diff --git a/01_Mesobromion.R b/01_Mesobromion.R
index 9d6bf71f46292ea21ebf34a52e70ee765adebeec..09c41024666c06b6ce648e95ab119259ea702e07 100644
--- a/01_Mesobromion.R
+++ b/01_Mesobromion.R
@@ -169,127 +169,69 @@ traits <- traits %>%
 
 
 #### ## Import output #### 
-
 myfilelist <- list.files(path="_derived/Mesobromion/", pattern="HIDDEN(\\.[A-Za-z]+|_[A-Za-z]+)_[0-9]+.RData", full.names = T)
-corXY <- NULL
-#corXY.perm <- NULL
-#corXY.bootstr <- NULL
-for(ff in myfilelist){
-  index <- as.numeric(regmatches(ff, gregexpr("[[:digit:]]+", ff))[[1]])
-  load(ff)
-  corXY <- bind_rows(corXY, cor.obs)
-  #corXY.perm <- rbind(corXY.perm, cor.perm)
-  #corXY.bootstr <- rbind(corXY.bootstr, cor.bootstr)
-  print(index)
-}
-
-
-dataFiles = map(myfilelist, load) 
-dat = bind_rows(dataFiles)
-
-
+dataFiles = purrr::map(myfilelist, function(x){get(load(x))}) 
+corXY = bind_rows(dataFiles) %>% 
+  as.tbl()
+rm(corXY.output, dataFiles)
 
-diffs <- corXY.bootstr - corXY.perm
-sign <- apply(diffs, MARGIN=1, function(x){sum(x>0)>190})
-sign <- data.frame(Trait.comb=names(sign), sign=sign)
-
-corXY %>% 
-  arrange(Test, desc(Coef))
-
-aa <- data.frame(Trait.comb=paste0("t", 1:ncol(traits)), 
+trait.labs <- data.frame(Trait.comb=1:ncol(traits), 
                  trait.name=colnames(traits))#[-which(colnames(traits) %in% c("species", "species0"))])
 
-corXY.ci <- data.frame(Trait.comb=rownames(corXY.bootstr), 
-                       obs=corXY.bootstr[,1], 
-                       q025=apply(corXY.bootstr[,-1], MARGIN=1, quantile, probs=0.025), 
-                       q975=apply(corXY.bootstr[,-1], MARGIN=1, quantile, probs=0.975)) %>% 
-  left_join(sign, by="Trait.comb") %>% 
-  as.tbl() %>% 
+## calculate confidence intervals for bootstrapped correlations
+corXY.ci <- corXY %>% 
+  filter(bootstr.n==0) %>% 
+  dplyr::select(-bootstr.n) %>% 
+  group_by(Trait.comb) %>% 
+  slice(1) %>% 
+  left_join(corXY %>% 
+              filter(bootstr.n!=0) %>% 
+              group_by(Trait.comb) %>% 
+              summarize(q025=quantile(Coef.obs, 0.025),
+                        q975=quantile(Coef.obs, 0.975),
+                        greater.than.perm=mean(Coef.obs>Coef.perm), 
+                        n=n())) %>% 
+  #calculate significance using permuted correlations
+  mutate(sign_plus=greater.than.perm>0.975) %>% 
+  mutate(sign_minus=greater.than.perm<0.025)  %>% 
   mutate(Trait.comb2=Trait.comb) %>% 
-  separate(Trait.comb2, c("trait1", "trait2")) %>%  #, "trait3")) %>% 
-  mutate(trait2=paste0("t", trait2)) %>% 
-  #mutate(trait3=paste0("t", trait3)) %>% 
-  left_join(aa %>% 
-              rename(trait1=Trait.comb), by="trait1") %>% 
-  dplyr::select(-trait1) %>% 
-  rename(trait1=trait.name) %>% 
-  left_join(aa %>% 
-              rename(trait2=Trait.comb), by="trait2") %>% 
-  dplyr::select(-trait2) %>% 
-  rename(trait2=trait.name) %>%
-  #left_join(aa %>% 
-  #            rename(trait3=Trait.comb), by="trait3") %>% 
-  #dplyr::select(-trait3) %>% 
-  #rename(trait3=trait.name) %>% 
-  mutate(ntraits= (!is.na(trait1)) + (!is.na(trait2))) %>% 
-  arrange(ntraits, obs)
+  #split strings of trait combinations and add labels
+  separate(Trait.comb2, into=paste0("trait", 1:7)) %>% 
+  mutate_at(.vars=vars(trait1:trait7),
+            .funs=~factor(., levels=trait.labs$Trait.comb, labels=trait.labs$trait.name)) %>% 
+  rowwise() %>% 
+  mutate(ntraits= length(unlist(strsplit(Trait.comb, "_")))) %>% 
+  ungroup() %>% 
+  arrange(ntraits, Coef.obs) %>% 
+  dplyr::select(Trait.comb, Test, n, ntraits, everything())
   
