

record! (model, outputname, data)

Append an observation vector to the given output.

source

Persefone.saveinputfiles - Method.

saveinputfiles(model)

Copy all input files into the output directory, including the actual parameter settings used. This allows
replicating a run in future.

source

Persefone.savemodelobject - Method.

savemodelobject(model, filename)

Serialise a model object and save it to file for later reference. Includes the current model and Julia versions
for compatibility checking.

WARNING: produces large files (>100 MB) and takes a while to execute.

source

Persefone.visualiseoutput - Method.

visualiseoutput(model)

Cycle through all data outputs and call their respective plot functions, saving each figure to file.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L204-L210
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L125-L131
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L245-L249
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L80-L85
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L292-L299
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L274-L279

CHAPTER 15. INPUT AND OUTPUT 51

Persefone.withtestlogger - Method.

withtestlogger(model)

Replace the model logger with the currently active logger. This is intended to be used in the testsuite to
circumvent a Julia issue, where @test logs doesn't work with local loggers.

source

Persefone.@data - Macro.

@data(outputname)

Return the data stored in the given output (assumes core.storedata is true). Only use in scopes where
model is available.

source

Persefone.@record - Macro.

@record(outputname, data)

Record an observation / data point. Only use in scopes where model is available.

source

15.3 makieplots.jl

Persefone.croptrends - Method.

croptrends(model)

Plot a dual line graph of cropped area and average plant height per crop over time. Returns a Makie figure
object.

source

Persefone.datetickmarks - Method.

datetickmarks (dates)

Given a vector of dates, construct a selection to use as tick mark locations. Helper function for [populationtrends] (@ref)

source

Persefone.populationtrends - Method.

https://github.com/JuliaLang/julia/issues/48456
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L68-L74
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L264-L269
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/core/output.jl#L255-L259
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/analysis/makieplots.jl#L128-L133
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/analysis/makieplots.jl#L161-L166

CHAPTER 15. INPUT AND OUTPUT 52

populationtrends(model)

Plot a line graph of population sizes of each species over time. Returns a Makie figure object.

source

Persefone.skylarkpopulation - Method.

skylarkpopulation(model)

Plot a line graph of total population size and individual demographics of skylarks over time. Returns a
Makie figure object.

source

Persefone.skylarkstats - Method.

skylarkstats(model)

Plot various statistics from the skylark model: nesting habitat, territory size, mortality.

source

Persefone.visualisemap - Function.

visualisemap(model, date, landcover)

Draw the model's land cover map and plot all individuals as points on it at the specified date. If no date
is passed, use the last date for which data are available. Optionally, you can pass a landcover map image
(this is needed to reduce the frequency of disk I/O for Persefone Desktop). Returns a Makie figure object.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/analysis/makieplots.jl#L50-L55
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/analysis/makieplots.jl#L74-L79
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/analysis/makieplots.jl#L98-L102
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/analysis/makieplots.jl#L6-L14

Chapter 16

Nature submodel

16.1 nature.jl

This file is responsible for managing the animal modules.

Persefone.Animal - Type.

Animal

This is the generic agent type for all animals. Individual species are created using the @species macro. In
addition to user-defined, species-specific fields, all species contain the following fields:

* id An integer unique identifier for this individual.

* sex male, female, or hermaphrodite.

e parents The IDs of the individual's parents.

e pos An (X, y) coordinate tuple.

* age The age of the individual in days.

* phase The update function to be called during the individual's current life phase.
* energy A DEBparameters struct for calculating energy budgets.

e offspring A vector containing the IDs of an individual's children.

e territory A vector of coordinates that comprise the individual's territory.

source

Persefone.animalid - Method.

animalid(animal)

A small utility function to return a string with the species name and ID of an animal.

source

Persefone.create! - Method.

