From ff5dfb1c84b7f4f909b958f294df0512837651b5 Mon Sep 17 00:00:00 2001
From: Francesco Sabatini <francesco.sabatini@idiv.de>
Date: Mon, 7 Sep 2020 16:36:00 +0200
Subject: [PATCH] Corrected typo

---
 02_Mesobromion_ExamineOutput.R | 245 ++++++++++++++++-----------------
 1 file changed, 122 insertions(+), 123 deletions(-)

diff --git a/02_Mesobromion_ExamineOutput.R b/02_Mesobromion_ExamineOutput.R
index 25a76f5..906ef04 100644
--- a/02_Mesobromion_ExamineOutput.R
+++ b/02_Mesobromion_ExamineOutput.R
@@ -27,7 +27,7 @@ get.best <- function(x, N, labs){
 traits <- read_delim("_data/Mesobromion/traits.v2.10perc.txt", delim="\t")
 
 traits <- traits %>% 
-  rename(Schlerophylly=Leaf_Scleroph)
+  rename(Sclerophylly=Leaf_Scleroph)
 #traits.sign.cov <- read_delim("_data/Mesobromion/traits.v2.10perc.cov.sign.txt", delim="\t")
 #traits.sign.pa <- read_delim("_data/Mesobromion/traits.v2.10perc.pa.sign.txt", delim="\t")
 trait.labs <- data.frame(trait.name=colnames(traits)[-1]) %>% 
@@ -41,7 +41,7 @@ species.cov <- read_delim("_data/Mesobromion/species.v2.10perc.cov.txt", delim="
 
 traits <- traits %>% 
   as.data.frame() %>% 
-  mutate_at(.vars=vars(Schlerophylly, LifeSpan, Rosette), 
+  mutate_at(.vars=vars(Sclerophylly, LifeSpan, Rosette), 
             .funs=~as.ordered(.)) %>% 
 #  filter(species0 %in% colnames(species)) %>% 
   mutate_if(~is.character(.), .funs=~as.factor(.)) %>% 
@@ -617,7 +617,6 @@ ggsave(filename = "_pics/SXXX_Best_AllCombinations_CI_pa.png", dpi=400,
 #species <- read_delim("_data/Mesobromion/species.out.10perc.txt", delim="\t")
 species.cov <- read_delim("_data/Mesobromion/species.v2.10perc.cov.txt", delim="\t")
 
-#traits <- traits.backup
 traits <- traits %>% 
   rownames_to_column("species0") %>% 
   mutate_if(.predicate=~is.ordered(.), 
@@ -954,130 +953,130 @@ PCA3_4.sp <- basemap0 %+% tmp +
   ylab(paste("PC4 (", varexpl[4], "%)", sep="")) 
 
 
-ggsave("_pics/Fig6a_PCA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA1_2.sp)
-ggsave("_pics/Fig6b_PCA_Beals_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA3_4.sp)
+ggsave("_pics/S10a_PCA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, PCA1_2.sp)
+ggsave("_pics/S10b_PCA_Beals_3-4_wSpecies.png", width=8, height=8, dpi=300, PCA3_4.sp)
 
