diff --git a/code/read_sPlot_TRY_HB13.R b/code/read_sPlot_TRY_HB13.R
deleted file mode 100644
index 8b5878e2256a6582404afc7b2f201a03ea99910f..0000000000000000000000000000000000000000
--- a/code/read_sPlot_TRY_HB13.R
+++ /dev/null
@@ -1,431 +0,0 @@
-##############################
-### read in sPlot database ###
-##############################
-rm(list=ls())    
-gc()
-
-#path.sPlot <- "/home/oliver/Dokumente/PhD/PostPhD/IDiv/sDiv/sPlot/Analyses/Data/Species/sPlot/sPlot_20_11_2014/"
-#path.sPlot <- "C:\\Daten\\iDiv\\sPlot\\2014_December\\"
-#path.sPlot <- "D:\\Helge\\sPlot\\"
-getwd()
-#path.sPlot <- "/data"
-#path.sPlot <- "/home/helge/sPlot2/"
-
-#path.sPlot <- "/home/oliver/shared/Backbone_v.2/"
-# type in FileZilla in the server path: /home/oliver/shared
-#setwd(path.sPlot)
-
-##### DATA ####
-sPlot3 <- read.csv(paste(getwd(),"/data/sPlot_14_04_2015_species.csv", 
-                         sep = ""), sep="\t", quote = "\"'")
-str(sPlot3) # 24241941 obs. of  11 variables:
-# column 11 in sPlot_08_04_2015_species.csv is "x_"
-# This numeric variable either holds basal area (BA), individual count (IV)
-# importance value (IV), per cen frequency (PF) or stem count (SC)
-# Which type of information is given, is shown in the Cover.code variable:
-levels(sPlot3$Cover.code)
-# .... "x"    "x_BA" "x_IC" "x_IV" "x_PF" "x_SC"
-# here, "x" stands for p/a data.
-# In the first steps of processing the data, the different types of information 
-# is combined with the cover values in Cover..
-any(is.na(sPlot3$Cover.code)) # T
-length(sPlot3$Cover.code[is.na(sPlot3$Cover.code)]) #  30252
-
-###### Backbone #####
-load("backbone.v.2.splot.try3.Rdata")
-# alternatively:
-#sPlot3 <- read.csv(paste(path.sPlot, "backbone.v.2.splot.try3.csv", 
-#                         sep = ""), sep=",", quote = "\"'")
-str(backbone.splot.try3) 
-#data.frame':	122901 obs. of  33 variables:
-'$ Name_number                 : int  1 2 3 4 5 6 7 8 9 10 ...
-$ names.sPlot.TRY             : chr  "?" "0" "[1269 Chlorophytum platt]" "[1284 Echinochloa]" ...
-$ names.corr.string           : chr  "?" "0" "[1269 Chlorophytum platt]" "[1284 Echinochloa]" ...
-$ sPlot.TRY                   : chr  "S" "S" "S" "S" ...
-$ Name_submitted              : chr  "Spermatophyta sp." "Spermatophyta sp." "Chlorophytum sp. [1269]" "Echinochloa sp." ...
-$ Overall_score               : num  0 0 0.9 0.9 0.9 0.9 0.9 0 0.9 0 ...
-$ Name_matched                : chr  "No suitable matches found." "No suitable matches found." "Chlorophytum" "Echinochloa" ...
-$ Name_matched_rank           : chr  "" "" "genus" "genus" ...
-$ Name_score                  : num  0 0 1 1 1 1 1 0 1 0 ...
-$ Family_score                : num  0 0 NA NA NA NA 1 0 1 0 ...
-$ Name_matched_accepted_family: chr  "" "" "Asparagaceae" "Poaceae" ...
-$ Genus_matched               : chr  "" "" "Chlorophytum" "Echinochloa" ...
-$ Genus_score                 : num  0 0 1 1 1 1 NA 0 NA 0 ...
-$ Specific_epithet_matched    : chr  "" "" "" "" ...
-$ Specific_epithet_score      : num  0 0 NA NA NA NA NA 0 NA 0 ...
-$ Unmatched_terms             : chr  "" "" "\"\"sp. [1269]" "\"\"sp." ...
