From 269114f1fde95084f5cba5bf8031fb2047a3ca16 Mon Sep 17 00:00:00 2001
From: Francesco Sabatini <francesco.sabatini@idiv.de>
Date: Wed, 22 Jul 2020 15:32:31 +0200
Subject: [PATCH] Integrated 03 into 02_Figures.R

---
 02_Figures.R                   | 216 ---------------------------------
 03_Extra_Figures_Simulations.R | 113 -----------------
 2 files changed, 329 deletions(-)
 delete mode 100644 02_Figures.R
 delete mode 100644 03_Extra_Figures_Simulations.R

diff --git a/02_Figures.R b/02_Figures.R
deleted file mode 100644
index a70509f..0000000
--- a/02_Figures.R
+++ /dev/null
@@ -1,216 +0,0 @@
-## this script extracts all the summary.txt files from all subfolder
-## and summarizes the output for each run, trait x environment combination, and statistics
-## It then plots the summarized output
-library(tidyverse)
-
-#### import function
-FormatData <- function(myfiles){
-  output <- NULL
-  for(ff in myfiles){
-    iter <- gsub(pattern="/Summary.txt$", replacement="", ff) 
-    iter <- strsplit(iter, split = "_")[[1]]
-    iter <- as.integer(unlist(regmatches(iter, gregexpr("[[:digit:]]+", iter))))
-    tmp <- read_delim(paste(mypath, ff, sep="/"), delim="\t", col_names = F) %>% 
-      dplyr::select(-X1, -X3, -X5, -X9, -X11, -X13) %>% 
-      rename(simulated=X2, trait=X4, envir=X6, stat.type=X7, stat.obs=X8, pvalue=X10, SES=X12, exp.med=X14 ) %>% 
-      mutate(stat.type=gsub(pattern = "^r\\(", replacement="", stat.type)) %>%
-      mutate(stat.type=gsub(pattern = "\\)\\=$", replacement="", stat.type)) %>% 
-      mutate(stat.type=gsub(pattern = "_", replacement="\\.", stat.type)) %>% 
-      mutate(trait=gsub(pattern="[[:space:]]+$", replacement="", trait)) %>% 
-      mutate(envir=gsub(pattern="[[:space:]]+$", replacement="", envir)) %>% 
-      mutate(main=iter[[1]]) %>% 
-      mutate(inter=iter[[2]]) %>% 
-      mutate(corr=iter[[3]]) %>% 
-      dplyr::select(main:corr, everything())
-    output <- bind_rows(output, tmp)
-  }
-  
-  outp.summary <- output %>% 
-    dplyr::filter(!stat.type %in% c("TY", "XY", "XY.T", "XY.TR")) %>% 
-    group_by(main, inter, corr, trait, envir, stat.type) %>% 
-    summarize(stat.obs.med=median(stat.obs),
-              power=mean(pvalue<=0.05),
-              SES.med=median(SES), 
-              exp.med.med=median(exp.med), 
-              nsim=n()) %>% 
-    bind_rows(output %>% 
-                dplyr::filter(stat.type %in% c("TY", "XY", "XY.T", "XY.TR")) %>% 
-                group_by(main, inter, corr, trait, stat.type) %>% 
-                summarize(stat.obs.med=median(stat.obs),
-                          power=mean(pvalue<=0.05),
-                          SES.med=median(SES), 
-                          exp.med.med=median(exp.med), 
-                          nsim=n())) %>% 
-    dplyr::select(main:stat.type, nsim, stat.obs.med:exp.med.med) %>% 
-    arrange(stat.type, main, inter, corr, trait, envir)
-  return(outp.summary)
-}
-
-
-get.ntraits <- function(x){ 
-  tmp <- str_split(x, pattern = " ")[[1]]
-  return(length(tmp))
-}
-
-
-#### FIGURE 2 #####
-mypath <- "_data/Experiment_02Mar2020_FactorInteraction&TraitCorr"
-myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T)
-outp.summary <- FormatData(myfiles) 
-
-
-#e41a1c ##red
-#377eb8 ##blue
-#ffffb2 ## yellow
-#4daf4a ##green
-#984ea3 ##violet
-#ff7f00 ##orange
-
-
-mypalette <- palette(c("#e41a1c",  #1 - red)
-        "#ff7f00", #12 - orange
-        "#984ea3", #13 - violet
-        "##ffed6f", #2 - yellow
-        "#4daf4a", #23 - green
-        "#377eb8")) #3 - blue
-
-ggplot(data=outp.summary %>% 