 
 ###### _ ######
 #### 4.2 RDA of Beals ~ FWMs ####
-RDA.beals <- rda(W.beals ~ scores(pca.fuzz, choices=1:3)$sites, scale=F)
-# var explained by CONSTRAINED axes
-varexpl <- round((RDA.beals$CCA$eig)/(sum(RDA.beals$CA$eig) + sum(RDA.beals$CCA$eig))*100,1)
-
-scores.rda <- scores(RDA.beals, choices = 1:3)$sites #
-#scores.rda <- RDA.beals$CA$u[,1:3]
-(cwms.cor <- cor(CWM.wide, RDA.beals$CCA$u[,1:3]))
-env.cor <- cor(env %>% 
-                 dplyr::select(Temp, Prec, pH=PHIPHOX, C.org=ORCDRC), 
-               RDA.beals$CCA$u[,1:3], use = "pairwise.complete.obs") #double check
-(fuzz.cor <- cor(pca.fuzz$CA$u, RDA.beals$CCA$u[,1:3])) #RDA.beals$CCA$biplot #
-
-myvectors.rda <- as.data.frame(env.cor) %>% 
-  rownames_to_column("mylab") %>% 
-  mutate(category="Env") %>% 
-  bind_rows(as.data.frame(cwms.cor) %>% 
-              rownames_to_column("mylab") %>%
-              mutate(category="Trait")) %>% 
-  bind_rows(as.data.frame(fuzz.cor) %>% 
-              rownames_to_column("mylab") %>%
-              mutate(mylab=paste0("FWM-", mylab)) %>% 
-              mutate(category="Fuzzy-Weighted")) %>% 
-  mutate(fontface0=ifelse(mylab %in% best.traits.cov, "bold", "italic")) %>% 
-  mutate(category=as.factor(category)) %>% 
-  mutate(mycol=ifelse(category=="Trait", oilgreen, orange)) %>%
-  mutate(mycol=ifelse(category=="Fuzzy-Weighted", myblue, mycol)) %>% 
-  mutate(categorical=ifelse(grepl(pattern=paste(categorical.traits, collapse="|"), mylab), 1, 0)) %>% 
-  rowwise() %>% 
-  mutate(mylab=gsub(pattern="LeafPersistence", replacement = "LeafPers", x = mylab))
-
-
-
-basemap0 <- ggplot(data=as.data.frame(scores.rda)) + 
-  theme_bw() + 
-  scale_color_identity() + 
-  scale_y_continuous(limits=c(-1, 1)) + 
-  scale_x_continuous(limits=c(-1, 1)) +  coord_equal() + 
-  theme(panel.grid = element_blank())
-
-
-RDA1_2 <- basemap0 + 
-  geom_point(data=as.data.frame(scores.rda), 
-             aes(x=RDA1, y=RDA2), pch="+", size=2, alpha=0.8) + 
-  geom_segment(data=myvectors.rda %>% 
-                 filter(categorical==0), 
-               aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), 
-               arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
-  geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
-  geom_label_repel(data=myvectors.rda,
-                   aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, 
-                   position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) +
-  xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
-  ylab(paste("RDA2 (", varexpl[2], "%)", sep=""))
-
-ggsave("_pics/Fig6v2_RDA_Beals_1-2.png", width=10, height=5, dpi=300, RDA1_2)
-
-
-RDA1_3 <- basemap0 + 
-  geom_point(data=as.data.frame(scores.rda), 
-             aes(x=RDA1, y=RDA3), pch="+", size=2, alpha=0.8) + 
-  geom_segment(data=myvectors.rda %>% 
-                 filter(categorical==0), 
-               aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), 
-               arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
-  geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
-  geom_label_repel(data=myvectors.rda,
-                   aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, 
-                   position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) +
-  xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
-  ylab(paste("RDA3 (", varexpl[3], "%)", sep=""))
-
-panel.RDA_beals <- cowplot::plot_grid(RDA1_2,RDA1_3, nrow=1)
-
-ggsave("_pics/Fig6v2_RDA_Beals_1-2-3.png", width=10, height=5, dpi=300, panel.RDA_beals)
-
-#### 4.2.1 Alternative showing species scores ####
-tmp <- as.data.frame(scores(RDA.beals, choices = 1:3)$species*4) %>% 
-#tmp <- as.data.frame(RDA.beals$CCA$v*4) %>% 
-  mutate(species0=rownames(RDA.beals$CCA$v)) %>% 
-  mutate(species=species0) %>% 
-  separate(species0, sep="_", into=c("Gen", "Spe")) %>% 
-  mutate(Gen=substr(Gen, 1, 3)) %>% 