-$ Taxonomic_status            : chr  "" "" "Accepted" "Accepted" ...
-$ Accepted_name               : chr  "" "" "Chlorophytum" "Echinochloa" ...
-$ Accepted_name_author        : chr  "" "" "" "" ...
-$ Accepted_name_rank          : chr  "" "" "genus" "genus" ...
-$ Accepted_name_url           : chr  "" "" "http://www.theplantlist.org/tpl1.1/search?q=Chlorophytum" "http://www.theplantlist.org/tpl1.1/search?q=Echinochloa" ...
-$ Accepted_name_species       : chr  "" "" "" "" ...
-$ Accepted_name_family        : chr  "" "" "Asparagaceae" "Poaceae" ...
-$ Selected                    : chr  "true" "true" "true" "true" ...
-$ Source                      : chr  "" "" "tpl" "tpl" ...
-$ Warnings                    : chr  " " " " " " " " ...
-$ Manual.matching             : chr  NA NA NA NA ...
-$ Status.correct              : chr  "No suitable matches found." "No suitable matches found." "Accepted" "Accepted" ...
-$ name.correct                : chr  "No suitable matches found." "No suitable matches found." "Chlorophytum" "Echinochloa" ...
-$ rank.correct                : chr  "higher" "higher" "genus" "genus" ...
-$ family.correct              : chr  "" "" "Asparagaceae" "Poaceae" ...
-$ name.short.correct          : chr  NA NA "Chlorophytum" "Echinochloa" ...
-$ rank.short.correct          : chr  "higher" "higher" "genus" "genus" ...
-'
-'The first column "names.sPlot.TRY" are the "raw" names from sPlot and TRY.
-The last five columns are the final outcome of the whole matching procedure: 
-"Status.correct",  "name.correct",  "rank.correct", "family.correct",  "name.short.correct",  "rank.short.correct".
-I guess "name.short.correct" will be the most important column and should be used for most of the species-trait matching and other analyses.
-'
-length(unique(backbone.splot.try3$name.short.correct)) #  86529
-
-###### Match sPlot3 (Matched.concept) with backbone.splot.try3 (name.short.correct)
-index1 <- match(sPlot3$Matched.concept,backbone.splot.try3$names.sPlot.TRY)
-any(is.na(index1)) #F Excellent
-head(backbone.splot.try3$name.short.correct[index1])
-any(is.na(backbone.splot.try3$name.short.correct[index1])) # T
-length(sPlot3$Matched.concept[!is.na(backbone.splot.try3$name.short.correct[index1])])
-# 24221565
-length(sPlot3$Matched.concept[is.na(backbone.splot.try3$name.short.correct[index1])])
-# 20376
-sPlot3$Matched.concept[is.na(backbone.splot.try3$name.short.correct[index1])]
-backbone.splot.try3$name.short.correct[index1][is.na(backbone.splot.try3$name.short.correct[index1])]
-# there is NA in the name.short.correct
-sPlot3$species <- backbone.splot.try3$name.short.correct[index1]
-length(sPlot3$species[is.na(sPlot3$species)])
-# 20376
-
-#remove NAs
-#sPlot4 <- sPlot3[!is.na(sPlot3$species),]
-#str(sPlot4) # 24221565 x 11 var.
-#rm(sPlot4)
-
-###### Header ######
-#splot.header <- read.csv(paste(path.sPlot, "sPlot_header.csv", sep = ""), 
-#                         sep = "\t", na.strings=c("","NA"), fileEncoding = "UTF-8",quote = "")
-#splot.header <- read.csv(paste("/home/helge/sPlot2/", "sPlot_header.csv", sep = ""), 
-#                         sep = "\t", na.strings=c("","NA"), fileEncoding = "UTF-8",quote = "")
-splot.header <- read.csv("sPlot_header.csv", 
-                         sep = "\t", na.strings=c("","NA"), fileEncoding = "UTF-8",quote = "")
-# without comments
-
-dim(splot.header)
-# 1117940      41
-search.tab <- regexpr("\t",splot.header$Dataset)
-head(search.tab)
-table(search.tab)
-# search.tab
-# -1 
-# 1117940 
-# -> no tabulator in Dataset ???
