diff --git a/00_Mesobromion_DataPreparation.R b/00_Mesobromion_DataPreparation.R
index 682828e711ce5f601744723a8798bc143da14763..391b9a4d33ff2847851acd95f6d1fd5fc9783c67 100644
--- a/00_Mesobromion_DataPreparation.R
+++ b/00_Mesobromion_DataPreparation.R
@@ -12,9 +12,10 @@ source("99_HIDDEN_functions.R")
 ##### PART 1 ####
 #### 1. traits data  #### 
 
-traits0 <- read_delim("_data/Mesobromion/traits3_cov.txt", delim =";",  ## manually corrected vowels with umlaut
+traits0 <- read_delim("_data/Mesobromion/traits4.csv", delim =",",  ## manually corrected vowels with umlaut
                       col_names = T, locale = locale(encoding = 'UTF-8')) %>% 
   column_to_rownames("X1") %>% 
+  dplyr::select(-starts_with("X")) %>% 
   dplyr::select(colnames(.)[which(colSums(., na.rm=T)!=0)]) %>% 
   dplyr::select(!starts_with("BLM")) %>% 
   dplyr::select(!starts_with("ZWT")) %>% 
@@ -30,15 +31,22 @@ traits0 <- read_delim("_data/Mesobromion/traits3_cov.txt", delim =";",  ## manua
   mutate(species=gsub(pattern="_", replacement = " ", x = species)) %>% 
   mutate(species=gsub(pattern=" agg | x | spec$| agg$| s | Sec |  ", replacement=" ", x=species)) %>% 
   mutate(species=gsub(pattern=" $", replacement = "", x = species)) %>% 
-  mutate(species=ifelse(is.na(word(species, 1, 2)), species, word(species, 1, 2)))
-dim(traits0) #907 obs. of  75 variables:
-
-
-
-#keep only traits with >=88 completeness
+  mutate(species=ifelse(is.na(word(species, 1, 2)), species, word(species, 1, 2))) %>% 
+  ungroup()
+dim(traits0) #902 obs. of  67 variables:
+
+## remove species with NAs
+species.to.remove <- traits0 %>%  
+  filter(all_of(is.na({.} %>% dplyr::select(-species, -species0)))) %>% 
+  pull(species0)
 traits0 <- traits0 %>% 
-  dplyr::select_if(~mean(!is.na(.)) >= 0.88) 
-dim(traits0)# 902 x 67
+  filter(!species0 %in% species.to.remove)
+  
+
+# #keep only traits with >=88 completeness
+# traits0 <- traits0 %>% 
+#   dplyr::select_if(~mean(!is.na(.)) >= 0.88) 
+# dim(traits0)# 902 x 67
 
 
 
@@ -88,8 +96,8 @@ all.traits <- traits0 %>%
             by="species") 
 traits <- all.traits %>% 
   filter(!is.na(LeafArea))
-dim(all.traits) #[1] 902  82
-dim(traits) #[1] 801  82
+dim(all.traits) #[1] 898  82
+dim(traits) #[1] 799  82
 
 
 
@@ -114,22 +122,23 @@ env.all <- env
 ### 3. Import species data #### 
 # columns in species correspond to those in env
 # there is no PlotObservationID (yet)
-species0 <- read_csv("_data/Mesobromion/GVRD_Mes2_proz2.csv", locale = locale(encoding = 'latin1'))
-dim(species0) #6868 obs. of  903 variables:
-rownames(species0) <- env0$RELEVE_NR
+species0 <- read_csv("_data/Mesobromion/GVRD_Mes2_proz2.csv", locale = locale(encoding = 'latin1')) %>% 
+  dplyr::select(-species.to.remove) %>% 
+  mutate(RELEVE_NR=env0$RELEVE_NR)
+dim(species0) #6868 obs. of  899 variables:
+
 
 ## select only plots already selected in env
 species <- env %>% 
   dplyr::select(RELEVE_NR) %>% 
-  left_join(species0 %>%
-              mutate(RELEVE_NR=env0$RELEVE_NR), 
+  left_join(species0,
             by="RELEVE_NR") %>% 
   column_to_rownames("RELEVE_NR") %>% 
   ## delete species not appearing in any plot
   dplyr::select(colnames(.)[which(colSums(.)!=0)])
 #dplyr::select(traits$species0)
 
-dim(species) # [1] 5810 877
+dim(species) # [1] 5810 873
 
 releve08trait <- species %>% 
   rownames_to_column("RELEVE_NR") %>% 
@@ -310,7 +319,6 @@ species.cov <- species.cov %>%
   dplyr::select(-sumVar) 
 dim(species.cov) #[1] 581 510
 