-  mutate(Spe=substr(Spe, 1, 3)) %>% 
-  mutate(labels=paste(Gen, Spe, sep="_"))
-
-tmp <- fix.duplicate.labels(tmp)
-
-
-RDA1_2.sp <- basemap0 %+% tmp + 
-  geom_text(aes(x=RDA1, y=RDA2, label=labels), size=2, alpha=0.8) + 
-  geom_segment(data=myvectors.rda%>% 
-                 filter(categorical==0), 
-               aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), 
-               arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
-  geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
-  geom_label_repel(data=myvectors.rda,
-                   aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, 
-                   position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) +
-  xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
-  ylab(paste("RDA2 (", varexpl[2], "%)", sep=""))
-
-RDA1_3.sp <- basemap0 %+% tmp + 
-  geom_text(aes(x=RDA1, y=RDA3, label=labels), size=2, alpha=0.8) + 
-  geom_segment(data=myvectors.rda%>% 
-                 filter(categorical==0), 
-               aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), 
-               arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
-  geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
-  geom_label_repel(data=myvectors.rda, 
-                   aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, 
-                   position = position_dodge(1), segment.alpha=0.8, segment.colour=gray(0.7), segment.size = 0.5) +
-  xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
-  ylab(paste("RDA3 (", varexpl[3], "%)", sep="")) 
-
-
-ggsave("_pics/Fig6v2a_RDA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, RDA1_2.sp)
-ggsave("_pics/Fig6v2b_RDA_Beals_1-3_wSpecies.png", width=8, height=8, dpi=300, RDA1_3.sp)
-
+#  RDA.beals <- rda(W.beals ~ scores(pca.fuzz, choices=1:3)$sites, scale=F)
+#  # var explained by CONSTRAINED axes
+#  varexpl <- round((RDA.beals$CCA$eig)/(sum(RDA.beals$CA$eig) + sum(RDA.beals$CCA$eig))*100,1)
+#  
+#  scores.rda <- scores(RDA.beals, choices = 1:3)$sites #
+#  #scores.rda <- RDA.beals$CA$u[,1:3]
+#  (cwms.cor <- cor(CWM.wide, RDA.beals$CCA$u[,1:3]))
+#  env.cor <- cor(env %>% 
+#                   dplyr::select(Temp, Prec, pH=PHIPHOX, C.org=ORCDRC), 
+#                 RDA.beals$CCA$u[,1:3], use = "pairwise.complete.obs") #double check
+#  (fuzz.cor <- cor(pca.fuzz$CA$u, RDA.beals$CCA$u[,1:3])) #RDA.beals$CCA$biplot #
+#  
+#  myvectors.rda <- as.data.frame(env.cor) %>% 
+#    rownames_to_column("mylab") %>% 
+#    mutate(category="Env") %>% 
+#    bind_rows(as.data.frame(cwms.cor) %>% 
+#                rownames_to_column("mylab") %>%
+#                mutate(category="Trait")) %>% 
+#    bind_rows(as.data.frame(fuzz.cor) %>% 
+#                rownames_to_column("mylab") %>%
+#                mutate(mylab=paste0("FWM-", mylab)) %>% 
+#                mutate(category="Fuzzy-Weighted")) %>% 
+#    mutate(fontface0=ifelse(mylab %in% best.traits.cov, "bold", "italic")) %>% 
+#    mutate(category=as.factor(category)) %>% 
+#    mutate(mycol=ifelse(category=="Trait", oilgreen, orange)) %>%
+#    mutate(mycol=ifelse(category=="Fuzzy-Weighted", myblue, mycol)) %>% 
+#    mutate(categorical=ifelse(grepl(pattern=paste(categorical.traits, collapse="|"), mylab), 1, 0)) %>% 
+#    rowwise() %>% 
+#    mutate(mylab=gsub(pattern="LeafPersistence", replacement = "LeafPers", x = mylab))
+#  
+#  
+#  
+#  basemap0 <- ggplot(data=as.data.frame(scores.rda)) + 
+#    theme_bw() + 
+#    scale_color_identity() + 
+#    scale_y_continuous(limits=c(-1, 1)) + 
+#    scale_x_continuous(limits=c(-1, 1)) +  coord_equal() + 
+#    theme(panel.grid = element_blank())
+#  
+#  
+#  RDA1_2 <- basemap0 + 
+#    geom_point(data=as.data.frame(scores.rda), 
+#               aes(x=RDA1, y=RDA2), pch="+", size=2, alpha=0.8) + 
+#    geom_segment(data=myvectors.rda %>% 
+#                   filter(categorical==0), 