53

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L12-L28
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L61-L65

CHAPTER 16. NATURE SUBMODEL 54

create! (animal, model)

The create! function is called for every individual at birth or at model initialisation. Species must use
@create to define a species-specific method. This is the fall- back method, in case none is implemented
for a species.

source

Persefone.initnature! - Method.

initnature! (model)

Initialise the model with all simulated animal populations.

source

Persefone.killallanimals! - Method.

killallanimals! (model)

Remove all animal individuals from the simulation.

source

Persefone.speciesof - Method.

speciesof (animal)

Return the species name of this animal as a string.

source

Persefone.speciestype - Method.

speciestype(name)

Return the Type of this species.

source

Persefone.stepagent! - Method.

stepagent! (animal, model)

Update an animal by one day, executing it's currently active phase function.

source

Persefone.updatenature! - Method.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L70-L76
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L91-L95
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L128-L132
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L31-L35
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L43-L47
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L81-L85

CHAPTER 16. NATURE SUBMODEL 55

updatenature! (model)

Run processes that affect all animals.

source

16.2 macros.jl
This file contains all the macros that can be used in the species DSL.

Persefone.@animal - Macro.
@animal(id)

Return the animal object associated with this ID number. This can only be used in a context where the
model object is available (e.g. nested within @phase).

source

Persefone.@countanimals - Macro.

@countanimals(radius=0, species="")

Count the number of animals at or near this location, optionally filtering by species. This can only be used

nested within @phase or @habitat.
source

Persefone.@create - Macro.
@create(species, body)

Define a special phase function (create!()) that will be called when an individual of this species is created,
at the initialisation of the simulation or at birth.

As for @phase, the body of this macro has access to the variables self (the individual being created) and
model (the simulation world), and can thus use all macros available in @phase.

source

Persefone.@cropcover - Macro.

@cropcover

Return the percentage ground cover of the crop at this position, or nothing if there is no crop here. This is
a utility wrapper that can only be used nested within @phase or @habitat.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/nature.jl#L106-L110
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L143-L149
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L438-L443
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L122-L132
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L359-L365

CHAPTER 16. NATURE SUBMODEL 56

Persefone.@cropheight - Macro.

@cropheight

Return the height of the crop at this position, or nothing if there is no crop here. This is a utility wrapper
that can only be used nested within @phase or @habitat.

source

Persefone.@cropname - Macro.

@cropname

Return the name of the local croptype, or an empty string if there is no crop here. This is a utility wrapper
that can only be used nested within @phase or @habitat.

source

Persefone.@destroynest - Macro.

@destroynest(reason)

Utility wrapper for destroynest! () in the Skylark model.

source

Persefone.@directionto - Macro.

@directionto

Calculate the direction to an animal or the closest habitat of the specified type or descriptor. This is a utility
wrapper that can only be used nested within @phase or @habitat.

source

Persefone.@distanceto - Macro.

@distanceto

Calculate the distance to an animal or the closest habitat of the specified type or descriptor. This is a utility
wrapper that can only be used nested within @phase or @habitat.

source

Persefone.@distancetoedge - Macro.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L348-L354
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L337-L343
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L525-L529
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L370-L376
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L381-L387

CHAPTER 16. NATURE SUBMODEL 57

@distancetoedge

Calculate the distance to the closest neighbouring habitat. This is a utility wrapper that can only be used
nested within @phase or @habitat.

source

Persefone.@follow - Macro.

@follow(leader, distance)

Move to a location within the given distance of the leading animal. This is a utility wrapper that can only
be used nested within @phase.

source

Persefone.@habitat - Macro.

@habitat

Specify habitat suitability for spatial ecological processes.

This macro works by creating an anonymous function that takes in a model object and a position, and
returns true or false depending on the conditions specified in the macro body.

Several utility macros can be used within the body of @habitat as a short-hand for common expressions:
@landcover, @cropname, @cropheight, @distanceto, @distancetoedge, @countanimals. The variables
model and pos can be used for checks that don't have a macro available.

Two example uses of @habitat might look like this:
movementhabitat = @habitat(@landcover() in (grass agriculture soil))

nestinghabitat = @habitat((@landcover() == grass ||
(@landcover() == agriculture && @cropname()

@cropheight() < 10)) &&

@distanceto(forest) > 20)

= "maize" &&

For more complex habitat suitability checks, the use of this macro can be circumvented by directly creating
an equivalent function.

source

Persefone.@here - Macro.