-### spider plot
-# faceted spider plot 
-# mydata <- corXY.ci %>% 
-#   filter(grepl(pattern = "t2", Trait.comb)) %>% 
-#   #filter(grepl(pattern = "_6", Trait.comb)) %>% 
-#   #filter(sign==T) %>% 
-#   filter(ntraits<=2) %>% 
-#   mutate(Trait.comb=factor(Trait.comb)) %>% 
-#   mutate(seq=1:nrow(.))
-
-
-
-corXY.SES <- get.SES(obs.df = corXY, perm.df = corXY.perm, stat="RV") %>% 
-  mutate(Trait.comb0=Trait.comb) %>% 
-  separate(Trait.comb0, c("trait1", "trait2")) %>% #, "trait3")) %>% 
-  mutate(trait2=paste0("t", trait2)) %>% 
-  #mutate(trait3=paste0("t", trait3)) %>% 
-  left_join(aa %>% 
-              rename(trait1=Trait.comb), by="trait1") %>% 
-  dplyr::select(-trait1) %>% 
-  rename(trait1=trait.name) %>% 
-  left_join(aa %>% 
-              rename(trait2=Trait.comb), by="trait2") %>% 
-  dplyr::select(-trait2) %>% 
-  rename(trait2=trait.name) %>%
-#  left_join(aa %>% 
-#              rename(trait3=Trait.comb), by="trait3") %>% 
-#  dplyr::select(-trait3) %>% 
-#  rename(trait3=trait.name) %>%
-  dplyr::select(Trait.comb, trait1, trait2, q025:conf.p) %>%  #trait3, 
-  arrange(desc(SES.np))
-print(corXY.SES, n=20)
-
-
-mydata.SES <- corXY.ci %>% 
-  left_join(corXY.SES %>% 
-              mutate(sign.SES=ifelse(smaller.than.obs>0.975, T, F)) %>% # smaller.than.obs>0.995 |
-              dplyr::select(Trait.comb, sign.SES), 
-            by="Trait.comb")
-
-
-traits.sign.alone <- mydata.SES %>% 
+traits.sign.alone <- corXY.ci %>% 
   filter(ntraits==1) %>% 
-  filter(sign.SES==T) %>% 
+  filter(sign_plus==T) %>% 
   pull(trait1)
 
-mydata <- mydata.SES %>% 
+mydata <- corXY.ci %>% 
   filter(ntraits==1)%>% 
-  mutate(seq=1:nrow(.))
+  mutate(seq=1:n())
 ggplot(data=mydata) + 
-  geom_segment(aes(x=q025, xend=q975, y=seq, yend=seq, col=sign.SES)) + 
-  geom_point(aes(x=obs, y=seq), pch=15) + 
+  geom_segment(aes(x=q025, xend=q975, y=seq, yend=seq, 
+                   col=sign_plus)) + 
+  geom_point(aes(x=Coef.obs, y=seq), pch=15) + 
   scale_y_continuous(breaks=mydata$seq, 
                      labels=mydata$Trait.comb) 
 
 
-mydata <- mydata.SES %>% 
+mydata <- mydata %>% 
   #filter(ntraits==2)%>% 
-  filter(sign.SES==T) %>% 
+  filter(sign_plus==T) %>% 
   filter(trait1 %in% traits.sign.alone & (is.na(trait2) | trait2 %in% traits.sign.alone)) %>% 
   mutate(seq=1:nrow(.)) # %>% 
 #  arrange(desc(obs)) %>% 
 #  slice(1:20)
 ggplot(data=mydata) + 
-  geom_segment(aes(x=q025, xend=q975, y=seq, yend=seq, col=sign.SES)) + 
-  geom_point(aes(x=obs, y=seq), pch=15) + 
+  geom_segment(aes(x=q025, xend=q975, y=seq, yend=seq, 
+                   col=sign_plus)) + 
+  geom_point(aes(x=Coef.obs, y=seq), pch=15) + 
   scale_y_continuous(breaks=mydata$seq, 
                      labels=mydata$Trait.comb, 
                      name="RV correlation") 
@@ -297,9 +239,9 @@ ggplot(data=mydata) +
 
 
 
-traits.sign <- traits %>% 
-  dplyr::select(species0, traits.sign.alone)
-write_delim(traits.sign, path="_data/Mesobromion/traits.out.10perc.sign.txt", delim="\t")
+#traits.sign <- traits %>% 
+#  dplyr::select(species0, traits.sign.alone)
+#write_delim(traits.sign, path="_data/Mesobromion/traits.out.10perc.sign.txt", delim="\t")
 
 break()