Skip to content
Snippets Groups Projects
Commit 99eecce5 authored by dj44vuri's avatar dj44vuri
Browse files

first commit

parents
No related branches found
No related tags found
No related merge requests found
Showing
with 893 additions and 0 deletions
.Rproj.user
.Rhistory
.RData
.Ruserdata
/.quarto/
This diff is collapsed.
---
title: "Choice Sets All respondents"
format:
html:
self-contained: true
---
```{r, echo=FALSE, include=FALSE}
source(file = "code/feedadddata.R")
```
# All choices
Summary of choice of all respondents
```{r, results='asis', echo=FALSE}
choices %>%
imap(~ {
output <- kable(.x, caption = paste0("Choice Set Number: ", .y) ,
col.names = c("Attribute", paste0("Alt ", 2:ncol(.x)-1) ) ,format = "html")%>%
kable_styling(bootstrap_options = "striped", full_width = FALSE)
cat( rep("-", 30), "\n", output , " \n Choice Sets ends")
}
)
```
This diff is collapsed.
---
title: "Choice Sets Attribute Non-Attendence"
format:
html:
self-contained: true
---
```{r, echo=FALSE, include=FALSE}
source(file = "code/feedadddata.R")
```
# Nonattendence
Summary of choice of all respondents
```{r, results='asis', echo=FALSE, warning=FALSE, message=FALSE}
allheuristics[[2]] %>%
imap(~ {
output <- kable(.x, caption = paste0("Choice Set Number: ", .y) ,
col.names = c("Attribute", paste0("Alt ", 2:ncol(.x)-1) ) ,format = "html")%>%
kable_styling(bootstrap_options = "striped", full_width = FALSE)
cat( rep("-", 30), "\n", output , " \n Choice Sets ends")
}
)
```
---
title: "Choice Sets Price Heuristics"
format:
html:
toc: true
---
```{r, echo=FALSE, include=FALSE}
source(file = "code/feedadddata.R")
```
# Price Heuristic
Summary of choice of all respondents
```{r, results='asis', echo=FALSE}
allheuristics[[3]] %>%
imap(~ {
output <- kable(.x, caption = paste0("Choice Set Number: ", .y) ,
col.names = c("Attribute", paste0("Alt ", 2:ncol(.x)-1) ) ,format = "html")%>%
kable_styling(bootstrap_options = "striped", full_width = FALSE)
cat( rep("-", 30), "\n", output , " \n Choice Sets ends")
}
)
```
---
title: "Choice Sets RUM"
format:
html:
toc: true
---
```{r, echo=FALSE, include=FALSE}
source(file = "code/feedadddata.R")
```
# RUM
Summary of choice of all respondents
```{r, results='asis', echo=FALSE}
allheuristics[[1]] %>%
imap(~ {
output <- kable(.x, caption = paste0("Choice Set Number: ", .y) ,
col.names = c("Attribute", paste0("Alt ", 2:ncol(.x)-1) ) ,format = "html")%>%
kable_styling(bootstrap_options = "striped", full_width = FALSE)
cat( rep("-", 30), "\n", output , " \n Choice Sets ends")
}
)
```
rm(list = ls(, pattern = "^apollo_"))
database <- feedadd_data
apollo_initialise()
### Set core controls
apollo_control = list(
modelName ="lc3cl",
modelDescr ="3 Class LCL model for Feed Additives DCE",
indivID ="ID",
nCores = 11 ,
outputDirectory = "modeloutput/lclogit/"
)
# ################################################################# #
#### DEFINE MODEL PARAMETERS ####
# ################################################################# #
### Vector of parameters, including any that are kept fixed in estimation
lcnames <- function(apollobeta, classnames) {
x<-NULL
for (i in classnames) {
g <- gsub("$", paste0("_",i),names(apollo_beta))
x<-c(x,g)
}
apollo_beta <- rep(apollo_beta, length(classnames))
names(apollo_beta) <- x
return(apollo_beta)
}
apollo_beta <-c(basc = 0.2,
bcow = 0.3,
badv = 0.3,
bvet = 0.3,
bfar = 0.3,
bmet = 0.3,
bbon = 0.3,
delta = 0
)
apollo_beta<-lcnames(apollo_beta, c("a","b","c"))
### Vector with names (in quotes) of parameters to be kept fixed at their starting value in apollo_beta, use apollo_beta_fixed = c() if none
apollo_fixed = c("delta_a")
# ################################################################# #
#### DEFINE LATENT CLASS COMPONENTS ####
# ################################################################# #
apollo_lcPars=function(apollo_beta, apollo_inputs){