@here()

Return the landscape pixel of this animal's current location. This can only be used nested within @phase.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L392-L398
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L485-L490
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L281-L308
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L165-L170

CHAPTER 16. NATURE SUBMODEL 58

Persefone.@isalive - Macro.

@isalive(id)

Test whether the animal with the given ID is still alive. This can only be used in a context where the model
object is available (e.g. nested within @phase).

source

Persefone.@isoccupied - Macro.

@isoccupied(position)

Test whether this position is already occupied by an animal of this species. This can only be used nested
within @phase.

source

Persefone.@kill - Macro.

@kill

Kill this animal (and immediately abort its current update if it dies). This is a thin wrapper around kill!,
and passes on any arguments. This can only be used nested within @phase.

source

Persefone.@killother - Macro.

@killother

Kill another animal. This is a thin wrapper around kill!, and passes on any arguments. This can only be
used nested within @phase.

source

Persefone.@landcover - Macro.

@landcover

Returns the local landcover. This is a utility wrapper that can only be used nested within @phase or
@habitat.

source

Persefone.@lastyear - Macro.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L154-L160
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L251-L256
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L199-L205
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L210-L215
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L327-L332

CHAPTER 16. NATURE SUBMODEL 59

@lastyear(annualdate)

Construct a date object referring to the last year in the model from an AnnualDate. Only use in scopes
where model is available.

source

Persefone.@migrate - Macro.

@migrate(arrival)

Remove this animal from the map and add it to the migrant species pool. It will be returned to its current
location at the specified arrival date. This can only be used nested within @phase.

source

Persefone.@move - Macro.

@move (position)

Move the current individual to a new position. This is a utility wrapper that can only be used nested within
@phase.

source

Persefone.@nearby animals - Macro.

@nearby animals(radius=0, species="")

Return an iterator over all animals in the given radius around the current position. This can only be used
nested within @phase or @habitat.

source

Persefone.@neighbours - Macro.

@neighbours(radius=0, conspecifics=true)

Return an iterator over all (by default conspecific) animals in the given radius around this animal, excluding
itself. This can only be used nested within @phase.

source

Persefone.@nextyear - Macro.

@nextyear(annualdate)

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L515-L520
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L230-L236
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L461-L466
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L425-L430
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L449-L454

CHAPTER 16. NATURE SUBMODEL 60

Construct a date object referring to the next year in the model from an AnnualDate. Only use in scopes
where model is available.

source

Persefone.@occupy - Macro.

@occupy(position)

Add the given position to this animal's territory. Use @vacate to remove positions from the territory again.
This can only be used nested within @phase.

source

Persefone.@phase - Macro.

@phase(name, body)

Use this macro to describe a species' behaviour during a given phase of its life. The idea behind this is
that species show very different behaviour at different times of their lives. Therefore, @phase can be used
define the behaviour for one such phase, and the conditions under which the animal transitions to another
phase.

@phase works by creating a function that will be called by the model if the animal is in the relevant phase.

When it is called, it has access to the following variables:

* self areference to the animal itself. This provides access to all the variables defined in the @species
definition, as well as all standard Animal variables (e.g. self.age, self.sex, self.offspring).

* pos gives the animal's current position as a coordinate tuple.

* model a reference to the model world (an object of type SimulationModel). This allows access,
amongst others, to model. date (the current simulation date) and model. landscape (a two-dimensional
array of pixels containing geographic information).

Many macros are available to make the code within the body of @phase more succinct. Some of the
most important of these are: @setphase, @respond, @kill, @reproduce, @neighbours, @migrate, @move,
@occupy, @rand.

source

Persefone.@populate - Macro.

@populate(species, params)

Set the parameters that are used to initialise this species' population. For parameter options, see PopInitParams.

@populate <species> begin
<parameter> = <value>

end

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L505-L510
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L241-L246
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L87-L111
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L61-L73

CHAPTER 16. NATURE SUBMODEL 61

Persefone.@randomdirection - Macro.