-
 ## export
 write_delim(species.pa, path="_data/Mesobromion/species.v2.10perc.pa.txt", delim="\t")
 write_delim(species.cov, path="_data/Mesobromion/species.v2.10perc.cov.txt", delim="\t")
@@ -323,18 +331,16 @@ write_delim(species %>%
             path="_data/Mesobromion/ReleveList.txt", delim="\t")
 
 
-
 ##check for species without trait info
 traits %>% 
   filter_at(.vars=vars(-"species0"), 
             all_vars(is.na(.))) %>% 
   nrow() ## [1] no species with no trait info ##
-## simply because those 7 species without TRY data were excluded already
 
 traits %>% 
   filter_at(.vars=vars(-"species0"), 
             any_vars(is.na(.))) %>% 
-  nrow() ## [1] 109 # species with at least 1 NA in traits
+  nrow() ## [1] 36 # species with at least 1 NA in traits
 
 
 #### CORRELATION BETWEEN FUZZY WEIGHTED AND BEALS MATRICES
@@ -350,7 +356,7 @@ traits %>%
 source("01b_MesobromionCluster.R")
 #### 1. Traits individually significant for COVER data#### na.exclude=T ########
 traits <- read_delim("_data/Mesobromion/traits.v2.10perc.txt", delim="\t")
-myfilelist <- list.files(path="_derived/Mesobromion/Cover", pattern="HIDDENcov_[0-9]+_.RData", full.names = T)
+myfilelist <- list.files(path="_derived/Mesobromion/Cover", pattern="HIDDENcov-nona2_[0-9]+_.RData", full.names = T)
 dataFiles = purrr::map(myfilelist, function(x){get(load(x))})
 corXY = bind_rows(dataFiles) %>% 
   as_tibble()
@@ -373,7 +379,7 @@ traits.sign <- traits %>%
   dplyr::select(species0, any_of(traits.sign.alone))
 #write_delim(traits.sign, path="_data/Mesobromion/traits.out.10perc.cov.sign.txt", delim="\t")
 
-### COV - NONAs
+### COV - NONAs - all species with at least 1 NAs in traits excluded BEFORE The analysis
 "   Trait.comb Coef.obs Coef.perm  q025  q975 greater.than.perm     n sign_plus sign_minus ntraits trait.name           
    <chr>         <dbl>     <dbl> <dbl> <dbl>             <dbl> <int> <lgl>     <lgl>        <int> <fct>                
  1 36            0.316    0.154  0.290 0.370             0.997   999 TRUE      FALSE            1 PlantHeight          
@@ -385,6 +391,18 @@ traits.sign <- traits %>%
  7 32            0.251    0.127  0.226 0.303             0.968   999 TRUE      FALSE            1 SLA                  
  8 35            0.241    0.128  0.217 0.289             0.970   999 TRUE      FALSE            1 LeafP      "
 
+### COV - NONA2 - modified Matrix.x to deal with NAs INSIDE the analysis
+"  Trait.comb Coef.obs Coef.perm  q025  q975 greater.than.perm     n sign_plus sign_minus ntraits trait.name          
+   <chr>         <dbl>     <dbl> <dbl> <dbl>             <dbl> <int> <lgl>     <lgl>        <int> <fct>               
+ 1 36            0.304    0.134  0.281 0.356             0.990   199 TRUE      FALSE            1 PlantHeight         
+ 2 50            0.290    0.126  0.261 0.339             0.985   199 TRUE      FALSE            1 BL_ANAT             
+ 3 2             0.252    0.0621 0.214 0.303             0.985   199 TRUE      FALSE            1 LEB_F_Nanophaneroph…
+ 4 20            0.251    0.145  0.206 0.320             0.975   199 TRUE      FALSE            1 V_VER_Fragmentation 
+ 5 30            0.250    0.137  0.228 0.298             0.970   199 TRUE      FALSE            1 BL_DAU              
+ 6 32            0.247    0.0932 0.225 0.292             0.965   199 TRUE      FALSE            1 SLA                 
+ 7 49            0.236    0.0784 0.212 0.284             0.975   199 TRUE      FALSE            1 STRAT_T          
+ 8 35            0.241    0.127  0.218 0.288             0.940   199 FALSE     FALSE            1 LeafP   "
+
 ### COV - without deleting NAs
 "# A tibble: 53 x 11
    Trait.comb Coef.obs Coef.perm  q025  q975 greater.than.perm     n sign_plus sign_minus ntraits trait.name