-
-str(splot.header)
-#tail(splot.header)
-write.csv(splot.header[,c("PlotObservationID","Longitude","Latitude")],file = 
-            paste("/home/helge/sPlot2/", "sPlot_14_04_2015_coord.csv", 
-                  sep = ""), row.names = FALSE)
-index30 <- match(sPlot3$PlotObservationID, splot.header$PlotObservationID)
-any(is.na(index30)) #F
-length(index30) #  24241941
-length(unique(index30[!is.na(index30)])) # 1117940
-#sPlot3[head(which(is.na(index30))),]
-
-index31 <- match(splot.header$PlotObservationID,sPlot3$PlotObservationID)
-any(is.na(index31)) #F
-length(index31) #   1117940
-#length(index31[is.na(index31)]) # 3
-length(unique(index31[!is.na(index31)])) # 1117940
-#splot.header[which(is.na(index31)),]
-#splot.header <- splot.header[-which(is.na(index31)),]
-dim(splot.header)
-# 1117940      40
-#index32 <- match(splot.header$PlotObservationID,sPlot3$PlotObservationID)
-#any(is.na(index32)) #F
-identical(as.character(splot.header$PlotObservationID),as.character(sPlot3$PlotObservationID[index31]))
-# T
-head(cbind(splot.header$PlotObservationID,sPlot3$PlotObservationID[index31]))
-head(index31)
-#head(splot.header$PlotObservationID)
-
-library(data.table)
-DT <- data.table(sPlot3)
-str(DT) # 24241941 obs. of  12 variables:
-tables()
-length(unique(DT$PlotObservationID)) # 1117940
-setkey(DT,PlotObservationID)
-
-### Species number (more precisely data entry number, as layers counted multiple times) ###
-'plot.species.number <- DT[,list(species.number=length(Cover..)), by=PlotObservationID]
-str(plot.species.number) #  1117940
-hist(plot.species.number$species.number)
-min(plot.species.number$species.number) # 1
-max(plot.species.number$species.number) # 797
-which(plot.species.number$species.number==max(plot.species.number$species.number))
-# 51010
-'
-### Relative Cover ###
-plot.total.cover <- DT[,list(total.cover=sum(Cover..)), by=PlotObservationID]
-any(is.na(DT$Cover..)) # F
-str(plot.total.cover)
-
-any(is.na(plot.total.cover$total.cover)) # F
-length(plot.total.cover$total.cover[plot.total.cover$total.cover==0]) 
-# 47504
-# this includes only plots, in which none of the species has a cover != 0
-# there are also cases, in which some spcies have a cover > 0, but others have
-# Cover.code=="x" or =="X_BA" etc. or =="NA"
-
-index1a <- match(DT$PlotObservationID,plot.total.cover$PlotObservationID)
-length(index1a) # 24241941
-any(is.na(index1a)) # F
-
-DT$Relative.cover <-  DT$Cover../plot.total.cover$total.cover[index1a]
-str(DT)
-any(is.na(DT$Relative.cover)) # T
-hist(DT$Relative.cover)
-na.cases <- DT[,list(na.cases=any(is.na(Cover.code))), by=PlotObservationID]
-str(na.cases)
-table(na.cases$na.cases)
-'
-FALSE    TRUE 
-1107234   10706'
-head(na.cases[na.cases==T,],100)
-dim(DT[is.na(Relative.cover)]) # 136479     13
-
-na.cases2 <- DT[,list(na.species=any(is.na(species))), by=PlotObservationID]
-str(na.cases2)
-table(na.cases2$na.species,na.cases$na.cases)
-'      
-FALSE    TRUE
-FALSE 1090935   10663
-TRUE    16299      43'