@randomdirection(range=1)

Return a random direction tuple that can be passed to @walk. This is a utility wrapper that can only be
used nested within @phase.

source

Persefone.@randompixel - Macro.

@randompixel(range, habitatdescriptor)

Find a random pixel within a given range of the animal's location that matches the habitatdescriptor (create
this using @habitat). This is a utility wrapper that can only be used nested within @phase.

source

Persefone.@reproduce - Macro.

@reproduce

Let this animal reproduce. This is a thin wrapper around reproduce!, and passes on any arguments. This
can only be used nested within @phase.

source

Persefone.@respond - Macro.

@respond(eventname, body)

Define how an animal responds to a landscape event that affects its current position. This can only be
used nested within @phase.

source

Persefone.@setphase - Macro.

@setphase(newphase)

Switch this animal over to a different phase. This can only be used nested within @phase.

source

Persefone.@species - Macro.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L415-L420
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L403-L410
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L220-L225
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L185-L190
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L175-L180

CHAPTER 16. NATURE SUBMODEL 62

@species(name, body)

A macro used to add new species types to the nature model. Use this to define species-specific variables
and parameters.

The macro works by creating a keyword-defined mutable struct that contains the standard fields described
for the Animal type, as well as any new fields that the user adds:

@species <name> begin
<varl> = <value>
<var2> = <value>

end

To complete the species definition, the @phase, @create, and @populate macros also need to be used.

source

Persefone.@thisyear - Macro.

@thisyear(annualdate)

Construct a date object referring to the current model year from an AnnualDate. Only use in scopes where
model is available.

source

Persefone.@vacate - Macro.

@vacate(position)

Remove the given position from this animal's territory. This can only be used nested within @phase.

source

Persefone.@vacate - Macro.

@vacate()

Remove this animal's complete territory. This can only be used nested within @phase.

source

Persefone.@walk - Macro.

@walk(direction, speed)

Walk the animal in a given direction, which is specified by a tuple of coordinates relative to the animal's
current position (i.e. (2, -3) increments the X coordinate by 2 and decrements the Y coordinate by 3.)
This is a utility wrapper that can only be used nested within @phase.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L16-L36
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L495-L500
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L261-L266
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L271-L276
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/macros.jl#L471-L478

CHAPTER 16. NATURE SUBMODEL 63

16.3 individuals.jl

This file contains life-history and other ecological functions that apply to all animal individuals, such reproduc-
tion, death, and movement.

Persefone.followanimal! - Function.

followanimal! (follower, leader, model, distance=0)

Move the follower animal to a location near the leading animal.

source

Persefone.kill! - Function.

kill!(animal, model, probability=1.0, cause="")

Kill this animal, optionally with a given percentage probability. Returns true if the animal dies, false if not.
source

Persefone.migrate! - Method.

migrate! (animal, model, arrival)

Remove this animal from the map and add it to the migrant species pool. It will be returned to its current
location at the specified arrival date.

source

Persefone.move! - Method.

move! (animal, model, position)

Move the animal to the given position, making sure that this is in-bounds. If the position is out of bounds,
the animal stops at the map edge.

source

Persefone.occupy! - Method.

occupy! (animal, model, position)

Add the given location to the animal's territory. Returns true if successful (i.e. if the location was not
already occupied by a conspecific), false if not.

source

Persefone.reproduce! - Function.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L116-L120
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L33-L38
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L57-L62
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L130-L135
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L77-L82

CHAPTER 16. NATURE SUBMODEL 64

reproduce! (animal, model, mate, n=1)

Produce one or more offspring for the given animal at its current location. The mate argument gives the

ID of the reproductive partner.
source

Persefone.vacate! - Method.

vacate! (animal, model, position)

Remove this position from the animal's territory.
source

Persefone.vacate! - Method.

vacate! (animal, model)

Remove the animal's complete territory.
source

Persefone.walk! - Function.

walk! (animal, model, direction, distance=-1)

Let the animal move in the given direction, where the direction is defined by an (x, y) tuple to specify the
shift in coordinates. If maxdist >= 0, move no further than the specified distance.

source

Persefone.walk! - Function.

walk! (animal, model, direction, distance=1pixel)

Let the animal move a given number of steps in the given direction ("north", "northeast", "east", "southeast",
"south", "southwest", "west", "northwest", "random").

source

16.4 populations.jl
This file contains functions that apply to all animal populations, such as for initialisation, or querying for neigh-
bours.

