Code owners
Assign users and groups as approvers for specific file changes. Learn more.
sim_choice.R 3.63 KiB
#' Title
#'
#' @param designfile path to a file containing a design.
#' @param no_sim Number of runs i.e. how often do you want the simulation to be repeated
#' @param respondents Number of respondents. How many respondents do you want to simulate in each run.
#' @param mnl_U a list containing utility functions as formulas
#' @param utils The first element of the utility function list
#' @param destype Specify which type of design you use. Either ngene or spdesign
#'
#' @return a list with all information on the run
#' @export
#'
#' @examples \dontrun{ simchoice(designfile="somefile", no_sim=10, respondents=330,
#' mnl_U,utils=u[[1]] ,destype="ngene")}
#'
sim_choice <- function(designfile, no_sim=10, respondents=330, mnl_U,utils=u[[1]] ,destype) {
## Function that transforms user written utiliy for simulation into utility function for mixl.
transform_util <- function() {
mnl_U <-paste(purrr::map_chr(utils,as.character,keep.source.attr = TRUE),collapse = "",";") %>%
stringr::str_replace_all( c( "priors\\[\"" = "" , "\"\\]" = "" , "~" = "=", "\\." = "_" , " b" = " @b" , "V_"="U_", " alt"="$alt"))
}
estimate_sim <- function(run=1) { #start loop
cat("This is Run number ", run)
database <- simulate_choices(datadet, utility = utils, setspp=setpp )
cat("This is the utility functions \n" , mnl_U)
model<-mixl::estimate(model_spec,start_values = est, availabilities = availabilities, data= database,)
return(model)
}
mnl_U <- transform_util()
cat("Utility function used in simulation, ie the true utility: \n\n")
print(u)
cat("Utility function used for Logit estimation with mixl: \n\n")
print(mnl_U)
designs_all <- list() ## Empty list where to store all designs later on
design<- readdesign(design = designfile) # Read in the design file
if (!("Block" %in% colnames(design))) design$Block=1 # If no Blocks exist, create a variable Blocks to indicate it is only one block
nsets<-nrow(design)
nblocks<-max(design$Block)
setpp <- nsets/nblocks # Choice Sets per respondent; in this 'no blocks' design everyone sees all 24 sets
replications <- respondents/nblocks
datadet<- design %>%
dplyr::arrange(Block,Choice.situation) %>%
dplyr::slice(rep(dplyr::row_number(), replications)) %>% ## replicate design according to number of replications
dplyr::mutate(ID = rep(1:respondents, each=setpp)) %>% # create Respondent ID.
dplyr::relocate(ID,`Choice.situation`) %>%
as.data.frame()
database <- simulate_choices(data=datadet, utility = utils, setspp = setpp)
# specify model for mixl estimation
model_spec <- mixl::specify_model(mnl_U, database, disable_multicore=F)
est=stats::setNames(rep(0,length(model_spec$beta_names)), model_spec$beta_names)
availabilities <- mixl::generate_default_availabilities(
database, model_spec$num_utility_functions)
output<- 1:no_sim %>% purrr::map(estimate_sim)
coefs<-purrr::map(1:length(output),~summary(output[[.]])[["coefTable"]][c(1,8)] %>%
tibble::rownames_to_column() %>%
tidyr::pivot_wider(names_from = rowname, values_from = c(est, rob_pval0)) ) %>%
dplyr::bind_rows(.id = "run")
output[["summary"]] <-psych::describe(coefs[,-1], fast = TRUE)
output[["coefs"]] <-coefs
pvals <- output[["coefs"]] %>% dplyr::select(dplyr::starts_with("rob_pval0"))
output[["power"]] <- 100*table(apply(pvals,1, function(x) all(x<0.05)))/nrow(pvals)
output[["metainfo"]] <- c(Path = designfile, NoSim = no_sim, NoResp =respondents)
print(kableExtra::kable(output[["summary"]],digits = 2, format = "rst"))
print(output[["power"]])
return(output)
}