From 021f1ed4c32e097f0f38e0229d211bbdab2bcb78 Mon Sep 17 00:00:00 2001
From: Francesco Sabatini <francesco.sabatini@idiv.de>
Date: Sat, 14 Nov 2020 13:41:11 +0100
Subject: [PATCH] Aligned Figure numbers - Output for all combinations

---
 02_Mesobromion_ExamineOutput.R | 206 ++++++++++++++++++++--
 03_Figures_Simulations.R       | 310 +++++++++++++++++++++++----------
 04_Additional_Figs.R           |  88 ++++++----
 3 files changed, 462 insertions(+), 142 deletions(-)

diff --git a/02_Mesobromion_ExamineOutput.R b/02_Mesobromion_ExamineOutput.R
index 906ef04..66ee16a 100644
--- a/02_Mesobromion_ExamineOutput.R
+++ b/02_Mesobromion_ExamineOutput.R
@@ -348,7 +348,7 @@ mydata.best <- mydata %>%
 
 write_csv(mydata.best %>% 
             dplyr::select(Trait.comb:sign_plus), 
-          path = "_output/S5_BestSolutionTiers.cov.csv")
+          path = "_output/S9_BestSolutionTiers.cov.csv")
 
 ### Graph of all the best combinations with text legend
 (top.all <- ggplot(data=(mydata.best %>% 
@@ -397,6 +397,188 @@ ggsave(filename = "_pics/Fig5_Best_AllCombinations_CI_cov.png", dpi=400,
        width=6, height=2, topall.leg)
 
 
+
+
+###### ________R1___________ ######
+###### R1.2. Import output from Cluster #### 
+##### R1.2.0. Trait labs for significant traits
+traits.sign.cov <- read_delim(file="_data/Mesobromion/traits.v2.10perc.cov.sign.txt", delim="\t")
+
+traits.sign.cov <- traits.sign.cov %>% 
+   as.data.frame() %>% 
+   mutate_if(~is.character(.), .funs=~as.factor(.)) %>% 
+   column_to_rownames("species0")
+
+
+## adapt trait labs to sign traits only
+ trait.labs.sign.cov <- trait.labs %>% 
+   filter(trait.name %in% colnames(traits.sign.cov)) %>% 
+   arrange(match(trait.name, colnames(traits.sign.cov))) %>% 
+   rename(Trait.comb.new=Trait.comb) %>% 
+   mutate(Trait.comb=1:n()) %>% 
+   dplyr::select(Trait.comb, everything(), -Trait.comb.new)
+
+
+
+##### R1.2.1 Cover values ######
+### sequential trait combo
+myfilelist1 <- list.files(path="_derived/Mesobromion/Cover/R1_all/", pattern="HIDDENcov-nona2_[0-9]+_.RData", full.names = T)
+dataFiles1 = purrr::map(myfilelist1, function(x){get(load(x))})
+#load("_derived/Mesobromion/PresAbs/HIDDEN_round_11.RData")
+corXY.all = bind_rows(dataFiles1) %>% 
+  as_tibble() %>% 
+  distinct()
+corXY.all.ci <- get.ci(corXY.all)
+corXY.all.ci <- corXY.all.ci %>% 
+  mutate(Trait.comb2=Trait.comb) %>% 
+  separate(Trait.comb2, into=paste0("trait", 1:7)) %>% 
+  mutate_at(.vars=vars(trait1:trait7),
+            .funs=~factor(., 
+                          levels=trait.labs.sign.cov$Trait.comb, 
+                          labels=trait.labs.sign.cov$trait.name)) %>% 
+  arrange(ntraits, desc(Coef.obs)) %>% 
+  #filter(ntraits>1) %>% 
+  dplyr::select(Trait.comb, Test, n, ntraits, everything()) %>% 
+  mutate(run="seq")
+
+rm( dataFiles1) #dataFiles0, 
+
+### merge together
+corXY.ci <- corXY.all.ci # %>% 
+
+mydata <- corXY.ci
+
+######## R1.2.1.4 Best - Graph of r(XY) using best combination of traits at each level of interaction N  ########
+### extract best combinations of traits
+top.one.by.one <- get.best(mydata, N=1, labs=trait.labs.sign.cov)
+
+## Routine to extract the best combination at each level of interaction (up to max traits)
+maxtraits <- 7
+for(nn in 1:maxtraits){
+  if(nn==1) {
+    best.at.1 <- get.best(mydata, N=nn, labs=trait.labs.sign.cov)
+    newdata <- mydata %>% 
+      filter_at(.vars=vars(trait1:trait7),
+                .vars_predicate = any_vars(. %in% best.at.1$trait.name | is.na(.))) 
+    new.best.row <- newdata %>% 
+      filter(Trait.comb==best.at.1$Trait.comb) 
+    upper <- new.best.row$q975
+    lower <- new.best.row$q025
+    print(paste("new best at nn", nn, best.at.1$trait.name))
+    best.progr <- best.at.1$Trait.comb
+  }
+  if(nn>1){
+    better <- list()
+    better$Trait.comb <- newdata %>% 
+      filter(ntraits==nn) %>% 
+      filter(q025>upper) %>% 
+      arrange(desc(Coef.obs)) %>% 
+      slice(1) %>% 
+      pull(Trait.comb)
+    
+    if(length(better$Trait.comb>0)){
+      better$trait.name <- trait.labs.sign.cov %>%
+        filter(Trait.comb %in% strsplit(better$Trait.comb, split = "_")[[1]]) %>% 
+        pull(trait.name)
+      
+      newdata <- newdata %>% 
+        rowwise() %>% 
+        mutate(nmatching= sum(unlist(strsplit(Trait.comb, "_")) %in% 
+                                unlist(strsplit(better$Trait.comb, "_")),
+                              na.rm=T)) %>% 
+        ungroup() %>% 
+        filter(nmatching==nn)
+      
+      new.best.row <- newdata %>% 
+        filter(Trait.comb==better$Trait.comb) 
+      upper <- new.best.row$q975
+      lower <- new.best.row$q025
+      print(paste("new best at nn", nn, paste(better$trait.name, collapse=" ")))
+      best <- better
+      best.progr <- c(best.progr, better$Trait.comb)
+    }
+  }
+}
+
+best.traits.cov <- corXY.ci %>% 
+  filter(as.character(Trait.comb)==best.progr[length(best.progr)]) %>% 
+  dplyr::select(trait1:trait7) %>% 
+  mutate_all(~as.character(.)) %>% 
+  dplyr::select(colnames(.)[which(colSums(is.na(.))==0)])
+
+best.traits.cov <- as.character(best.traits.cov[1,])
+#"Leaf_Scleroph" "FP_Dur"        "VP_Fragm"      "Height"        "SLA"    
+
+### Create dataset with best combinations + all the one-way combinations
+mydata.best <- mydata %>% 
+  #filter_at(.vars=vars(trait1:trait7), 
+  #          #          .vars_predicate = all_vars(. %in% best$trait.name | is.na(.))) %>% 
+  #          .vars_predicate = all_vars(. %in% traits.sign.alone.cov | is.na(.))) %>% 
+  filter(ntraits>1) %>% 
+  filter(sign_plus==T) %>% 
+  arrange(ntraits, Coef.obs) %>% 
+  group_by(ntraits) %>% 
+  slice(n()) %>% 
+  ungroup() %>% 
+  bind_rows(corXY.ci %>% 
+              filter(run=="seq") %>% 
+              filter(ntraits==1)) %>% 
+              #filter(trait1 %in% traits.sign.alone.cov)) %>% 
+  arrange(ntraits, Coef.obs) %>% 
+  mutate(seq=1:n()) %>% 
+  mutate(sign_plus=factor(Trait.comb %in% best.progr))
+
+write_csv(mydata.best %>% 
+            dplyr::select(Trait.comb:sign_plus), 
+          path = "_output/R1.S5_BestSolutionTiers.cov_allcombos.csv")
+
+### Graph of all the best combinations with text legend
+(top.all <- ggplot(data=(mydata.best %>% 
+                           mutate(size0=.6+(as.numeric(sign_plus)-1)*.6)))   + 
+    geom_segment(aes(x=q025, xend=q975, y=seq, yend=seq, col="a", 
+                     lwd=size0)) + 
+    geom_point(aes(x=Coef.obs, y=seq), pch=15) + 
+    scale_y_continuous(breaks=mydata.best$seq, 
+                       labels=mydata.best$Trait.comb, name=NULL)  +  
+    scale_x_continuous(name="RD correlation") + 
+    scale_size_identity() +
+    theme_bw() + 
+    theme(panel.grid.minor = element_blank(),
+          axis.text = element_text(size=7), 
+          legend.position = "none"))
+# create legend of names
+tt2 <- ttheme_minimal(
+  core = list(fg_params=list(cex = .7), 
+              padding=unit(c(1, 1), "mm")),
+  colhead = list(fg_params=list(cex = .7)),
+  rowhead = list(fg_params=list(cex = .7)))
+
+ttlabs <- trait.labs.sign.cov %>% 
+  mutate(Code=1:n())
+
+tobold <- which(ttlabs$trait.name %in% best.traits.cov)  
+tg <-  tableGrob(ttlabs %>% 
+                   dplyr::select(Code, Trait=Long_English_name) %>% 
+                   mutate(Trait=replace(x = Trait, 
+                                        list = Trait=="Vegetative Propagation - Fragmentation", 
+                                        values = "Veg. Propag. - Fragmentation")), 
+                 theme=tt2, rows = NULL)
+## Make significant traits bold
+for (i in (11 + tobold)) {
+  tg$grobs[[i]] <- editGrob(tg$grobs[[i]], gp=gpar(fontface="bold"))
+}
+#arrange into a panel
+(topall.leg <- cowplot::plot_grid(top.all, tg,
+                                  nrow=1, rel_widths=c(0.60, 0.4)))
+ggsave(filename = "_pics/R1/Fig5_R1_Best_AllCombinations_CI_cov.png", dpi=400, 
+       width=6, height=2, topall.leg)
+
+
+
+
+
+
+
 break()
 ###### ___________________ ######
 