Persefone.PopInitParams - Type.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L7-L12
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L94-L98
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L104-L108
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L179-L185
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/individuals.jl#L144-L149

CHAPTER 16. NATURE SUBMODEL 65

PopInitParams

A set of parameters used by initpopulation! to initialise the population of a species at the start of a
simulation. Define these parameters for each species using @populate.

e initphase determines which life phase individuals will be assigned to at model initialisation (re-
quired).

* birthphase determines which life phase individuals will be assigned to at birth (required).

* habitat is a function that determines whether a given location is suitable or not (create this using
@habitat). By default, every cell will be occupied.

* popsize determines the number of individuals that will be created, dispersed over the suitable lo-
cations in the landscape. If this is zero or negative, one individual will be created in every suitable
location. If it is greater than the number of suitable locations, multiple individuals will be created per
location. Alternately, use indarea.

e indarea: if this is greater than zero, it determines the habitat area allocated to each individual or
pair. To be precise, the chance of creating an individual (or pair of individuals) at a suitable location
is 1/indarea. Use this as an alternative to popsize.

e If pairs is true, a male and a female individual will be created in each selected location, otherwise,
only one individual will be created at a time. (default: false)

e If asexual is true, all created individuals are assigned the sex hermaphrodite, otherwise, they are
randomly assigned male or female. If pairs is true, asexual is ignored. (default: false)

source

Persefone.countanimals - Method.

countanimals(pos, model; radius=0, species="")

Return the number of animals in the given radius around this position, optionally filtering by species.

source

Persefone.directionto - Method.

directionto(pos, model, animal)

Calculate the direction from the given position to the animal.

source

Persefone.distanceto - Method.

distanceto(pos, model, animal)

Calculate the distance from the given position to the animal.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L7-L37
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L211-L216
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L235-L239
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L245-L249

CHAPTER 16. NATURE SUBMODEL 66

Persefone.initindividuals! - Method.

initindividuals! (species, pos, popinitparams, model)

Initialise one or two individuals (depending on the pairs parameter) in the given location. Returns the
number of created individuals. (Internal helper function for initpopulation!().)

source

Persefone.initpopulation! - Method.

initpopulation! (speciesname, model)

Initialise the population of the given species, based on the parameters stored in PopInitParams. Define
these using @populate.

source

Persefone.initpopulation! - Method.

initpopulation! (speciestype, popinitparams, model)

Initialise the population of the given species, based on the given initialisation parameters. This is an
internal function called by initpopulation! (), and was split off from it to allow better testing.

source
Persefone.isalive - Method.

isalive(id, model)
Test whether the animal with the given ID is still alive.

source

Persefone.isoccupied - Method.

isoccupied(model, position, species)

Test whether this location is part of the territory of an animal of the given species.

source

Persefone.nearby animals - Method.

nearby animals(pos, model; radius= 0, species="")

Return a list of animals in the given radius around this position, optionally filtering by species.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L113-L119
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L57-L62
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L69-L75
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L167-L171
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L142-L146
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L195-L199

CHAPTER 16. NATURE SUBMODEL 67

Persefone.nearby ids - Method.

nearby ids(pos, model, radius)

Return a list of IDs of the animals within a given radius of the position.

source

Persefone.neighbours - Function.

neighbours(animal, model, radius=0, conspecifics=true)

Return a list of animals in the given radius around this animal, excluding itself. By default, only return
conspecific animals.

source

Persefone.populationparameters - Method.

populationparameters(type)

A function that returns a PopInitParams object for the given species type. Parametric methods for each

species are defined with @populate. This is the catch-all method, which throws an error if no species-
specific function is defined.

source

Persefone.territorysize - Function.

territorysize(animal, model, stripunits=false)

Calculate the size of this animal's territory in the given unit. If stripunits is true, return the size as a
plain number.

source

16.5 ecologicaldata.jl

This file contains a set of life-history related utility functions needed by species.