-# most NAs either in cover values or species
-
-na.cases3 <- DT[,list(x=any(Cover.code=="x"|Cover.code=="x_BA"|Cover.code=="x_IC"|
-                              Cover.code=="x_IV"|Cover.code=="x_PF"|Cover.code=="x_SC"|
-                              is.na(Cover.code))), by=PlotObservationID]
-# this includes "x" -> p/a as well as different types of relative abundance information
-str(na.cases3)
-table(na.cases3$x)
-' FALSE    TRUE 
-1061602   56338  '
-
-index2 <- match(DT$PlotObservationID,na.cases3$PlotObservationID)
-length(index2) #24241941
-any(is.na(index2)) # F
-
-na.cases4 <- DT[,list(x=all(Cover.code=="x"|Cover.code=="x_BA"|Cover.code=="x_IC"|
-                              Cover.code=="x_IV"|Cover.code=="x_PF"|Cover.code=="x_SC"|
-                              is.na(Cover.code))), by=PlotObservationID]
-str(na.cases4)
-table(na.cases4$x)
-' FALSE    TRUE 
-1070436   47504  '
-# this matches the number of plots with sum of Cover..==0
-
-plot.total.cover2 <- DT[na.cases3$x[index2]==T, list(total.cover=sum(x_,na.rm=T)), 
-                        by=PlotObservationID]
-any(is.na(DT$x_)) # T
-length(DT$PlotObservationID[is.na(DT$x_)]) #  23915391
-# 24241941-23915391= 326550 lines with information in the x_ column
-str(plot.total.cover2) #56338 obs. of  2 variables
-hist(plot.total.cover2$total.cover)
-length(plot.total.cover2$total.cover)
-# 56338
-any(is.na(plot.total.cover2$total.cover)) # F
-
-
-index3 <- match(plot.total.cover2$PlotObservationID,plot.total.cover$PlotObservationID)
-length(index3) #56338
-any(is.na(index3)) # F
-identical(plot.total.cover2$PlotObservationID,plot.total.cover$PlotObservationID[index3])
-# T
-
-table(plot.total.cover2$total.cover>0,plot.total.cover$total.cover[index3]>0)
-' 
-FALSE  TRUE
-FALSE 31459  8674
-TRUE  16045   160
-# 47504-16045=31459 -> p/a cases for all species in a plot
-# all species are assigned 1/species richness as a value for Cover..
-16045  -> get value from x_ for all species in a plot
-# Cover.. <- x_, but care with assigning NA values
-8834 (8674+160) are mixed cover and p/a cases
-8674 -> low Cover..=0.01 is assigned
-160 -> rescale all values with x_ to 1 and assign that to Cover..
-# can be handled together with 11162!
-'
-
-index3a <- match(DT$PlotObservationID,plot.total.cover2$PlotObservationID
-                 [!plot.total.cover2$total.cover>0 & !plot.total.cover$total.cover[index3]>0])
-length(index3a) #   24241941
-length(DT$PlotObservationID[!is.na(index3a)])
-# 555792
-length(unique(DT$PlotObservationID[!is.na(index3a)]))
-# 31459
-index3a1 <- match(DT$PlotObservationID[!is.na(index3a)],plot.species.number$PlotObservationID)
-length(index3a1) #  555792
-length(1/plot.species.number$species.number[index3a1])
-identical(DT$PlotObservationID[!is.na(index3a)],plot.species.number$PlotObservationID[index3a1])
-# T
-DT$Cover..[!is.na(index3a)] <- 1/plot.species.number$species.number[index3a1]
-# p/a cases for all species in a plot
-# all species are assigned 1/species richness as a value for Cover..