lcpars = list()
lcpars[["basc"]] = list(basc_a , basc_b, basc_c)
lcpars[["bcow"]] = list(bcow_a, bcow_b ,bcow_c )
lcpars[["badv"]] = list(badv_a, badv_b ,badv_c)
lcpars[["bvet"]] = list(bvet_a, bvet_b , bvet_c)
lcpars[["bfar"]] = list(bfar_a, bfar_b , bfar_c)
lcpars[["bmet"]] = list(bmet_a, bmet_b , bmet_c)
lcpars[["bbon"]] = list(bbon_a, bbon_b, bbon_c)
V=list()
V[["class_a"]] = delta_a
V[["class_b"]] = delta_b
V[["class_c"]] = delta_c
mnl_settings = list(
alternatives = c(class_a=1, class_b=2, class_c=3),
avail = 1,
choiceVar = NA,
V = V
)
lcpars[["pi_values"]] = apollo_mnl(mnl_settings, functionality="raw")
lcpars[["pi_values"]] = apollo_firstRow(lcpars[["pi_values"]], apollo_inputs)
return(lcpars)
}
# ################################################################# #
#### GROUP AND VALIDATE INPUTS ####
# ################################################################# #
apollo_inputs = apollo_validateInputs()
# ################################################################# #
#### DEFINE MODEL AND LIKELIHOOD FUNCTION ####
# ################################################################# #
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
### Define settings for MNL model component that are generic across classes
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1,
choiceVar = CHOICE
)
### Loop over classes
for (s in 1:3) {
### Compute class-specific utilities
V=list()
V[['alt1']] = basc[[s]] + bbon[[s]]*alt1_bon + badv[[s]]*alt1_adv + bcow[[s]]*alt1_cow + bvet[[s]]*alt1_vet + bfar[[s]]*alt1_vet + bmet[[s]]*alt1_met
V[['alt2']] = basc[[s]] + bbon[[s]]*alt2_bon + badv[[s]]*alt2_adv + bcow[[s]]*alt2_cow + bvet[[s]]*alt2_vet + bfar[[s]]*alt2_vet + bmet[[s]]*alt2_met
V[['alt3']] = 0
mnl_settings$V = V
mnl_settings$componentName = paste0("Class_",s)
### Compute within-class choice probabilities using MNL model
P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]], apollo_inputs ,functionality)
}
### Compute latent class model probabilities
lc_settings = list(inClassProb = P, classProb=pi_values)
P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
lc3cl = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(hessianRoutine="maxLik"))
lc3cl[["unconditionals"]] <- apollo_lcUnconditionals(lc3cl,apollo_probabilities,apollo_inputs)
apollo_saveOutput(lc3cl, saveOutput_settings = list(saveEst=FALSE, savbmetv=FALSE, savbmetrr=FALSE))
rm(list=ls())
#remotes::install_gitlab(repo = "dj44vuri/choicetools" , host = "https://git.idiv.de")
library(dplyr)
library(choiceTools)
library(kableExtra)
library(purrr)
library("texreg")
feedadd_data <- readRDS("data/feedadd_data.RDS")
table(feedadd_data$group)
table(feedadd_data$group)/(length(feedadd_data$group))
choices <- choiceTools::createSets(
feedadd_data,choice = "CHOICE", uniquerow = "Choice_situation",
attributes = starts_with("alt"), prefix = "alt"
)
allheuristics <-map(seq_along(unique(feedadd_data$group)),
~ createSets(
feedadd_data %>% filter(group==.x) ,choice = "CHOICE", uniquerow = "Choice_situation",
attributes = starts_with("alt"), prefix = "alt"
) )
#### Small data set
smalldata <- feedadd_data %>%
distinct(Choice_situation, group, .keep_all = TRUE) %>%
select(!matches("[1-3]$") ,-Block, -group )
mnlsplits <- list()
splitnames <- c("ALL", "RUM" , "NonAttendence" , "Price")
\ No newline at end of file
deleteold <-list.files("modeloutput/clogit/", pattern = "OLD", full.names=TRUE)
file.remove(deleteold)
mnlsplits<-readRDS("modeloutput/modelstex.RDS")
lc3cl_model <- readRDS("~/share/groups/bioecon/Julian/seminarheuristics/modeloutput/lclogit/lc3cl_model.rds")
\ No newline at end of file
apollo_beta <-c(basc = 0.2,
bcow = 0.3,
badv = 0.3,
bvet = 0.3,
bfar = 0.3,
bmet = 0.3,
bbon = 0.3
)
### keine Parameter fix halten
apollo_fixed <- c()