-         mutate(main=main/100) %>% 
-         mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
-         mutate(inter=factor(inter/10, levels=c(0, 0.3, 0.5), labels=paste0("Interaction = ", c(0, 0.3, 0.5)))) %>% 
-         ungroup() %>% 
-         dplyr::filter(stat.type=="XY") %>% 
-         dplyr::filter(trait %in% c("1", "2", "1 2", "3", "1 3", "2 3")) %>% 
-         mutate(trait=factor(trait, levels=c("1", "2", "3", "1 2", "1 3", "2 3"), 
-                             labels=c("t1", "t2", "t3", "t1 t2", "t1 t3", "t2 t3")))) + #%>%
-         #dplyr::filter(trait %in% c("1", "2", "1 2", "3")) %>%
-         #mutate(inter=as.factor(inter))) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait)) + 
-  #scale_colour_brewer(palette = "Dark2") + 
-  scale_color_manual("Trait\ncomb.",
-  values=c("#e41a1c",  #1 - red)
-          "#e6ab02", #2 - yellow
-          "#377eb8", #3 - blue
-          "#d95f02", #12 - orange
-          "#984ea3", #13 - violet
-          "#4daf4a" #23 - green
-          ) 
-                      ) +
-  facet_grid(corr~inter) + 
-  theme_bw() + 
-  scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
-  scale_y_continuous(name="Power") + 
-  theme(panel.grid = element_blank())
-
-ggsave(filename="_pics/Fig2_CorrInte_02March.png", width=6, height=5, device="png", dpi = 300, last_plot())
-
-
-
-
-#### FIGURE 3 #####
-mypath <- "_data/Experiment_04Mar2020_TraitNumber"
-myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T)
-outp.summary <- FormatData(myfiles) %>% 
-  rename(ntraits=inter)
-
-## plotting power for XY with corr
-add.t.label <- function(x) {
-  x <- gsub(pattern=" ", replacement=" t", x=x, perl=T)
-  x <- paste0("t", x)
-  return(x)
-}
-
-outp.summary2 <- outp.summary %>% 
-  ungroup() %>% 
-  mutate(main=main/10) %>% 
-  #mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
-  mutate(ntraits.lab=factor(ntraits, levels=1:5, labels=paste0("n. traits = ", 1:5))) %>%
-  rowwise() %>% 
-  mutate(sel.ntraits=factor(get.ntraits(trait))) %>%  
-  mutate(sel.ntraits.lab=factor(sel.ntraits, levels=levels(sel.ntraits), labels=paste0("Comb. tier = ", levels(sel.ntraits)))) %>%
-  ungroup() %>% 
-  dplyr::filter(stat.type=="XY") %>% 
-  mutate(trait=factor(trait)) %>% 
-  mutate(trait=factor(trait, levels=levels(trait), 
-                      labels=add.t.label(levels(trait))))
-
-### rename null trait to "tn"
-outp.summary2 <- outp.summary2 %>% 
-  mutate(tn.name=paste0("t", ntraits)) %>% 
-  mutate(trait=str_replace(trait, pattern=tn.name, replacement="tn"))
-
-#reorder factors
-outp.summary2$trait <- factor(outp.summary2$trait, levels= c('t1', 't2','t3', 't4', 'tn',
-                                                             't1 t2', 't1 t3','t1 t4','t1 tn','t2 t3','t2 t4','t2 tn','t3 t4','t3 tn', 't4 tn',
-                                                             't1 t2 t3', 't1 t2 t4','t1 t2 tn','t1 t3 t4', 't1 t3 tn','t1 t4 tn','t2 t3 t4','t2 t3 tn', 't2 t4 tn','t3 t4 tn',
-                                                             't1 t2 t3 t4', 't1 t2 t3 tn','t1 t2 t4 tn','t1 t3 t4 tn','t2 t3 t4 tn',
-                                                             't1 t2 t3 t4 tn'))
-
-
-
-hugepalette0 <- c(RColorBrewer::brewer.pal(4, "Dark2"),
-                 gray(0.2),
-                 RColorBrewer::brewer.pal(10, "Paired"),
-                 RColorBrewer::brewer.pal(10, "Set3"),
-                 RColorBrewer::brewer.pal(5, "Pastel1"), "brown")
-#change tone of yellow of t1-t2-t4
-hugepalette0[17] <- "#ccebc5"
-