@@ -755,7 +937,7 @@ PCA.fuzz1_3 <- basemap0 +
   ylab(paste("PC3 (", varexpl[3], "%)", sep=""))
 
 PC_fuzzy <- cowplot::plot_grid(PCA.fuzz1_2,PCA.fuzz1_3, nrow=1)
-ggsave("_pics/S11_PC_Fuzzy_1-3.png", width=10, height=5, dpi=300, last_plot())
+ggsave("_pics/S13_PC_Fuzzy_1-3.png", width=10, height=5, dpi=300, last_plot())
 
 #### 4.0.1 Alternative showing species scores ####
 tmp <- as.data.frame(pca.fuzz$CA$v[,1:3]*7) %>% 
@@ -812,8 +994,8 @@ PCAfuzz1_3.sp <- basemap0 %+% tmp +
   ylab(paste("PC3 (", varexpl[3], "%)", sep="")) 
 
 
-ggsave("_pics/S11a_PCA_Fuzzy_1-2_wSpecies.png", width=8, height=8, dpi=300, PCAfuzz1_2.sp)
-ggsave("_pics/S11b_PCA_Fuzzy_1-3_wSpecies.png", width=8, height=8, dpi=300, PCAfuzz1_3.sp)
+ggsave("_pics/S13a_PCA_Fuzzy_1-2_wSpecies.png", width=8, height=8, dpi=300, PCAfuzz1_2.sp)
+ggsave("_pics/S13b_PCA_Fuzzy_1-3_wSpecies.png", width=8, height=8, dpi=300, PCAfuzz1_3.sp)
 
 
 
@@ -833,7 +1015,7 @@ env.cor <- cor(env %>%
       scores.pca, use = "pairwise.complete.obs") #double check
 fuzz.cor <- cor(pca.fuzz$CA$u[,1:3], scores.pca)
 
-sink("_output/S9_EnvFit_CWMs_env.txt")
+sink("_output/S14_EnvFit_CWMs_env.txt")
 cwms.cor
 env.cor
 fuzz.cor
@@ -953,8 +1135,8 @@ PCA3_4.sp <- basemap0 %+% tmp +
   ylab(paste("PC4 (", varexpl[4], "%)", sep="")) 
 
 
-ggsave("_pics/S10a_PCA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA1_2.sp)
-ggsave("_pics/S10b_PCA_Beals_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA3_4.sp)
+ggsave("_pics/S14a_PCA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA1_2.sp)
+ggsave("_pics/S14b_PCA_Beals_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA3_4.sp)
 
 
 ###### _ ######
@@ -1155,7 +1337,7 @@ PCA.t2 <- baseplot +
 
 PC_traits <- cowplot::plot_grid(PCA.t1, PCA.t2, nrow=1)
 
-ggsave("_pics/S6_PCA_Traits_1-4_only7.png", width=10, height=5, dpi=300, PC_traits)
+ggsave("_pics/S10c_PCA_Traits_1-4_only7.png", width=10, height=5, dpi=300, PC_traits)
 
 ##### 4.3b Alternative version of figS6, showing the species ####
 tmp <- as.data.frame(pca.scores[,1:4]*.2) %>%
@@ -1200,8 +1382,8 @@ PCA.t2.sp <- baseplot %+% tmp +
   xlab(paste("PC3 (", varexpl[3], "%)", sep="")) + 
   ylab(paste("PC4 (", varexpl[4], "%)", sep=""))
 
-ggsave("_pics/S6a_PCA_Traits_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA.t1.sp)
-ggsave("_pics/S6b_PCA_Traits_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA.t2.sp)
+ggsave("_pics/S10_PCA_Traits_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA.t1.sp)
+ggsave("_pics/S10b_PCA_Traits_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA.t2.sp)
 
 
 #traits.dummy %>% filter(species0 %in% (tmp %>% filter(labels %in% c("Fes_pal", "Ses_alb", "Car_hum")) %>% pull(species))) %>%   dplyr::select(any_of(starts_with(as.character(traits.sign.alone.cov))))
@@ -1304,7 +1486,7 @@ traits7 <- traits %>%
 #  relocate(all_of(starts_with(as.character(best.traits.cov))), everything()) 
 
 res <- cor(traits7, use = "pairwise.complete.obs")
-png(file="_pics/S7_Correlations_Trait.png", width=8, height=6.5, units = "in", res=300)
+png(file="_pics/S11_Correlations_Trait.png", width=8, height=6.5, units = "in", res=300)
 corrplot(res, type = "upper", 
          tl.col = "black", tl.srt = 45, number.cex=0.6, addCoef.col = "black", diag=F)
 dev.off()
@@ -1315,7 +1497,7 @@ res2 <- cor(CWM.wide %>%
             dplyr::select(any_of(traits.sign.alone.cov)) %>% ## caution selecting only numerical variables
              dplyr::select(sort(tidyselect::peek_vars())) %>% 
              relocate(any_of(best.traits.cov), everything()))
-png(file="_pics/S8_Correlations_CWMs.png", width=8, height=6.5, units = "in", res=300)
+png(file="_pics/S12_Correlations_CWMs.png", width=8, height=6.5, units = "in", res=300)
 corrplot(res2, type = "upper", 
          tl.col = "black", tl.srt = 45, number.cex=0.6, addCoef.col = "black", diag=F)
 dev.off()
diff --git a/03_Figures_Simulations.R b/03_Figures_Simulations.R
index fa2bdf1..aa01b8f 100644
--- a/03_Figures_Simulations.R
+++ b/03_Figures_Simulations.R
@@ -78,37 +78,38 @@ outp.summary <- FormatData(myfiles)
 mypalette <- palette(c("#e41a1c",  #1 - red)
         "#ff7f00", #12 - orange
         "#984ea3", #13 - violet
-        "##ffed6f", #2 - yellow
+        "#ffed6f", #2 - yellow
         "#4daf4a", #23 - green
         "#377eb8")) #3 - blue
+outp.summary2 <- outp.summary %>% 
+  mutate(main=main/100) %>% 
+  mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
+  mutate(inter=factor(inter/10, levels=c(0, 0.3, 0.5), labels=paste0("Interaction = ", c(0, 0.3, 0.5)))) %>% 
+  ungroup() %>% 
+  dplyr::filter(stat.type=="XY") %>% 
+  dplyr::filter(trait %in% c("1", "2", "1 2", "3", "1 3", "2 3")) %>% 
+  mutate(trait=factor(trait, levels=c("1", "2", "3", "1 2", "1 3", "2 3"), 
+                      labels=c("t1", "t2", "tn", "t1 t2", "t1 tn", "t2 tn"))) %>% 
+  mutate(mylinetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))
 
-ggplot(data=outp.summary %>% 
-         mutate(main=main/100) %>% 
-         mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
-         mutate(inter=factor(inter/10, levels=c(0, 0.3, 0.5), labels=paste0("Interaction = ", c(0, 0.3, 0.5)))) %>% 
-         ungroup() %>% 
-         dplyr::filter(stat.type=="XY") %>% 
-         dplyr::filter(trait %in% c("1", "2", "1 2", "3", "1 3", "2 3")) %>% 
-         mutate(trait=factor(trait, levels=c("1", "2", "3", "1 2", "1 3", "2 3"), 
-                             labels=c("t1", "t2", "tn", "t1 t2", "t1 tn", "t2 tn"))) %>% 
-         mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait, lty=linetype)) + 
-  guides(linetype = FALSE) + 
-  scale_color_manual("Trait\ncomb.",
-  values=c("#e41a1c",  #1 - red)
-          "#e6ab02", #2 - yellow
-          "#377eb8", #3 - blue
-          "#d95f02", #12 - orange
-          "#984ea3", #13 - violet
-          "#4daf4a" #23 - green
-          ) 
-                      ) +
+ggplot(data=outp.summary2) + 
+  geom_line(aes(x=main, y=power, col=trait, lty=trait)) + 
   facet_grid(corr~inter) + 
   theme_bw() + 
   scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
   scale_y_continuous(name="Prop. of significant r(XY)") + 
-  theme(panel.grid = element_blank())
-
+  theme(panel.grid = element_blank()) +
+  scale_color_manual(name="Trait\ncomb.",
+                     values = c("#e41a1c",#1 - red)
+                                "#e6ab02",#2 - yellow
+                                "#377eb8",#3 - blue
+                                "#d95f02",#12 - orange
+                                "#984ea3",#13 - violet
+                                "#4daf4a" #23 - green
+                     )) +
+  scale_linetype_manual(name="Trait\ncomb.", 
+                              values = c(1,1,2,1,2,2))
+  
 ggsave(filename="_pics/R1/Fig2_CorrInte_02March.png", width=6, height=5, device="png", dpi = 300, last_plot())
 
 
@@ -170,23 +171,28 @@ hugepalette <- data.frame(trait=c('t1', 't2','t3', 't4', 'tn',
                                   't1 t2 t3 t4', 't1 t2 t3 tn','t1 t2 t4 tn','t1 t3 t4 tn','t2 t3 t4 tn',
                                   't1 t2 t3 t4 tn'), 
                           trait.col=factor(hugepalette0, levels=hugepalette0)) 
+hugelinetype <- c(1, 1, 1, 1, 2, 
+                1*1, 1*1, 1*1, 1*2, 1*1, 1*1, 1*2, 1*1, 1*2, 1*2, 
+                1*1*1, 1*1*1, 1*1*2, 1*1*1, 1*1*2, 1*1*2, 1*1*1, 1*1*2, 1*1*2, 1*1*2, 
+                1*1*1*1, 1*1*1*2, 1*1*1*2, 1*1*1*2, 1*1*1*2, 
+                1*1*1*1*2)
 
 outp.summary2 <- outp.summary2 %>% 
   left_join(hugepalette, by="trait")
 
 fig3 <- ggplot(data=outp.summary2) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait.col, lty=linetype)) + 
-  guides(linetype = FALSE) + 
+  geom_line(aes(x=main, y=power, col=trait, lty=trait)) + #group=trait, 
   scale_x_continuous(name="Effect of factor e1 -> trait t1", n.breaks = 4) + 
   scale_y_continuous(name="Prop. of significant r(XY)") + 
   facet_grid(sel.ntraits.lab~ntraits.lab) +
-  scale_color_identity(guide = "legend", 
-                       labels= hugepalette$trait) +
+  scale_color_manual(name="trait", #guide = "legend", 
+                     values=hugepalette0) +
+                     #labels= hugepalette$trait) +
+  scale_linetype_manual(name="trait", #guide="legend", 
+                        values=hugelinetype) +
   theme_bw() + 
   theme(panel.grid = element_blank())
 
-
-
 ncols <- c(2,4,4,3,1)
     
 
@@ -196,10 +202,11 @@ for(tier in 1:5){
   outp.summary.tier <- outp.summary2 %>% filter(sel.ntraits==tier)
   ncombinations <- length(levels(factor(outp.summary.tier$trait)))
   leg.list[[tier+1]] <- cowplot::get_legend(fig3 %+% outp.summary.tier + 
-                                            guides(col=guide_legend(ncol=ncols[tier], byrow=TRUE))+
-                                            scale_color_identity(name=ifelse(tier==1, "Trait combination - tier 1",paste0("tier - ", tier)), 
-                                                                 guide = "legend", 
-                                                                 labels= hugepalette$trait[col.used:(col.used+ncombinations-1)])
+                                              guides(col=guide_legend(ncol=ncols[tier], byrow=TRUE))+
+                                              scale_color_manual(name=ifelse(tier==1, "Trait combination - tier 1",paste0("tier - ", tier)), 
+                                                               values= hugepalette0[col.used:(col.used+ncombinations-1)]) +
+                                              scale_linetype_manual(name=ifelse(tier==1, "Trait combination - tier 1",paste0("tier - ", tier)),
+                                                                    values=hugelinetype[col.used:(col.used+ncombinations-1)])
                                           )
 col.used <- col.used + ncombinations 
 }
@@ -232,19 +239,17 @@ ggplot(data=outp.summary %>%
          mutate(trait=factor(trait, levels=c("1", "2", "3", "4"), 
                              labels=c("t1", "t2", "t3","tn"))) %>% 
   mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait, lty=linetype)) + 
-  guides(linetype = FALSE) + 
-  #scale_colour_brewer(palette = "Dark2") + 
-  #scale_color_manual("Trait\ncomb.",
+  geom_line(aes(x=main, y=power, col=trait, lty=trait)) + 
   scale_color_manual("Trait",
                      values=c("#e41a1c",  #1 - red)
                               "#e6ab02", #2 - yellow
                               "#4daf4a", #23 - green
-                              "#377eb8", #3 - blue
-                              "#d95f02", #12 - orange
-                              "#984ea3" #13 - violet
-                     ) 
-  ) +
+                              "#377eb8" #3 - blue
+                              #"#d95f02", #12 - orange
+                              #"#984ea3" #13 - violet
+                     )) +
+  scale_linetype_manual(name="Trait", 
+                        values = c(1,1,1,2)) +
   facet_grid(corr~inter) + 
   theme_bw() + 
   scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
@@ -255,53 +260,119 @@ ggsave(filename="_pics/R1/FigS4_Extra_CorrInte_08Jul20.png", width=6, height=5,
 
 
 
-### Additional Figures for JVS R1 ####
 
 
-#### FIGURE SXXX - XW ####
-mypath <- "_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XW"
+
+### Additional Figures for JVS R1 ####
+
+#### FIGURE R1.S5 - effect of adding neutral traits ####
+#### import function
+mypath <- "_data/Experiment_01Nov2020_NeutralTraitNumber/"
 myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T, full=T)
 outp.summary <- FormatData(myfiles) 
+outp.summary <- outp.summary %>% 
+  rename(ntraits = inter)
 
-mypalette <- palette(c("#e41a1c",  #1 - red)
-                       "#ff7f00", #12 - orange
-                       "#984ea3", #13 - violet
-                       "##ffed6f", #2 - yellow
-                       "#4daf4a", #23 - green
-                       "#377eb8")) #3 - blue
+## plotting power for XY with corr
+add.t.label <- function(x) {
+  x <- gsub(pattern=" ", replacement=" t", x=x, perl=T)
+  x <- paste0("t", x)
+  return(x)
+}
 
-ggplot(data=outp.summary %>% 
-         mutate(main=main/100) %>% 
-         mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
-         mutate(inter=factor(inter/10, levels=c(0, 0.3, 0.5), labels=paste0("Interaction = ", c(0, 0.3, 0.5)))) %>% 
-         ungroup() %>% 
-         dplyr::filter(stat.type=="XY") %>% 
-         dplyr::filter(trait %in% c("1", "2", "1 2", "3", "1 3", "2 3")) %>% 
-         mutate(trait=factor(trait, levels=c("1", "2", "3", "1 2", "1 3", "2 3"), 
-                             labels=c("t1", "t2", "tn", "t1 t2", "t1 tn", "t2 tn"))) %>% 
-         mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait, lty=linetype)) + 
-  guides(linetype = FALSE) + 
-  scale_color_manual("Trait\ncomb.",
-                     values=c("#e41a1c",  #1 - red)
-                              "#e6ab02", #2 - yellow
-                              "#377eb8", #3 - blue
-                              "#d95f02", #12 - orange
-                              "#984ea3", #13 - violet
-                              "#4daf4a" #23 - green
-                     )) +
-  facet_grid(corr~inter) + 
+outp.summary2 <- outp.summary %>% 
+  ungroup() %>% 
+  mutate(main=main/10) %>% 
+  mutate(ntraits.lab=factor(ntraits, levels=3:5, labels=paste0("n. neutral traits = ", 1:3))) %>%
+  rowwise() %>% 
+  mutate(sel.ntraits=factor(get.ntraits(trait))) %>%  
+  mutate(sel.ntraits.lab=factor(sel.ntraits, levels=levels(sel.ntraits), labels=paste0("Comb. tier = ", levels(sel.ntraits)))) %>%
+  ungroup() %>% 
+  dplyr::filter(stat.type=="XY") %>% 
+  mutate(trait=factor(trait)) %>% 
+  mutate(trait=factor(trait, levels=levels(trait), 
+                      labels=add.t.label(levels(trait))))
+
+### rename null trait to "tn"
+outp.summary2 <- outp.summary2 %>% 
+  #mutate(tn.name=paste0("t", ntraits)) %>% 
+  mutate(trait=str_replace(trait, pattern="t3", replacement="tn1")) %>% 
+  mutate(trait=str_replace(trait, pattern="t4", replacement="tn2")) %>% 
+  mutate(trait=str_replace(trait, pattern="t5", replacement="tn3")) %>% 
+  mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))
+
+#reorder factors
+outp.summary2$trait <- factor(outp.summary2$trait, levels= c('t1', 't2','tn1', 'tn2', 'tn3',
+                                                             't1 t2', 't1 tn1','t1 tn2','t1 tn3','t2 tn1','t2 tn2','t2 tn3','tn1 tn2','tn1 tn3', 'tn2 tn3',
+                                                             't1 t2 tn1', 't1 t2 tn2','t1 t2 tn3','t1 tn1 tn2', 't1 tn1 tn3','t1 tn2 tn3','t2 tn1 tn2','t2 tn1 tn3', 't2 tn2 tn3','tn1 tn2 tn3',
+                                                             't1 t2 tn1 tn2', 't1 t2 tn1 tn3','t1 t2 tn2 tn3','t1 tn1 tn2 tn3','t2 tn1 tn2 tn3',
+                                                             't1 t2 tn1 tn2 tn3'))
+
+hugepalette0 <- c(RColorBrewer::brewer.pal(4, "Dark2"),
+                  gray(0.2),
+                  RColorBrewer::brewer.pal(10, "Paired"),
+                  RColorBrewer::brewer.pal(10, "Set3"),
+                  RColorBrewer::brewer.pal(5, "Pastel1"), "brown")
+#change tone of yellow of t1-t2-tn2
+hugepalette0[17] <- "#ccebc5"
+hugepalette <- data.frame(trait=c('t1', 't2','tn1', 'tn2', 'tn3',
+                                  't1 t2', 't1 tn1','t1 tn2','t1 tn3','t2 tn1','t2 tn2','t2 tn3','tn1 tn2','tn1 tn3', 'tn2 tn3',
+                                  't1 t2 tn1', 't1 t2 tn2','t1 t2 tn3','t1 tn1 tn2', 't1 tn1 tn3','t1 tn2 tn3','t2 tn1 tn2','t2 tn1 tn3', 't2 tn2 tn3','tn1 tn2 tn3',
+                                  't1 t2 tn1 tn2', 't1 t2 tn1 tn3','t1 t2 tn2 tn3','t1 tn1 tn2 tn3','t2 tn1 tn2 tn3',
+                                  't1 t2 tn1 tn2 tn3'), 
+                          trait.col=factor(hugepalette0, levels=hugepalette0)) 
+
+hugelinetype <- c(1, 1, 1, 1, 2, 
+                  1*1, 1*1, 1*1, 1*2, 1*1, 1*1, 1*2, 1*1, 1*2, 1*2, 
+                  1*1*1, 1*1*1, 1*1*2, 1*1*1, 1*1*2, 1*1*2, 1*1*1, 1*1*2, 1*1*2, 1*1*2, 
+                  1*1*1*1, 1*1*1*2, 1*1*1*2, 1*1*1*2, 1*1*1*2, 
+                  1*1*1*1*2)
+
+outp.summary2 <- outp.summary2 %>% 
+  left_join(hugepalette, by="trait")
+
+figS5 <- ggplot(data=outp.summary2) + 
+  geom_line(aes(x=main, y=power, col=trait, lty=trait)) + #group=trait, 
+  scale_x_continuous(name="Effect of factor e1 -> trait t1", n.breaks = 4) + 
+  scale_y_continuous(name="Prop. of significant r(XY)") + 
+  facet_grid(sel.ntraits.lab~ntraits.lab) +
+  scale_color_manual(name="trait", #guide = "legend", 
+                     values=hugepalette0) +
+  scale_linetype_manual(name="trait", #guide="legend", 
+                        values=hugelinetype) +
   theme_bw() + 
-  scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
-  scale_y_continuous(name="Prop. of significant r(XW)") + 
   theme(panel.grid = element_blank())
 
-ggsave(filename="_pics/R1/FigSXXX_CorrInte_30November_XW.png", width=6, height=5, device="png", dpi = 300, last_plot())
+ncols <- c(2,4,4,3,1)
+
+
+leg.list <- list()
+col.used <- 1
+for(tier in 1:5){
+  outp.summary.tier <- outp.summary2 %>% filter(sel.ntraits==tier)
+  ncombinations <- length(levels(factor(outp.summary.tier$trait)))
+  leg.list[[tier+1]] <- cowplot::get_legend(figS5 %+% outp.summary.tier + 
+                                              guides(col=guide_legend(ncol=ncols[tier], byrow=TRUE))+
+                                              scale_color_manual(name=ifelse(tier==1, "Trait combination - tier 1",paste0("tier - ", tier)), 
+                                                                 values= hugepalette0[col.used:(col.used+ncombinations-1)]) +
+                                              scale_linetype_manual(name=ifelse(tier==1, "Trait combination - tier 1",paste0("tier - ", tier)),
+                                                                    values=hugelinetype[col.used:(col.used+ncombinations-1)])
+  )
+  col.used <- col.used + ncombinations 
+}
+leg.list[[tier+2]] <- NULL
+
+figS5.panel <- cowplot::plot_grid(figS5 + theme(legend.position = "none"), 
+                                  cowplot::plot_grid(plotlist = leg.list, nrow = 7, 
+                                                     rel_heights = c(0.05, .2,.2,.2,.2,.2, 0.15), align="hv"), 
+                                  nrow=1, rel_widths = c(0.55,.45))
 
 
+ggsave(filename="_pics/R1/FigS5_Neutral_TraitNumber.png", 
+       width=9, height=7, device="png", dpi = 300, figS5.panel)
 
 
-### FIGURE SXXY - SBM ####
+#### FIGURE R1.S6a - XW ####
 mypath <- "_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XW"
 myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T, full=T)
 outp.summary <- FormatData(myfiles) 
@@ -318,14 +389,13 @@ ggplot(data=outp.summary %>%
          mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
          mutate(inter=factor(inter/10, levels=c(0, 0.3, 0.5), labels=paste0("Interaction = ", c(0, 0.3, 0.5)))) %>% 
          ungroup() %>% 
-         dplyr::filter(stat.type=="SbM") %>% 
-         dplyr::filter(envir==1) %>% 
+         dplyr::filter(stat.type=="XY") %>% 
          dplyr::filter(trait %in% c("1", "2", "1 2", "3", "1 3", "2 3")) %>% 
          mutate(trait=factor(trait, levels=c("1", "2", "3", "1 2", "1 3", "2 3"), 
-                             labels=c("t1", "t2", "tn", "t1 t2", "t1 tn", "t2 tn"))) %>% 
-         mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait, lty=linetype)) + 
-  guides(linetype = FALSE) + 
+                             labels=c("t1", "t2", "tn", "t1 t2", "t1 tn", "t2 tn")))# %>% 
+         #mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))
+         ) + 
+  geom_line(aes(x=main, y=power, col=trait, lty=trait)) +  #group=trait,
   scale_color_manual("Trait\ncomb.",
                      values=c("#e41a1c",  #1 - red)
                               "#e6ab02", #2 - yellow
@@ -334,16 +404,19 @@ ggplot(data=outp.summary %>%
                               "#984ea3", #13 - violet
                               "#4daf4a" #23 - green
                      )) +
+  scale_linetype_manual(name="Trait\ncomb.", 
+                        values = c(1,1,2,1,2,2)) +
   facet_grid(corr~inter) + 
   theme_bw() + 
   scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
-  scale_y_continuous(name="Prop. of significant tests") + 
+  scale_y_continuous(name="Prop. of significant r(XW)") + 
   theme(panel.grid = element_blank())
 
-ggsave(filename="_pics/R1/FigSXXY_CorrInte_30November_SbM.png", width=6, height=5, device="png", dpi = 300, last_plot())
+ggsave(filename="_pics/R1/FigS6a_CorrInte_30November_XW.png", width=6, height=5, device="png", dpi = 300, last_plot())
+
 
 
-#### FIGURE SXXO - XE ####
+#### FIGURE R1.S6b - XE ####
 mypath <- "_data/Experiment_02Mar2020_FactorInteraction&TraitCorr"
 myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T, full=T)
 outp.summary <- FormatData(myfiles) 
@@ -366,8 +439,7 @@ ggplot(data=outp.summary %>%
          mutate(trait=factor(trait, levels=c("1", "2", "3", "1 2", "1 3", "2 3"), 
                              labels=c("t1", "t2", "tn", "t1 t2", "t1 tn", "t2 tn"))) %>% 
          mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait, lty=linetype)) + 
-  guides(linetype = FALSE) + 
+  geom_line(aes(x=main, y=power, col=trait, lty=trait)) + #group=trait, 
   scale_color_manual("Trait\ncomb.",
                      values=c("#e41a1c",  #1 - red)
                               "#e6ab02", #2 - yellow
@@ -375,18 +447,22 @@ ggplot(data=outp.summary %>%
                               "#d95f02", #12 - orange
                               "#984ea3", #13 - violet
                               "#4daf4a" #23 - green
-                     ) 
-  ) +
+                     )) +
+  scale_linetype_manual(name="Trait\ncomb.", 
+                        values = c(1,1,2,1,2,2)) +
   facet_grid(corr~inter) + 
   theme_bw() + 
   scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
   scale_y_continuous(name="Prop. of significant r(XE)") + 
   theme(panel.grid = element_blank())
 
-ggsave(filename="_pics/R1/FigSXXO_CorrInte_02March_XE.png", width=6, height=5, device="png", dpi = 300, last_plot())
+ggsave(filename="_pics/R1/FigS6b_CorrInte_02March_XE.png", width=6, height=5, device="png", dpi = 300, last_plot())
+
+
 
 
-#### FIGURE SXXP rXY & rXW vs Sample Size ####
+
+#### FIGURE R1.S7 rXY & rXW vs Sample Size ####
 mypath <- "_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XY_SampleSize_Main=040_Inter=00_Corr=00_v21169/"
 myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T, full=T)
 myfiles <- myfiles[!grepl("_new", x=myfiles)] ## exclude 'new' directories --> correct?
@@ -419,7 +495,7 @@ ggplot(data= outp.summary %>%
   theme(panel.grid = element_blank(), 
         legend.position = c(0.8, 0.2))
 
-ggsave(filename="_pics/R1/FigSXXP_CorrInte_02March_SampleSize.png", 
+ggsave(filename="_pics/R1/FigS7_CorrInte_02March_SampleSize.png", 
        width=3, height=3, device="png", dpi = 300, last_plot())
 
 
@@ -432,3 +508,51 @@ ggsave(filename="_pics/R1/FigSXXP_CorrInte_02March_SampleSize.png",
 
 
 
+### FIGURE SXXY - SBM - only for review ####
+mypath <- "_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XW"
+myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T, full=T)
+outp.summary <- FormatData(myfiles) 
+
+mypalette <- palette(c("#e41a1c",  #1 - red)
+                       "#ff7f00", #12 - orange
+                       "#984ea3", #13 - violet
+                       "##ffed6f", #2 - yellow
+                       "#4daf4a", #23 - green
+                       "#377eb8")) #3 - blue
+
+ggplot(data=outp.summary %>% 
+         mutate(main=main/100) %>% 
+         mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
+         mutate(inter=factor(inter/10, levels=c(0, 0.3, 0.5), labels=paste0("Interaction = ", c(0, 0.3, 0.5)))) %>% 
+         ungroup() %>% 
+         dplyr::filter(stat.type=="SbM") %>% 
+         dplyr::filter(envir==1) %>% 
+         dplyr::filter(trait %in% c("1", "2", "1 2", "3", "1 3", "2 3")) %>% 
+         mutate(trait=factor(trait, levels=c("1", "2", "3", "1 2", "1 3", "2 3"), 
+                             labels=c("t1", "t2", "tn", "t1 t2", "t1 tn", "t2 tn"))) %>% 
+         mutate(linetype=as.factor(ifelse(grepl(pattern="tn", x = trait), 2, 1)))) + 
+  geom_line(aes(x=main, y=power, col=trait, lty=trait)) + #group=trait, 
+  scale_color_manual("Trait\ncomb.",
+                     values=c("#e41a1c",  #1 - red)
+                              "#e6ab02", #2 - yellow
+                              "#377eb8", #3 - blue
+                              "#d95f02", #12 - orange
+                              "#984ea3", #13 - violet
+                              "#4daf4a" #23 - green
+                     )) +
+  scale_linetype_manual(name="Trait\ncomb.", 
+                        values = c(1,1,2,1,2,2)) +
+  facet_grid(corr~inter) + 
+  theme_bw() + 
+  scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
+  scale_y_continuous(name="Prop. of significant tests") + 
+  theme(panel.grid = element_blank())
+
+ggsave(filename="_pics/R1/FigSXXY_CorrInte_30November_SbM.png", width=6, height=5, device="png", dpi = 300, last_plot())
+
+
+
+
+
+
+
diff --git a/04_Additional_Figs.R b/04_Additional_Figs.R
index 95b52d4..1873263 100644
--- a/04_Additional_Figs.R
+++ b/04_Additional_Figs.R
@@ -122,6 +122,7 @@ do.the.parse <- function(toparse) {
 }
 
 
+### Figure R1.S8 - Comparison beta vs cor ####
 ## Function to create Figure SXXV
 create.panel <- function(x){
   gg.betaW <- ggplot(data=x %>% 
@@ -132,7 +133,6 @@ create.panel <- function(x){
     geom_density(aes(value)) + 
     xlab("Proportional Beta Diversity (W)") +
     xlim(c(0,1.1)) + 
-    ylim(c(0,60)) +
     theme_classic()
   
   gg.betaY <- gg.betaW %+%
@@ -149,7 +149,8 @@ create.panel <- function(x){
        group_by(dataset, metric, matrix) %>% 
        summarize(value=max(abs(value))))+ 
     xlab("Cor(WE)") + 
-    ylab(NULL)
+    ylab(NULL) + 
+    ylim(c(0,13.5))
   
   gg.corY <- gg.betaW %+% 
     (x %>% 
@@ -159,56 +160,62 @@ create.panel <- function(x){
        group_by(dataset, metric, matrix) %>% 
        summarize(value=max(abs(value)))) + 
     xlab("Cor(YE)") + 
-    ylab(NULL)
+    ylab(NULL)+ 
+    ylim(c(0,13.5))
   
   gg.panel <- cowplot::plot_grid(gg.betaW, gg.corW,
                                  gg.betaY, gg.corY, 
-                                 nrow=2, rel_widths = c(1,1.06))
+                                 nrow=2, rel_widths = c(1,1.06), align = "hv")
   return(gg.panel)
 }
 
 
-
-
-
-### Figure SXXV - comparison beta vs cor ####
+# Set path of files to import and parse
 mypath <- "_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XY_SampleSize_Main=040_Inter=00_Corr=00_v21169"
 myfiles <- list.files(path=mypath, pattern = "FinalSimulatedData.txt", recursive = T, full.names = T)
 myfiles <- myfiles[grepl("_new", x=myfiles)]
 