Persefone.initecologicaldata - Method.

initecologicaldata()

Create output files for each data group collected by the nature model.

source

Persefone.saveindividualdata - Method.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L176-L180
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L222-L227
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L48-L54
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/populations.jl#L154-L159
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/ecologicaldata.jl#L7-L11

CHAPTER 16. NATURE SUBMODEL 68

saveindividualdata(model)

Return a data table (to be printed to individuals.csv), listing all properties of all animal individuals in
the model. May be called never, daily, monthly, yearly, or at the end of a simulation, depending on the
parameter nature.indoutfreq. WARNING: Produces very big files!

source

Persefone.savepopulationdata - Method.

savepopulationdata(model)

Return a data table (to be printed to populations.csv), giving the current date and population size for
each animal species. May be called never, daily, monthly, yearly, or at the end of a simulation, depending
on the parameter nature.popoutfregq.

source

Persefone.skylarkabundance - Method.

skylarkabundance(model)

Save skylark abundance data, including total abundance and demographic data (abundances of breed-
ing/non-breeding/juvenile/migrated individuals).

source

Persefone.skylarkterritories - Method.

skylarkterritories(model)

Return a list of all coordinates occupied by a skylark territory, and the ID of the individual holding the
territory. WARNING: produces very big files.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/ecologicaldata.jl#L45-L52
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/ecologicaldata.jl#L21-L28
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/ecologicaldata.jl#L80-L85
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/ecologicaldata.jl#L114-L119

Chapter 17

Species models

The ecological submodel in Persefone simulates a range of species in agricultural landscapes.

17.1 Skylark

Persefone.Skylark - Type.

Skylark

Alauda arvensis is a common and charismatic species of agricultural landscapes.

Sources: - Bauer, H.-G., Bezzel, E., & Fiedler, W. (Eds.). (2012). Das Kompendium der Vogel Mitteleu-
ropas: Ein umfassendes Handbuch zu Biologie, Gefahrdung und Schutz (Einbandige Sonderausg. der 2.,
vollstandig Uberarb. und erw. Aufl. 2005). AULA-Verlag - Delius, J. D. (1965). A Population Study of Skylarks
Alauda Arvensis. Ibis, 107(4), 466-492. https://doi.org/10.1111/j.1474-919X.1965.tb07332.x - Donald et
al. (2002). Survival rates, causes of failure and productivity of Skylark Alauda arvensis nests on lowland
farmland. Ibis, 144(4), 652-664. https://doi.org/10.1046/j.1474-919X.2002.00101.x - Glutz von Blotzheim,
Urs N. (Ed.). (1985). Handbuch der Vdgel Mitteleuropas. Bd. 10. Passeriformes (Teil 1) 1. Alaudidae -
Hirundidae. AULA-Verlag, Wiesbaden. ISBN 3-89104-019-9 - Jenny, M. (1990). Territorialitat und Brutbiolo-
gie der Feldlerche Alauda arvensis in einer intensiv genutzten Agrarlandschaft. Journal flr Ornithologie,
131(3), 241-265. https://doi.org/10.1007/BF01640998 - Pluttmanns et al. (2022). Habitat use and forag-
ing parameters of breeding Skylarks indicate no seasonal decrease in food availability in heterogeneous
farmland. Ecology and Evolution, 12(1), e8461. https://doi.org/10.1002/ece3.8461

source
Persefone.#1171#fun - Function.

Initialise the skylark population. Creates pairs of skylarks on grassland and agricultural land, keeping a
distance of 60m to vertical structures and giving each pair an area of 3ha.

source

Persefone.allowsnesting - Method.

allowsnesting(skylark, model, pos)

Check whether the given position is suitable for nesting.