-hugepalette <- data.frame(trait=c('t1', 't2','t3', 't4', 'tn',
-                                  't1 t2', 't1 t3','t1 t4','t1 tn','t2 t3','t2 t4','t2 tn','t3 t4','t3 tn', 't4 tn',
-                                  't1 t2 t3', 't1 t2 t4','t1 t2 tn','t1 t3 t4', 't1 t3 tn','t1 t4 tn','t2 t3 t4','t2 t3 tn', 't2 t4 tn','t3 t4 tn',
-                                  't1 t2 t3 t4', 't1 t2 t3 tn','t1 t2 t4 tn','t1 t3 t4 tn','t2 t3 t4 tn',
-                                  't1 t2 t3 t4 tn'), 
-                          trait.col=factor(hugepalette0, levels=hugepalette0)) 
-
-outp.summary2 <- outp.summary2 %>% 
-  left_join(hugepalette, by="trait")
-
-fig3 <- ggplot(data=outp.summary2) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait.col)) + 
-  scale_x_continuous(name="Effect of factor e1 -> trait t1", n.breaks = 6) + 
-  scale_y_continuous(name="Power") + 
-  facet_grid(sel.ntraits.lab~ntraits.lab) +
-  scale_color_identity(guide = "legend", 
-                       labels= hugepalette$trait) +
-  theme_bw() + 
-  theme(panel.grid = element_blank())
-
-
-
-ncols <- c(2,4,4,3,1)
-    
-
-leg.list <- list()
-col.used <- 1
-for(tier in 1:5){
-  outp.summary.tier <- outp.summary2 %>% filter(sel.ntraits==tier)
-  ncombinations <- length(levels(factor(outp.summary.tier$trait)))
-  leg.list[[tier+1]] <- cowplot::get_legend(fig3 %+% outp.summary.tier + 
-                                            guides(col=guide_legend(ncol=ncols[tier], byrow=TRUE))+
-                                            scale_color_identity(name=ifelse(tier==1, "Trait combination - tier 1",paste0("tier - ", tier)), 
-                                                                 guide = "legend", 
-                                                                 labels= hugepalette$trait[col.used:(col.used+ncombinations-1)])
-                                          )
-col.used <- col.used + ncombinations 
-}
-leg.list[[tier+2]] <- NULL
-
-fig3.panel <- cowplot::plot_grid(fig3 + theme(legend.position = "none"), 
-                   cowplot::plot_grid(plotlist = leg.list, nrow = 7, 
-                                      rel_heights = c(0.05, .2,.2,.2,.2,.2, 0.15), align="hv"), 
-                   nrow=1, rel_widths = c(0.6,.4))
-
-
-ggsave(filename="_pics/Fig3_TraitNumber.png", 
-       width=9, height=7, device="png", dpi = 300, fig3.panel)
-
-
-
-
-
-
-
-
-
-
diff --git a/03_Extra_Figures_Simulations.R b/03_Extra_Figures_Simulations.R
deleted file mode 100644
index fd6fcf7..0000000
--- a/03_Extra_Figures_Simulations.R
+++ /dev/null
@@ -1,113 +0,0 @@
-## this script extracts all the summary.txt files from all subfolder
-## and summarizes the output for each run, trait x environment combination, and statistics
-## It then plots the summarized output
-library(tidyverse)
-
-#### import function
-FormatData <- function(myfiles){
-  output <- NULL
-  for(ff in myfiles){
-    iter <- gsub(pattern="/Summary.txt$", replacement="", ff) 
-    iter <- strsplit(iter, split = "_")[[1]]
-    iter <- as.integer(unlist(regmatches(iter, gregexpr("[[:digit:]]+", iter))))
-    tmp <- read_delim(paste(mypath, ff, sep="/"), delim="\t", col_names = F) %>% 
-      dplyr::select(-X1, -X3, -X5, -X9, -X11, -X13) %>% 
-      rename(simulated=X2, trait=X4, envir=X6, stat.type=X7, stat.obs=X8, pvalue=X10, SES=X12, exp.med=X14 ) %>% 
-      mutate(stat.type=gsub(pattern = "^r\\(", replacement="", stat.type)) %>%
-      mutate(stat.type=gsub(pattern = "\\)\\=$", replacement="", stat.type)) %>% 
-      mutate(stat.type=gsub(pattern = "_", replacement="\\.", stat.type)) %>% 
-      mutate(trait=gsub(pattern="[[:space:]]+$", replacement="", trait)) %>% 
-      mutate(envir=gsub(pattern="[[:space:]]+$", replacement="", envir)) %>% 
-      mutate(main=iter[[1]]) %>% 
-      mutate(inter=iter[[2]]) %>% 
-      mutate(corr=iter[[3]]) %>% 
-      dplyr::select(main:corr, everything())
-    output <- bind_rows(output, tmp)
-  }
-  
-  outp.summary <- output %>% 
-    dplyr::filter(!stat.type %in% c("TY", "XY", "XY.T", "XY.TR")) %>% 
-    group_by(main, inter, corr, trait, envir, stat.type) %>% 
-    summarize(stat.obs.med=median(stat.obs),
-              power=mean(pvalue<=0.05),
-              SES.med=median(SES), 
-              exp.med.med=median(exp.med), 
-              nsim=n()) %>% 
-    bind_rows(output %>% 
-                dplyr::filter(stat.type %in% c("TY", "XY", "XY.T", "XY.TR")) %>% 
-                group_by(main, inter, corr, trait, stat.type) %>% 
-                summarize(stat.obs.med=median(stat.obs),
-                          power=mean(pvalue<=0.05),
-                          SES.med=median(SES), 
-                          exp.med.med=median(exp.med), 
-                          nsim=n())) %>% 
-    dplyr::select(main:stat.type, nsim, stat.obs.med:exp.med.med) %>% 
-    arrange(stat.type, main, inter, corr, trait, envir)
-  return(outp.summary)
-}
-
-
-get.ntraits <- function(x){ 
-  tmp <- str_split(x, pattern = " ")[[1]]
-  return(length(tmp))
-}
-
-
-#### FIGURE S4 #####
-mypath <- "_data/Experiment_08Jul2020_TraitSuppression&TraitCorr"
-myfiles <- list.files(path=mypath, pattern = "Summary.txt", recursive = T)
-outp.summary <- FormatData(myfiles) 
-
-
-#e41a1c ##red
-#377eb8 ##blue
-#ffffb2 ## yellow
-#4daf4a ##green
-#984ea3 ##violet
-#ff7f00 ##orange
-
-
-mypalette <- palette(c("#e41a1c",  #1 - red)
-                       "#ff7f00", #12 - orange
-                       "#984ea3", #13 - violet
-                       "##ffed6f", #2 - yellow
-                       "#4daf4a", #23 - green
-                       "#377eb8")) #3 - blue
-
-ggplot(data=outp.summary %>% 
-         mutate(main=main/100) %>% 
-         mutate(corr=factor(corr/10, levels=c(0, 0.4, 0.8), labels=paste0("Correlation = ", c(0, 0.4, 0.8)))) %>% 
-         mutate(inter=factor(inter/10, levels=c(0, 0.3, 0.5), labels=paste0("Interaction = ", c(0, 0.3, 0.5)))) %>% 
-         ungroup() %>% 
-         dplyr::filter(stat.type=="XY") %>% 
-         dplyr::filter(trait %in% c("1", "2", "3", "4")) %>% 
-         mutate(trait=factor(trait, levels=c("1", "2", "3", "4"), 
-                             labels=c("t1", "t2", "t3","tn")))) + #%>%
-  #dplyr::filter(trait %in% c("1", "2", "1 2", "3")) %>%
-  #mutate(inter=as.factor(inter))) + 
-  geom_line(aes(x=main, y=power, group=trait, col=trait)) + 
-  #scale_colour_brewer(palette = "Dark2") + 
-  #scale_color_manual("Trait\ncomb.",
-  scale_color_manual("Trait",
-                     values=c("#e41a1c",  #1 - red)
-                              "#e6ab02", #2 - yellow
-                              "#4daf4a", #23 - green
-                              "#377eb8", #3 - blue
-                              "#d95f02", #12 - orange
-                              "#984ea3" #13 - violet
-                     ) 
-  ) +
-  facet_grid(corr~inter) + 
-  theme_bw() + 
-  scale_x_continuous(name="Effect of factor e1 -> trait t1") + 
-  scale_y_continuous(name="Power") + 
-  theme(panel.grid = element_blank())
-
-ggsave(filename="_pics/Fig2_Extra_CorrInte_08Jul20.png", width=6, height=5, device="png", dpi = 300, last_plot())
-
-
-
-
-
-
-
-- 
GitLab