### validieren
#assign("apollo_beta",apollo_beta, envir = .GlobalEnv)
#assign("apollo_fixed",apollo_fixed, envir = .GlobalEnv)
#assign("apollo_control",apollo_control, envir = .GlobalEnv)
apollo_inputs <- apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
### List of utilities (later integrated in mnl_settings below)
V = list()
V[['alt1']] = bcow*alt1_cow + badv * alt1_adv + bvet * alt1_vet + bfar * alt1_far + bmet*alt1_met + bbon * alt1_bon
V[['alt2']] = bcow*alt2_cow + badv * alt2_adv + bvet * alt2_vet + bfar * alt2_far + bmet*alt2_met + bbon * alt2_bon
V[['alt3']] = basc
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3) ,
avail = 1, # all alternatives are available in every choice
choiceVar = CHOICE,
V = V # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
### P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
library(apollo)
database <- feedadd_data
mnlsplits <- list()
splitnames <- c("ALL", "RUM" , "NonAttendence" , "Price")
for (splitno in seq_along(1:length(splitnames))) {
print(splitnames[splitno])
if (splitno!=1) {
database<-feedadd_data[which(feedadd_data$group==splitno-1),]
}
apollo_initialise()
apollo_control <- list(
modelName = paste0("MNL_",splitnames[splitno]),
modelDescr =paste0("MNL model Split ",splitnames[splitno]),
indivID ="ID",
outputDirectory = "modeloutput/clogit/"
)
source("code/simplemnl_body.R")
m <- apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(hessianRoutine="maxLik"))
apollo_saveOutput(m, saveOutput_settings = list(saveEst=FALSE, saveCov=FALSE, saveCorr=FALSE))
mnlsplits[[splitnames[splitno]]]<-quicktexregapollo(m)
}
saveRDS(mnlsplits,file = "modeloutput/modelstex.RDS")
File added
File added
iDiv_Logo_long.png

59.5 KiB

"basc","bcow","badv","bvet","bfar","bmet","bbon","logLike"
0.2,0.3,0.3,0.3,0.3,0.3,0.3,-20713.3421930812
0.2,0.3,0.3,0.3,0.3,0.3,0.3,-20713.3421930812
0.197774283346829,0.29993519713499,0.304012938177298,0.300431413218036,0.296521037378937,0.274274026456621,0.366368731354262,-20485.7925398724
0.209055461544678,0.289586361312179,0.307510722969549,0.302411348243303,0.284572684268648,0.147998222913648,0.361166935851261,-20436.5003117349
0.19784599933696,0.290293804258131,0.329575131751255,0.331241661657545,0.255306889485088,0.14683906545105,0.358668502201278,-20435.1755400108
0.190327002382416,0.286327253232415,0.330080671333177,0.33484784581644,0.258843338079719,0.146090883285112,0.358310678882282,-20434.9766063357
0.18434307624573,0.283075801427147,0.3297253167463,0.332075277225079,0.256768923942102,0.145931245358543,0.357998919975628,-20434.8567878365
0.176521942211385,0.28543982790769,0.326685870599895,0.330227740910902,0.254670673736218,0.145121158711483,0.357530278314043,-20434.7365586164
0.174056302945655,0.288268650136706,0.331242079102149,0.327430513911481,0.256311815034111,0.144717946090073,0.357124734600501,-20434.665267208
0.17389577488282,0.288241694821458,0.325715088561486,0.322685611206614,0.261772167291991,0.163184669461013,0.364683782166024,-20411.6283139804
0.167883979396811,0.287201261090668,0.317295549838884,0.316571514401408,0.266782165061282,0.183435346801448,0.373507729061407,-20402.0087562361
0.1673920244584,0.287096532541116,0.317241422066306,0.316620428882487,0.267325831621783,0.18407466167109,0.373974808023803,-20401.9908586195
0.167339335675083,0.287093008465451,0.317262142229566,0.316649173321282,0.267350781049214,0.184073677307018,0.37399349029677,-20401.990830438
0.167339310681464,0.287093020337431,0.317262161361498,0.316649187678528,0.267350793284478,0.1840737009989,0.373993664068592,-20401.9908304335
0.167339258710521,0.287093087478575,0.317262501679274,0.316649509090992,0.267350826875124,0.184073386918355,0.373994565021228,-20401.9908304287
File added
Model run by dj44vuri using Apollo 0.2.8 on R 4.2.2 for Linux.