+#                 aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), 
+#                 arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
+#    geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
+#    geom_label_repel(data=myvectors.rda,
+#                     aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, 
+#                     position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) +
+#    xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
+#    ylab(paste("RDA2 (", varexpl[2], "%)", sep=""))
+#  
+#  ggsave("_pics/Fig6v2_RDA_Beals_1-2.png", width=10, height=5, dpi=300, RDA1_2)
+#  
+#  
+#  RDA1_3 <- basemap0 + 
+#    geom_point(data=as.data.frame(scores.rda), 
+#               aes(x=RDA1, y=RDA3), pch="+", size=2, alpha=0.8) + 
+#    geom_segment(data=myvectors.rda %>% 
+#                   filter(categorical==0), 
+#                 aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), 
+#                 arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
+#    geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
+#    geom_label_repel(data=myvectors.rda,
+#                     aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, 
+#                     position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) +
+#    xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
+#    ylab(paste("RDA3 (", varexpl[3], "%)", sep=""))
+#  
+#  panel.RDA_beals <- cowplot::plot_grid(RDA1_2,RDA1_3, nrow=1)
+#  
+#  ggsave("_pics/Fig6v2_RDA_Beals_1-2-3.png", width=10, height=5, dpi=300, panel.RDA_beals)
+#  
+#  #### 4.2.1 Alternative showing species scores ####
+#  tmp <- as.data.frame(scores(RDA.beals, choices = 1:3)$species*4) %>% 
+#  #tmp <- as.data.frame(RDA.beals$CCA$v*4) %>% 
+#    mutate(species0=rownames(RDA.beals$CCA$v)) %>% 
+#    mutate(species=species0) %>% 
+#    separate(species0, sep="_", into=c("Gen", "Spe")) %>% 
+#    mutate(Gen=substr(Gen, 1, 3)) %>% 
+#    mutate(Spe=substr(Spe, 1, 3)) %>% 
+#    mutate(labels=paste(Gen, Spe, sep="_"))
+#  
+#  tmp <- fix.duplicate.labels(tmp)
+#  
+#  
+#  RDA1_2.sp <- basemap0 %+% tmp + 
+#    geom_text(aes(x=RDA1, y=RDA2, label=labels), size=2, alpha=0.8) + 
+#    geom_segment(data=myvectors.rda%>% 
+#                   filter(categorical==0), 
+#                 aes(x=0, xend=RDA1, y=0, yend=RDA2, col=mycol), 
+#                 arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
+#    geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
+#    geom_label_repel(data=myvectors.rda,
+#                     aes(x=RDA1, y=RDA2, label=mylab, col=mycol, fontface=fontface0), size=2, 
+#                     position = position_dodge(1), segment.alpha=0.5, segment.colour=gray(0.8)) +
+#    xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
+#    ylab(paste("RDA2 (", varexpl[2], "%)", sep=""))
+#  
+#  RDA1_3.sp <- basemap0 %+% tmp + 
+#    geom_text(aes(x=RDA1, y=RDA3, label=labels), size=2, alpha=0.8) + 
+#    geom_segment(data=myvectors.rda%>% 
+#                   filter(categorical==0), 
+#                 aes(x=0, xend=RDA1, y=0, yend=RDA3, col=mycol), 
+#                 arrow = arrow(length = unit(0.08, "inches")), alpha=0.8) +
+#    geom_path(data=dat,aes(x,y), col=gray(0.8), lwd=0.5) + #add correlation circle
+#    geom_label_repel(data=myvectors.rda, 
+#                     aes(x=RDA1, y=RDA3, label=mylab, col=mycol, fontface=fontface0), size=2, 
+#                     position = position_dodge(1), segment.alpha=0.8, segment.colour=gray(0.7), segment.size = 0.5) +
+#    xlab(paste("RDA1 (", varexpl[1], "%)", sep="")) + 
+#    ylab(paste("RDA3 (", varexpl[3], "%)", sep="")) 
+#  
+#  
+#  ggsave("_pics/Fig6v2a_RDA_Beals_1-2_wSpecies.png", width=8, height=8, dpi=300, RDA1_2.sp)
+#  ggsave("_pics/Fig6v2b_RDA_Beals_1-3_wSpecies.png", width=8, height=8, dpi=300, RDA1_3.sp)
+#  
 
 
 
-- 
GitLab