69

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L13-L37
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L406-L409

CHAPTER 17. SPECIES MODELS 70

source
Persefone.breeding - Method.

Females that have laid eggs take care of their chicks, restarting the nesting process once the chicks are
independent or in case of brood loss.

source
Persefone.create! - Method.

Initialise a skylark individual. Selects migration dates and checks if the bird should currently be on migra-
tion. Also sets other individual-specific variables.

source

Persefone.destroynest! - Method.

destroynest! (skylark, model, reason)

Remove the skylark's nest and offspring due to disturbance or predation.

source

Persefone.findterritory - Method.

findterritory(skylark, model)

Check whether the habitat surrounding the skylark is suitable for establishing a territory. If it is, return the
list of coordinates that make up the new territory, else return an empty list.

source

Persefone.foragequality - Method.

foragequality(skylark, model, pos)

Calculate the relative quality of the habitat at this position for foraging. This assumes that open habitat is
best (quality = 1.0), and steadily decreases as vegetation height and/or cover increase. (Linear regressions
based on Puttmanns et al., 2021; Jeromin, 2002; Jenny, 1990b.)

source
Persefone.matesearch - Method.

Females returning from migration move around to look for a suitable partner with a territory.

source
Persefone.nesting - Method.

Females that have found a partner build a nest and lay eggs in a suitable location.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L351-L355
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L239-L242
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L383-L386
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L366-L370
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L284-L289
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L331-L338
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L156-L158
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L195-L197

CHAPTER 17. SPECIES MODELS 71

Persefone.nonbreeding - Method.

Non-breeding adults move around with other individuals and check for migration.

source
Persefone.occupation - Method.

Once a male has found a territory, he remains in it until the breeding season is over, adjusting it to new
conditions when and as necessary.

source
Persefone.territorysearch - Method.

Males returning from migration move around to look for suitable habitats to establish a territory.

source

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L92-L94
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L140-L143
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/nature/species/skylark.jl#L119-L121

Chapter 18

Crop submodel

Eventually, the plan is to have Persefone include a reimplementation of the AquaCrop model, a well-established
crop growth model developed by the FAO. Until then, we are using the crop growth submodel used in ALMaSs.

18.1 farmplot.jl

This file is responsible for the farm plots, i.e. the indidivual fields that farmers manage.

Persefone.FarmPlot - Type.

FarmPlot

A struct representing a single field, on which a crop can be grown.

source

Persefone.averagefieldsize - Method.

averagefieldsize(model)

Calculate the average field size in hectares for the model landscape.

source

Persefone.cropcover - Method.

cropcover(model, position)

Return the crop cover of the crop at this position, or nothing if there is no crop here (utility wrapper).

source

Persefone.cropheight - Method.

72

https://doi.org/10.1016/S0304-3800(03)00173-X
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L6-L10
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L93-L97
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L136-L141

CHAPTER 18. CROP SUBMODEL 73

cropheight(model, position)

Return the height of the crop at this position, or nothing if there is no crop here (utility wrapper).

source

Persefone.cropname - Method.

cropname(model, position)

Return the name of the crop at this position, or an empty string if there is no crop here (utility wrapper).

source

Persefone.croptype - Method.

croptype(model, position)

Return the crop at this position, or nothing if there is no crop here (utility wrapper).

source

Persefone.harvest! - Method.

harvest! (farmplot, model)

Harvest the crop of this farmplot.

source

Persefone.isgrassland - Method.

isgrassland(farmplot, model)

Classify a farmplot as grassland or not (i.e., is the landcover of >80% of its pixels grass?)

source

Persefone.sow! - Method.

sow! (farmplot, model, cropname)

Sow the specified crop on the farmplot.

source

Persefone.stepagent! - Method.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L125-L130
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L114-L119
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L104-L108
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L45-L49
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L76-L80
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L34-L38

CHAPTER 18. CROP SUBMODEL 74

stepagent! (farmplot, model)

Update a farm plot by one day.

source

Persefone.@harvest - Macro.

@harvest()

Harvest the current field. Requires the variables field and model.

source

Persefone.@sow - Macro.

@sow(cropname)

Sow the named crop on the current field. Requires the variables field and model.

source

18.2 crops.jl

This includes the types and functions needed for all crop growth model, which are also referenced by the other
submodels.

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L25-L29
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L65-L69
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/crop/farmplot.jl#L56-L60

Chapter 19

Farm submodel

Eventually, the aim is to create a full socio-economic farm decision model for Persefone. However, for the time
being, we will restrict ourselves to a simple model that executes typical farm operations and crop rotations.

19.1 farm.jl

This file is responsible for managing the farm module(s).

Persefone.BasicFarmer - Type.

BasicFarmer

The BasicFarmer type simply applies a set crop rotation to his fields and keeps track of income.

source
Persefone.Farmer - Type.

This is the agent type for the farm ABM.

source

Persefone.findsetasides - Method.

findsetasides(farmer, model)

Return a vector of field IDs that this farmer should keep fallow to satisfy the configured set-aside rules.

source

Persefone.initbasicfarms! - Method.

initbasicfarms! (model)

Initialise the basic farm model. All fields are controlled by a single farmer actor and are assigned as
grassland, set-aside, or arable land with a crop rotation.

source

75

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/farm/farm.jl#L37-L41
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/farm/farm.jl#L9
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/farm/farm.jl#L108-L113
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/farm/farm.jl#L80-L85

CHAPTER 19. FARM SUBMODEL

Persefone.initfarms! - Method.

initfarms! (model)

Initialise the model with a set of farm agents, depending on the configured farm model.

source

Persefone.stepagent! - Method.

stepagent! (farmer, model)

Update a farmer by one day. Cycle through all fields and see what management is needed.

source

76

https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/farm/farm.jl#L15-L19
https://git.idiv.de/persefone/persefone-model/-/tree/f3241671d7bd0a53a7d45ff661604f361c4abb7d/src/farm/farm.jl#L51-L55

	Contents
	Introduction
	User guide
	The Persefone.jl Package
	Installation
	Running from the command line
	Running from within Julia

	Graphical User Interface
	Quick start
	Running from the repo
	User interface
	Control bar
	Menu bar

	Configuration

	Scientific documentation
	Farm management
	Crop rotations and management
	Environmental regulations

	Crop models
	ALMaSS
	AquaCrop

	Skylark
	1. Purpose
	2. Entities, state variables, and scales
	2.1 Landscape
	2.2 Animals

	3. Process overview and scheduling
	4. Design concepts
	4.1 Basic principles
	4.2 Emergence
	4.3 Adaptation
	4.4 Objectives
	4.5 Learning
	4.6 Prediction
	4.7 Sensing
	4.8 Interaction
	4.9 Stochasticity
	4.10 Collectives
	4.11 Observation

	5. Initialisation
	6. Input data
	7. Submodels
	7.1 Territory formation
	7.2 Juvenile mortality

	8. References

	Developer guide
	Developing Persefone
	Setting up
	Visual Studio Code on Windows
	Emacs on Linux

	Development workflow
	Important libraries
	Revise.jl
	Test
	Documenter.jl
	Graphics and user interface
	Unitful.jl
	Dates

	Adapting Persefone
	Changing the parameters
	Changing the region
	Adding new animal species
	Adding new crop species
	Adding new farmer behaviour
	Adding a new submodel
	Linking to another model

	Source code architecture
	Model components
	Important implementation details
	The model object
	Model configuration/the @param macro
	Output data
	Farm events
	Random numbers and logging

	Maps and weather data
	Land cover maps
	Field ID maps
	Soil data
	Weather data

	Defining new species

	Software API
	Simulation
	Persefone.jl
	simulation.jl
	landscape.jl
	weather.jl

	Input and Output
	input.jl
	output.jl
	makieplots.jl

	Nature submodel
	nature.jl
	macros.jl
	individuals.jl
	populations.jl
	ecologicaldata.jl

	Species models
	Skylark

	Crop submodel
	farmplot.jl
	crops.jl

	Farm submodel
	farm.jl