www.ApolloChoiceModelling.com
Model name : MNL_ALL
Model description : MNL model Split ALL
Model run at : 2023-11-27 23:36:39
Estimation method : bfgs
Model diagnosis : successful convergence
Number of individuals : 3600
Number of rows in database : 28800
Number of modelled outcomes : 28800
Number of cores used : 1
Model without mixing
LL(start) : -20713.34
LL at equal shares, LL(0) : -31640.03
LL at observed shares, LL(C) : -25327.01
LL(final) : -20401.99
Rho-squared vs equal shares : 0.3552
Adj.Rho-squared vs equal shares : 0.355
Rho-squared vs observed shares : 0.1945
Adj.Rho-squared vs observed shares : 0.1942
AIC : 40817.98
BIC : 40875.86
Estimated parameters : 7
Time taken (hh:mm:ss) : 00:00:5.67
pre-estimation : 00:00:1.5
estimation : 00:00:2.03
post-estimation : 00:00:2.14
Iterations : 15
Min abs eigenvalue of Hessian : 541.3482
Unconstrained optimisation.
These outputs have had the scaling
used in estimation applied to
them.
Estimates:
Estimate s.e.
basc 0.1673 0.040025
bcow 0.2871 0.018514
badv 0.3173 0.016217
bvet 0.3166 0.018218
bfar 0.2674 0.016493
bmet 0.1841 0.007733
bbon 0.3740 0.004567
t.rat.(0) Rob.s.e.
basc 4.181 0.039099
bcow 15.507 0.017793
badv 19.563 0.015581
bvet 17.381 0.017360
bfar 16.209 0.016172
bmet 23.803 0.008632
bbon 81.884 0.005333
Rob.t.rat.(0)
basc 4.280
bcow 16.135
badv 20.362
bvet 18.240
bfar 16.532
bmet 21.325
bbon 70.128
Overview of choices for MNL model
component :
alt1
Times available 28800.00
Times chosen 13067.00
Percentage chosen overall 45.37
Percentage chosen when available 45.37
alt2
Times available 28800.00
Times chosen 13985.00
Percentage chosen overall 48.56
Percentage chosen when available 48.56
alt3
Times available 28800.00
Times chosen 1748.00
Percentage chosen overall 6.07
Percentage chosen when available 6.07
Classical covariance matrix:
basc bcow
basc 0.001602 1.7961e-04
bcow 1.7961e-04 3.4278e-04
badv 2.6768e-04 -2.369e-05
bvet 3.2945e-04 -3.743e-06
bfar 3.1445e-04 7.377e-06
bmet 1.2799e-04 -5.287e-06
bbon 9.600e-05 4.210e-06
badv bvet
basc 2.6768e-04 3.2945e-04
bcow -2.369e-05 -3.743e-06
badv 2.6300e-04 1.1377e-04
bvet 1.1377e-04 3.3191e-04
bfar 8.777e-05 1.0934e-04
bmet 2.178e-05 2.172e-05
bbon 7.781e-06 1.751e-05
bfar bmet
basc 3.1445e-04 1.2799e-04
bcow 7.377e-06 -5.287e-06
badv 8.777e-05 2.178e-05
bvet 1.0934e-04 2.172e-05
bfar 2.7204e-04 2.412e-05
bmet 2.412e-05 5.980e-05
bbon 2.032e-05 3.745e-06
bbon
basc 9.600e-05
bcow 4.210e-06
badv 7.781e-06
bvet 1.751e-05
bfar 2.032e-05
bmet 3.745e-06
bbon 2.086e-05
Robust covariance matrix:
basc bcow
basc 0.001529 1.9358e-04
bcow 1.9358e-04 3.1659e-04
badv 2.4715e-04 -1.421e-05
bvet 3.1069e-04 3.207e-06
bfar 3.3138e-04 2.351e-05
bmet 1.4444e-04 7.703e-07
bbon 9.105e-05 4.678e-06
badv bvet
basc 2.4715e-04 3.1069e-04
bcow -1.421e-05 3.207e-06
badv 2.4276e-04 1.1289e-04
bvet 1.1289e-04 3.0138e-04
bfar 8.859e-05 1.1381e-04
bmet 1.976e-05 2.370e-05
bbon 8.444e-06 1.886e-05