+# Loop over files to import and parse. Create graphs
 for(i in 1:length(myfiles)){
   toparse <- myfiles[i]
   sampleN <- regmatches(toparse, gregexpr("N=[[:digit:]]+", toparse))[[1]]
   div.summary <- do.the.parse(toparse)
 
   gg.out <- create.panel(div.summary)
-  ggsave(filename = paste0("_pics/R1/FigSXXZ_Panel_BetaCor_", sampleN, ".png"), 
+  ggsave(filename = paste0("_pics/R1/FigS8_Panel_BetaCor_", sampleN, ".png"), 
          width=6, height=5, device="png", dpi = 300, plot = gg.out)
 }
 
 
-#### Figure SXXK - Comparison abg across combinatios Inter X Corr (Main=0.3) ####
+
+
+#### Figure R1.S1d - Comparison abg across combinatios Inter X Corr (Main=0.3) ####
 
 create.panel2 <- function(xx, i, tit){
   require(ggpubr)
-  # alpha, min, mean, max
-  gg.alpha <- ggplot(data=xx %>% 
-                        filter(matrix=="W") %>% 
-                        filter(metric %in% c("richness", "alpha")) %>% 
-                        mutate(with=ifelse(!is.na(with), paste0("OTU Rich (", with, ")"), with)) %>% 
-                        mutate(with=ifelse(is.na(with), "Eq. OTU (mean)", with))) + 
-     geom_density(aes(value, group=with, col=with), alpha=0.7, show.legend=FALSE)+
-     stat_density(aes(x=value, colour=with),
-                  geom="line",position="identity") + 
-     scale_color_brewer(palette="Dark2", name=NULL) +
-     theme_classic() + 
-     xlab("Alpha diversity (OTU Richness)") + 
-     theme(legend.position = c(0.65, 0.9)#, 
-           #legend.text = element_text(size=7)
-           ) + 
+  gg.rich <- ggplot(data=xx %>% 
+                          filter(matrix=="W") %>% 
+                          filter(metric %in% c("richness"))) + 
+    geom_density(aes(value, group=with, col=with), alpha=0.7, show.legend=FALSE)+
+    stat_density(aes(x=value, colour=with),
+                 geom="line",position="identity") + 
+    scale_color_brewer(palette="Dark2", name=NULL) +
+    theme_classic() + 
+    xlab("Species richness") + 
+    theme(legend.position = c(0.75, 0.9)) + 
     xlim(c(-.1,100)) + 
-    ylim(c(0,0.25))
-
+    ylim(c(0,0.2))
+  
+  # alpha, min, mean, max
+  gg.alpha <- gg.rich %+%
+    (xx %>%
+       filter(matrix == "W") %>%
+       filter(metric == "alpha")) +
+    geom_density(aes(value), show.legend = FALSE) +
+    xlab("Mean alpha diversity") +
+    ylim(c(0, 0.07)) +
+    ylab(NULL)
+  
   
   # beta 
   gg.beta <- ggplot(data=xx %>% 
@@ -225,7 +232,7 @@ create.panel2 <- function(xx, i, tit){
     (xx %>% 
        filter(matrix=="W") %>% 
        filter(metric %in% "propbeta")) + 
-    xlab("Proportional Beta Diversity") + 
+    xlab("Proportional beta Diversity") + 
     xlim(c(0,0.7)) + 
     ylim(c(0,4))
   #gamma
@@ -243,12 +250,14 @@ create.panel2 <- function(xx, i, tit){
   ))
   
   if(i!=1){
-    gg.alpha <- gg.alpha + 
+    gg.rich <- gg.rich + 
     theme(legend.position="none")
-    }
-  
+  }
   
   if(i!=3){
+    gg.rich <- gg.rich + 
+      xlab(NULL) + 
+      theme(axis.text.x = element_blank())
     gg.alpha <- gg.alpha + 
       xlab(NULL) + 
       theme(axis.text.x = element_blank())
@@ -263,27 +272,32 @@ create.panel2 <- function(xx, i, tit){
       theme(axis.text.x = element_blank())
   }
   
-  gg.panel <- cowplot::plot_grid(gg.title, gg.alpha, gg.beta, gg.propbeta, gg.gamma, 
-                                 nrow=1, rel_widths = c(0.08, 1,.94, .94, .94))
+  gg.panel <- cowplot::plot_grid(gg.title, gg.rich, gg.alpha, gg.beta, gg.propbeta, gg.gamma, 
+                                 nrow=1, rel_widths = c(0.08, 1, .94, .94, .94, .94))
   return(gg.panel)
 }
 
-
+## set path of files to import and parse
 mypath <- "_data/Experiment_30Oct2020_FactorInteraction&TraitCorr_XY_DataExamples/"
 myfiles <- list.files(path=mypath, pattern = "FinalSimulatedData.txt", recursive = T, full.names = T)
 
+#loop of files, parse and create graphs
 panel.list <- list()
 for(i in 1:length(myfiles)){
   toparse <- myfiles[i]
   Inter <- regmatches(toparse, gregexpr("Inter=[[:digit:]]+", toparse))[[1]]
+  Inter <- gsub(pattern="=0", replacement=" = 0.", x = Inter)
+  Inter <- gsub(pattern="0.0", replacement="0", x = Inter)
   Corr <- regmatches(toparse, gregexpr("Corr=[[:digit:]]+", toparse))[[1]]
+  Corr <- gsub(pattern="=0", replacement=" = 0.", x = Corr)
+  Corr <- gsub(pattern="0.0", replacement="0", x = Corr)
   div.summary <- do.the.parse(toparse) 
   panel.list[[i]] <- create.panel2(div.summary, i=i,tit=paste(Inter, Corr))
   }
 
-gg.SXXK <- cowplot::plot_grid(plotlist=panel.list, nrow=3)
-ggsave(filename = "_pics/R1/FigSXXK_Panel_abg.png", 
-       width=10, height=6, device="png", dpi = 300, plot = gg.SXXK)
+gg.S1d <- cowplot::plot_grid(plotlist=panel.list, nrow=3)
+ggsave(filename = "_pics/R1/FigS1d_Panel_abg.png", 
+       width=10, height=6, device="png", dpi = 300, plot = gg.S1d)
 
 
 
-- 
GitLab