From ff5dfb1c84b7f4f909b958f294df0512837651b5 Mon Sep 17 00:00:00 2001 From: Francesco Sabatini <francesco.sabatini@idiv.de> Date: Mon, 7 Sep 2020 16:36:00 +0200 Subject: [PATCH] Corrected typo --- 02_Mesobromion_ExamineOutput.R | 245 ++++++++++++++++----------------- 1 file changed, 122 insertions(+), 123 deletions(-) diff --git a/02_Mesobromion_ExamineOutput.R b/02_Mesobromion_ExamineOutput.R index 25a76f5..906ef04 100644 --- a/02_Mesobromion_ExamineOutput.R +++ b/02_Mesobromion_ExamineOutput.R @@ -27,7 +27,7 @@ get.best <- function(x, N, labs){ traits <- read_delim("_data/Mesobromion/traits.v2.10perc.txt", delim="\t") traits <- traits %>% - rename(Schlerophylly=Leaf_Scleroph) + rename(Sclerophylly=Leaf_Scleroph) #traits.sign.cov <- read_delim("_data/Mesobromion/traits.v2.10perc.cov.sign.txt", delim="\t") #traits.sign.pa <- read_delim("_data/Mesobromion/traits.v2.10perc.pa.sign.txt", delim="\t") trait.labs <- data.frame(trait.name=colnames(traits)[-1]) %>% @@ -41,7 +41,7 @@ species.cov <- read_delim("_data/Mesobromion/species.v2.10perc.cov.txt", delim=" traits <- traits %>% as.data.frame() %>% - mutate_at(.vars=vars(Schlerophylly, LifeSpan, Rosette), + mutate_at(.vars=vars(Sclerophylly, LifeSpan, Rosette), .funs=~as.ordered(.)) %>% # filter(species0 %in% colnames(species)) %>% mutate_if(~is.character(.), .funs=~as.factor(.)) %>% @@ -617,7 +617,6 @@ ggsave(filename = "_pics/SXXX_Best_AllCombinations_CI_pa.png", dpi=400, #species <- read_delim("_data/Mesobromion/species.out.10perc.txt", delim="\t") species.cov <- read_delim("_data/Mesobromion/species.v2.10perc.cov.txt", delim="\t") -#traits <- traits.backup traits <- traits %>% rownames_to_column("species0") %>% mutate_if(.predicate=~is.ordered(.), @@ -954,130 +953,130 @@ PCA3_4.sp <- basemap0 %+% tmp + ylab(paste("PC4 (", varexpl[4], "%)", sep="")) -ggsave("_pics/Fig6a_PCA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA1_2.sp) -ggsave("_pics/Fig6b_PCA_Beals_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA3_4.sp) +ggsave("_pics/S10a_PCA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA1_2.sp) +ggsave("_pics/S10b_PCA_Beals_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA3_4.sp) ###### _ ###### #### 4.2 RDA of Beals ~ FWMs #### -RDA.beals <- rda(W.beals ~ scores(pca.fuzz, choices=1:3)$sites, scale=F) -# var explained by CONSTRAINED axes -varexpl <- round((RDA.beals$CCA$eig)/(sum(RDA.beals$CA$eig) + sum(RDA.beals$CCA$eig))*100,1) - -scores.rda <- scores(RDA.beals, choices = 1:3)$sites # -#scores.rda <- RDA.beals$CA$u[,1:3] -(cwms.cor <- cor(CWM.wide, RDA.beals$CCA$u[,1:3])) -env.cor <- cor(env %>% - dplyr::select(Temp, Prec, pH=PHIPHOX, C.org=ORCDRC), - RDA.beals$CCA$u[,1:3], use = "pairwise.complete.obs") #double check -(fuzz.cor <- cor(pca.fuzz$CA$u, RDA.beals$CCA$u[,1:3])) #RDA.beals$CCA$biplot # - -myvectors.rda <- as.data.frame(env.cor) %>% - rownames_to_column("mylab") %>% - mutate(category="Env") %>% - bind_rows(as.data.frame(cwms.cor) %>% - rownames_to_column("mylab") %>% - mutate(category="Trait")) %>% - bind_rows(as.data.frame(fuzz.cor) %>% - rownames_to_column("mylab") %>% - mutate(mylab=paste0("FWM-", mylab)) %>% - mutate(category="Fuzzy-Weighted")) %>% - mutate(fontface0=ifelse(mylab %in% best.traits.cov, "bold", "italic")) %>% - mutate(category=as.factor(category)) %>% - mutate(mycol=ifelse(category=="Trait", oilgreen, orange)) %>% - mutate(mycol=ifelse(category=="Fuzzy-Weighted", myblue, mycol)) %>% - mutate(categorical=ifelse(grepl(pattern=paste(categorical.traits, collapse="|"), mylab), 1, 0)) %>% - rowwise() %>% - mutate(mylab=gsub(pattern="LeafPersistence", replacement = "LeafPers", x = mylab)) - - - -basemap0 <- ggplot(data=as.data.frame(scores.rda)) + - theme_bw() + - scale_color_identity() + - scale_y_continuous(limits=c(-1, 1)) + - scale_x_continuous(limits=c(-1, 1)) + coord_equal() + - theme(panel.grid = element_blank()) - - -RDA1_2 <- basemap0 + - geom_point(data=as.data.frame(scores.rda), - aes(x=RDA1, y=RDA2), pch="+", size=2, alpha=0.8) + - geom_segment(data=myvectors.rda %>% - filter(categorical==0), - aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), - arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + - geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle - geom_label_repel(data=myvectors.rda, - aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, - position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) + - xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + - ylab(paste("RDA2 (", varexpl[2], "%)", sep="")) - -ggsave("_pics/Fig6v2_RDA_Beals_1-2.png", width=10, height=5, dpi=300, RDA1_2) - - -RDA1_3 <- basemap0 + - geom_point(data=as.data.frame(scores.rda), - aes(x=RDA1, y=RDA3), pch="+", size=2, alpha=0.8) + - geom_segment(data=myvectors.rda %>% - filter(categorical==0), - aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), - arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + - geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle - geom_label_repel(data=myvectors.rda, - aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, - position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) + - xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + - ylab(paste("RDA3 (", varexpl[3], "%)", sep="")) - -panel.RDA_beals <- cowplot::plot_grid(RDA1_2,RDA1_3, nrow=1) - -ggsave("_pics/Fig6v2_RDA_Beals_1-2-3.png", width=10, height=5, dpi=300, panel.RDA_beals) - -#### 4.2.1 Alternative showing species scores #### -tmp <- as.data.frame(scores(RDA.beals, choices = 1:3)$species*4) %>% -#tmp <- as.data.frame(RDA.beals$CCA$v*4) %>% - mutate(species0=rownames(RDA.beals$CCA$v)) %>% - mutate(species=species0) %>% - separate(species0, sep="_", into=c("Gen", "Spe")) %>% - mutate(Gen=substr(Gen, 1, 3)) %>% - mutate(Spe=substr(Spe, 1, 3)) %>% - mutate(labels=paste(Gen, Spe, sep="_")) - -tmp <- fix.duplicate.labels(tmp) - - -RDA1_2.sp <- basemap0 %+% tmp + - geom_text(aes(x=RDA1, y=RDA2, label=labels), size=2, alpha=0.8) + - geom_segment(data=myvectors.rda%>% - filter(categorical==0), - aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), - arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + - geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle - geom_label_repel(data=myvectors.rda, - aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, - position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) + - xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + - ylab(paste("RDA2 (", varexpl[2], "%)", sep="")) - -RDA1_3.sp <- basemap0 %+% tmp + - geom_text(aes(x=RDA1, y=RDA3, label=labels), size=2, alpha=0.8) + - geom_segment(data=myvectors.rda%>% - filter(categorical==0), - aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), - arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + - geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle - geom_label_repel(data=myvectors.rda, - aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, - position = position_dodge(1), segment.alpha=0.8, segment.colour=gray(0.7), segment.size = 0.5) + - xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + - ylab(paste("RDA3 (", varexpl[3], "%)", sep="")) - - -ggsave("_pics/Fig6v2a_RDA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, RDA1_2.sp) -ggsave("_pics/Fig6v2b_RDA_Beals_1-3_wSpecies.png", width=8, height=8, dpi=300, RDA1_3.sp) - +# RDA.beals <- rda(W.beals ~ scores(pca.fuzz, choices=1:3)$sites, scale=F) +# # var explained by CONSTRAINED axes +# varexpl <- round((RDA.beals$CCA$eig)/(sum(RDA.beals$CA$eig) + sum(RDA.beals$CCA$eig))*100,1) +# +# scores.rda <- scores(RDA.beals, choices = 1:3)$sites # +# #scores.rda <- RDA.beals$CA$u[,1:3] +# (cwms.cor <- cor(CWM.wide, RDA.beals$CCA$u[,1:3])) +# env.cor <- cor(env %>% +# dplyr::select(Temp, Prec, pH=PHIPHOX, C.org=ORCDRC), +# RDA.beals$CCA$u[,1:3], use = "pairwise.complete.obs") #double check +# (fuzz.cor <- cor(pca.fuzz$CA$u, RDA.beals$CCA$u[,1:3])) #RDA.beals$CCA$biplot # +# +# myvectors.rda <- as.data.frame(env.cor) %>% +# rownames_to_column("mylab") %>% +# mutate(category="Env") %>% +# bind_rows(as.data.frame(cwms.cor) %>% +# rownames_to_column("mylab") %>% +# mutate(category="Trait")) %>% +# bind_rows(as.data.frame(fuzz.cor) %>% +# rownames_to_column("mylab") %>% +# mutate(mylab=paste0("FWM-", mylab)) %>% +# mutate(category="Fuzzy-Weighted")) %>% +# mutate(fontface0=ifelse(mylab %in% best.traits.cov, "bold", "italic")) %>% +# mutate(category=as.factor(category)) %>% +# mutate(mycol=ifelse(category=="Trait", oilgreen, orange)) %>% +# mutate(mycol=ifelse(category=="Fuzzy-Weighted", myblue, mycol)) %>% +# mutate(categorical=ifelse(grepl(pattern=paste(categorical.traits, collapse="|"), mylab), 1, 0)) %>% +# rowwise() %>% +# mutate(mylab=gsub(pattern="LeafPersistence", replacement = "LeafPers", x = mylab)) +# +# +# +# basemap0 <- ggplot(data=as.data.frame(scores.rda)) + +# theme_bw() + +# scale_color_identity() + +# scale_y_continuous(limits=c(-1, 1)) + +# scale_x_continuous(limits=c(-1, 1)) + coord_equal() + +# theme(panel.grid = element_blank()) +# +# +# RDA1_2 <- basemap0 + +# geom_point(data=as.data.frame(scores.rda), +# aes(x=RDA1, y=RDA2), pch="+", size=2, alpha=0.8) + +# geom_segment(data=myvectors.rda %>% +# filter(categorical==0), +# aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), +# arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + +# geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle +# geom_label_repel(data=myvectors.rda, +# aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, +# position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) + +# xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + +# ylab(paste("RDA2 (", varexpl[2], "%)", sep="")) +# +# ggsave("_pics/Fig6v2_RDA_Beals_1-2.png", width=10, height=5, dpi=300, RDA1_2) +# +# +# RDA1_3 <- basemap0 + +# geom_point(data=as.data.frame(scores.rda), +# aes(x=RDA1, y=RDA3), pch="+", size=2, alpha=0.8) + +# geom_segment(data=myvectors.rda %>% +# filter(categorical==0), +# aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), +# arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + +# geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle +# geom_label_repel(data=myvectors.rda, +# aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, +# position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) + +# xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + +# ylab(paste("RDA3 (", varexpl[3], "%)", sep="")) +# +# panel.RDA_beals <- cowplot::plot_grid(RDA1_2,RDA1_3, nrow=1) +# +# ggsave("_pics/Fig6v2_RDA_Beals_1-2-3.png", width=10, height=5, dpi=300, panel.RDA_beals) +# +# #### 4.2.1 Alternative showing species scores #### +# tmp <- as.data.frame(scores(RDA.beals, choices = 1:3)$species*4) %>% +# #tmp <- as.data.frame(RDA.beals$CCA$v*4) %>% +# mutate(species0=rownames(RDA.beals$CCA$v)) %>% +# mutate(species=species0) %>% +# separate(species0, sep="_", into=c("Gen", "Spe")) %>% +# mutate(Gen=substr(Gen, 1, 3)) %>% +# mutate(Spe=substr(Spe, 1, 3)) %>% +# mutate(labels=paste(Gen, Spe, sep="_")) +# +# tmp <- fix.duplicate.labels(tmp) +# +# +# RDA1_2.sp <- basemap0 %+% tmp + +# geom_text(aes(x=RDA1, y=RDA2, label=labels), size=2, alpha=0.8) + +# geom_segment(data=myvectors.rda%>% +# filter(categorical==0), +# aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), +# arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + +# geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle +# geom_label_repel(data=myvectors.rda, +# aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, +# position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) + +# xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + +# ylab(paste("RDA2 (", varexpl[2], "%)", sep="")) +# +# RDA1_3.sp <- basemap0 %+% tmp + +# geom_text(aes(x=RDA1, y=RDA3, label=labels), size=2, alpha=0.8) + +# geom_segment(data=myvectors.rda%>% +# filter(categorical==0), +# aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), +# arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) + +# geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle +# geom_label_repel(data=myvectors.rda, +# aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, +# position = position_dodge(1), segment.alpha=0.8, segment.colour=gray(0.7), segment.size = 0.5) + +# xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + +# ylab(paste("RDA3 (", varexpl[3], "%)", sep="")) +# +# +# ggsave("_pics/Fig6v2a_RDA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, RDA1_2.sp) +# ggsave("_pics/Fig6v2b_RDA_Beals_1-3_wSpecies.png", width=8, height=8, dpi=300, RDA1_3.sp) +# -- GitLab