bfar bmet
basc 3.3138e-04 1.4444e-04
bcow 2.351e-05 7.703e-07
badv 8.859e-05 1.976e-05
bvet 1.1381e-04 2.370e-05
bfar 2.6152e-04 3.661e-05
bmet 3.661e-05 7.451e-05
bbon 2.239e-05 3.970e-07
bbon
basc 9.105e-05
bcow 4.678e-06
badv 8.444e-06
bvet 1.886e-05
bfar 2.239e-05
bmet 3.970e-07
bbon 2.844e-05
Classical correlation matrix:
basc bcow
basc 1.0000 0.24238
bcow 0.2424 1.00000
badv 0.4124 -0.07890
bvet 0.4518 -0.01110
bfar 0.4763 0.02416
bmet 0.4135 -0.03693
bbon 0.5251 0.04978
badv bvet
basc 0.41239 0.45180
bcow -0.07890 -0.01110
badv 1.00000 0.38507
bvet 0.38507 1.00000
bfar 0.32815 0.36387
bmet 0.17366 0.15419
bbon 0.10505 0.21041
bfar bmet
basc 0.47634 0.41352
bcow 0.02416 -0.03693
badv 0.32815 0.17366
bvet 0.36387 0.15419
bfar 1.00000 0.18907
bmet 0.18907 1.00000
bbon 0.26975 0.10602
bbon
basc 0.52515
bcow 0.04978
badv 0.10505
bvet 0.21041
bfar 0.26975
bmet 0.10602
bbon 1.00000
Robust correlation matrix:
basc bcow
basc 1.0000 0.278254
bcow 0.2783 1.000000
badv 0.4057 -0.051275
bvet 0.4577 0.010381
bfar 0.5241 0.081702
bmet 0.4280 0.005016
bbon 0.4367 0.049295
badv bvet
basc 0.40570 0.45772
bcow -0.05127 0.01038
badv 1.00000 0.41735
bvet 0.41735 1.00000
bfar 0.35158 0.40537
bmet 0.14692 0.15814
bbon 0.10163 0.20375
bfar bmet
basc 0.52409 0.427963
bcow 0.08170 0.005016
badv 0.35158 0.146916
bvet 0.40537 0.158142
bfar 1.00000 0.262244
bmet 0.26224 1.000000
bbon 0.25964 0.008623
bbon
basc 0.436674
bcow 0.049295
badv 0.101626
bvet 0.203748
bfar 0.259644
bmet 0.008623
bbon 1.000000
20 worst outliers in terms of lowest average per choice prediction:
ID Avg prob per choice
2245 0.1291638
2459 0.1361100
2674 0.1445860
2660 0.1559322
2755 0.1608655
513 0.1660440
2632 0.1738870
2643 0.1757546
2456 0.1764956
504 0.1796079
626 0.1837007
2770 0.1888183
1455 0.1901808
2614 0.1940656
127 0.1954228
676 0.1956396
2665 0.1968922
1174 0.1970817
1668 0.1981441
2580 0.1988892
Changes in parameter estimates from starting values:
Initial Estimate
basc 0.2000 0.1673
bcow 0.3000 0.2871
badv 0.3000 0.3173
bvet 0.3000 0.3166
bfar 0.3000 0.2674
bmet 0.3000 0.1841
bbon 0.3000 0.3740
Difference
basc -0.03266
bcow -0.01291
badv 0.01726
bvet 0.01665
bfar -0.03265
bmet -0.11593
bbon 0.07399
Settings and functions used in model definition:
apollo_control
--------------
Value
modelName "MNL_ALL"
modelDescr "MNL model Split ALL"
indivID "ID"
outputDirectory "modeloutput/clogit/"
debug "FALSE"
nCores "1"
workInLogs "FALSE"
seed "13"
mixing "FALSE"
HB "FALSE"
noValidation "FALSE"
noDiagnostics "FALSE"
calculateLLC "TRUE"
panelData "TRUE"
analyticGrad "TRUE"
analyticGrad_manualSet "FALSE"
Hessian routines attempted
--------------
numerical second derivative of LL (using maxLik)
Scaling in estimation
--------------
Value
basc 0.1673393
bcow 0.2870930
badv 0.3172622
bvet 0.3166492
bfar 0.2673508
bmet 0.1840737
bbon 0.3739937
Scaling used in computing Hessian
--------------
Value