-
-index3b <- match(DT$PlotObservationID,plot.total.cover2$PlotObservationID
-                 [plot.total.cover2$total.cover>0 & !plot.total.cover$total.cover[index3]>0])
-length(index3b) #    24241941
-length(DT$PlotObservationID[!is.na(index3b)])
-#  355182
-length(unique(DT$PlotObservationID[!is.na(index3b)]))
-#  16045
-index3b1 <- match(DT$PlotObservationID[!is.na(index3b)],plot.total.cover2$PlotObservationID)
-length(index3b1) # 355182
-identical(DT$PlotObservationID[!is.na(index3b)],plot.total.cover2$PlotObservationID[index3b1])
-# T
-any(is.na(plot.total.cover2$total.cover[index3b1])) #F
-any(is.na(DT$x_[!is.na(index3b)])) #T
-length(DT$x_[!is.na(index3b)][!is.na(DT$x_[!is.na(index3b)])]) #  324922
-length(DT$x_[!is.na(index3b)][is.na(DT$x_[!is.na(index3b)])]) # 30260
-# -> handle !is.na and is.na separately
-# !is.na:
-DT$Cover..[!is.na(index3b)][!is.na(DT$x_[!is.na(index3b)])] <- 
-  DT$x_[!is.na(index3b)][!is.na(DT$x_[!is.na(index3b)])]
-# is.na:
-'index3b2 <- match(DT$PlotObservationID[!is.na(index3b)]
-[is.na(DT$x_[!is.na(index3b)])],DT$PlotObservationID)
-# does not work
-length(index3b2) # 1939'
-plot.species.number2 <- DT[!is.na(index3b)][is.na(DT$x_[!is.na(index3b)])][,list(species.number=length(Cover..)), by=PlotObservationID]
-str(plot.species.number2) # 1944
-hist(plot.species.number2$species.number)
-min(plot.species.number2$species.number) # 1
-max(plot.species.number2$species.number) # 612
-which(plot.species.number2$species.number==max(plot.species.number2$species.number))
-# 1879
-plot.species.number2$PlotObservationID[which(plot.species.number2$species.number==max(plot.species.number2$species.number))]
-# 51071
-#length(DT$Cover..[index3b2]) # 7505
-length(DT$Cover..[!is.na(index3b)][is.na(DT$x_[!is.na(index3b)])]) # 30260
-index3b3 <- match(DT$PlotObservationID[!is.na(index3b)][is.na(DT$x_[!is.na(index3b)])],
-                  plot.species.number2$PlotObservationID)
-length(index3b3) #30260
-DT$Cover..[!is.na(index3b)][is.na(DT$x_[!is.na(index3b)])] <- 
-  1/plot.species.number2$species.number[index3b3]
-# p/a cases for all those species in a plot that do not have x_ values
-# all those species are assigned 1/species richness as a value for Cover..
-
-
-index3c <- match(DT$PlotObservationID,plot.total.cover2$PlotObservationID
-                 [!plot.total.cover2$total.cover>0 & plot.total.cover$total.cover[index3]>0])
-length(index3c) #    24241941
-length(DT$PlotObservationID[!is.na(index3c)])
-# 115351
-length(unique(DT$PlotObservationID[!is.na(index3c)]))
-# 8674
-# all non-zero cases:
-index3c2 <- which(DT$Cover..[!is.na(index3c)]>0)
-length(index3c2) #   92103
-length(DT$PlotObservationID[!is.na(index3c)][index3c2]) #  92103
-min(DT$Cover..[!is.na(index3c)][index3c2]) # 0.01
-hist(DT$Cover..[!is.na(index3c)][index3c2]) 
-length(DT$Cover..[!is.na(index3c)][index3c2]) #  92103
-plot.total.cover3 <- DT[!is.na(index3c)][index3c2][,list(min.cover=min(Cover..)), by=PlotObservationID]
-str(plot.total.cover3) # 8674
-hist(plot.total.cover3$min.cover)
-min(plot.total.cover3$min.cover) # 0.01
-max(plot.total.cover3$min.cover) # 100
-# all zero cases:
-index3c1 <- which(!DT$Cover..[!is.na(index3c)]>0)
-length(index3c1) #  23248
-length(DT$PlotObservationID[!is.na(index3c)][index3c1]) # 23248
-'index3c11 <- match(DT$PlotObservationID[!is.na(index3c)][index3c1],DT$PlotObservationID)
-length(index3c11) # 26111
-does not work, does mess up the sequence'
-plot.species.number3 <- DT[!is.na(index3c)][index3c1][,list(species.number=length(Cover..)), by=PlotObservationID]
-str(plot.species.number3) # 8535
-hist(plot.species.number3$species.number)
-min(plot.species.number3$species.number) # 1
-max(plot.species.number3$species.number) # 52
-index3c11 <- match(DT$PlotObservationID[!is.na(index3c)][index3c1],
-                   plot.total.cover3$PlotObservationID)
-length(index3c11) # 23248
-DT$Cover..[!is.na(index3c)][index3c1] <- plot.total.cover3$min.cover[index3c11]
-# the smallest cover value is assigned that occurred in the plot
-
-index3d <- match(DT$PlotObservationID,plot.total.cover2$PlotObservationID
-                 [plot.total.cover2$total.cover>0 & plot.total.cover$total.cover[index3]>0])
-length(index3d) #   24241941
-length(DT$PlotObservationID[!is.na(index3d)])
-# 6472
-length(unique(DT$PlotObservationID[!is.na(index3d)]))
-# 160
-index3d1 <- match(DT$PlotObservationID[!is.na(index3d)],plot.total.cover2$PlotObservationID)
-length(index3d1) # 6472
-identical(DT$PlotObservationID[!is.na(index3d)],plot.total.cover2$PlotObservationID[index3d1])
-# T
-any(is.na(plot.total.cover2$total.cover[index3d1])) #F
-any(is.na(DT$x_[!is.na(index3d)])) #T
-length(DT$x_[!is.na(index3d)][!is.na(DT$x_[!is.na(index3d)])]) #  1628
-length(DT$x_[!is.na(index3d)][is.na(DT$x_[!is.na(index3d)])]) # 4844
-# -> handle !is.na and is.na separately
-# !is.na:
-DT$Cover..[!is.na(index3d)][!is.na(DT$x_[!is.na(index3d)])] <- 
-  DT$x_[!is.na(index3d)][!is.na(DT$x_[!is.na(index3d)])]
-# is.na:
-index3d2 <- match(DT$PlotObservationID[!is.na(index3d)]
-                  [is.na(DT$x_[!is.na(index3d)])],DT$PlotObservationID)
-length(index3d2) # 4844
-plot.species.number4 <- DT[index3d2,list(species.number=length(Cover..)), by=PlotObservationID]
-str(plot.species.number4) # 160
-hist(plot.species.number4$species.number)
-min(plot.species.number4$species.number) # 10
-max(plot.species.number4$species.number) # 73
-length(DT$Cover..[index3d2]) # 4844
-index3d3 <- match(DT$PlotObservationID[index3d2],plot.species.number4$PlotObservationID)
-length(index3d3) #4844
-DT$Cover..[index3d2] <- 1/plot.species.number4$species.number[index3d3]
-# p/a cases for all those species in a plot that do not have x_ values
-# all those species are assigned 1/species richness as a value for Cover..
-
-### Test for Cover.. ###
-hist(DT$Cover..)
-any(is.na(DT$Cover..)) #F
-#### VERY GOOD !!!! ####
-any(DT$Cover..==0) #F
-#### VERY GOOD !!!! ####
-length(DT$Cover..[DT$Cover..==0]) # 0
-
-min(DT$Cover..) # 0.001
-max(DT$Cover..) # 104692
-# check
-which(DT$Cover..==max(DT$Cover..)) # 1980770
-DT[1980770,]
-length(DT$PlotObservationID[DT$Cover..==0]) # 0
-
-plot.total.cover4 <- DT[, list(total.cover=sum(Cover..)), by=PlotObservationID]
-str(plot.total.cover4) #1117940 
-min(plot.total.cover4$total.cover) #0.001
-max(plot.total.cover4$total.cover) #104704.1
-any(is.na(plot.total.cover4$total.cover)) # F
-length(plot.total.cover4$total.cover[plot.total.cover4$total.cover==0]) 
-# 0 !!!
-# all plots have cover now
-
-index4 <- match(DT$PlotObservationID,plot.total.cover4$PlotObservationID)
-length(index4) #24241941
-any(is.na(index4)) # F
-
-# recalculate Relative cover
-### CAREFUL! This has to be done by layer now ###
-DT$Relative.cover <-  DT$Cover../plot.total.cover4$total.cover[index4]
-str(DT)
-any(is.na(DT$Relative.cover)) # F
-hist(DT$Relative.cover)
-# between 0 and 1
-#### VERY GOOD !!!! ####
-
-write.csv(DT,file = paste("/home/oliver/shared/", 
-                          "plots_without_unified_cover_scales_20160120a.csv", sep = ""), row.names = FALSE)
-
-