basc 0.1673393
bcow 0.2870931
badv 0.3172625
bvet 0.3166495
bfar 0.2673508
bmet 0.1840734
bbon 0.3739946
apollo_probabilities
--------------------
function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
### List of utilities (later integrated in mnl_settings below)
V = list()
V[['alt1']] = bcow*alt1_cow + badv * alt1_adv + bvet * alt1_vet + bfar * alt1_far + bmet*alt1_met + bbon * alt1_bon
V[['alt2']] = bcow*alt2_cow + badv * alt2_adv + bvet * alt2_vet + bfar * alt2_far + bmet*alt2_met + bbon * alt2_bon
V[['alt3']] = basc
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3) ,
avail = 1, # all alternatives are available in every choice
choiceVar = CHOICE,
V = V # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
### P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
<bytecode: 0x5574d4c15958>
"basc","bcow","badv","bvet","bfar","bmet","bbon","logLike"
0.2,0.3,0.3,0.3,0.3,0.3,0.3,-5044.84843861625
0.2,0.3,0.3,0.3,0.3,0.3,0.3,-5044.84843861625
0.212263883346829,0.29179439713499,0.299968138177298,0.296668213218036,0.297749837378937,0.206882026456621,0.246355931354261,-4915.8521679726
0.21505322247987,0.288007052371971,0.307066931294511,0.296398353764042,0.296203693902158,0.128184562018626,0.284825156983034,-4855.40348760455
0.164810465913807,0.302835493148867,0.404816540314275,0.356489206697806,0.318249158638829,0.116318588513749,0.274286784742645,-4853.52074844387
0.151927734895124,0.279975000579782,0.400172090518385,0.371946082312472,0.32381086785241,0.115431130753391,0.27414457358128,-4853.14694507272
0.103543251112594,0.240604976106548,0.413191612897785,0.333584953609224,0.318095463077274,0.113847993951548,0.271528815115277,-4853.13129005344
-0.0257209506573074,0.252349339629921,0.374297025725588,0.305970791318832,0.284610846300238,0.0974347955791483,0.263859650286435,-4851.58567194988
0.0155565738945079,0.237742546447694,0.386607518489969,0.327029281664056,0.205849152706199,0.0800326994725245,0.266140143478844,-4843.09430085209
0.0818548031583402,0.247102649773792,0.379395400602803,0.321914365858315,0.263119248631678,0.0420350264918261,0.271138755397524,-4823.71571932239
0.164348115536451,0.264697962443476,0.367801882288876,0.330938686649523,0.308001619013226,0.0035633459370288,0.281561672447437,-4817.40456579944
0.1646237609054,0.265554058018546,0.368510399528634,0.332676792467705,0.309976604653833,0.00304292134497875,0.282269917085986,-4817.39657694711
0.165080019525179,0.265622433753292,0.368460867232662,0.332563361113081,0.309883881109384,0.00308300487879505,0.282260154619513,-4817.39649828911
0.165041463437502,0.265622032920252,0.368455655796549,0.332553897406415,0.309879698263003,0.00307878099338118,0.282256788431256,-4817.39649815984
0.165041464214499,0.265622031930734,0.368455676310814,0.33255390929899,0.309879693524504,0.00307878096775442,0.282256858465724,-4817.39649815968
File added
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment