Skip to content
Snippets Groups Projects
Commit 0e486028 authored by fm58hufi's avatar fm58hufi
Browse files

Upload New File

parent 866af99a
Branches
No related tags found
No related merge requests found
### Initialise code
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MNL_SP",
modelDescr = "Simple MNL model on mode choice SP data",
indivID = "id",
outputDirectory = "Output",
panelData = TRUE
)
# ################################################################# #
#### DEFINE MODEL PARAMETERS ####
# ################################################################# #
### Vector of parameters, including any that are kept fixed in estimation
apollo_beta=c(asc_a = 0,
asc_b = 0,
b_profit =1,
b_hold = 0,
b_loc = 0,
b_admin1 = 0,
b_admin2 = 0,
b_hold_PMI = 0
)
### Vector with names (in quotes) of parameters to be kept fixed at their starting value in apollo_beta, use apollo_beta_fixed = c() if none
apollo_fixed = c()
# ################################################################# #
#### GROUP AND VALIDATE INPUTS ####
# ################################################################# #
apollo_inputs = apollo_validateInputs()
# ################################################################# #
#### DEFINE MODEL AND LIKELIHOOD FUNCTION ####
# ################################################################# #
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
### List of utilities: these must use the same names as in mnl_settings, order is irrelevant
V = list()
V[["alt1"]] = asc_a +
b_profit * profit1 -
b_hold * hold1 -
b_hold_PMI*hold1*PMI+
b_loc * loc1 +
b_admin1 *admin_11 +
b_admin2 *admin_21
V[["alt2"]] =asc_b +
b_profit * profit2 -
b_hold * hold2 -
b_hold_PMI*hold2*PMI+
b_loc * loc2 +
b_admin1 *admin_12+
b_admin2 *admin_22
V[["alt3"]] = b_profit * profit3
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1,
choiceVar = choosen,
utilities = V
)
### Compute probabilities using MNL model
P[["model"]] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ####
# ################################################################# #
model_PMI = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs)
# ################################################################# #
#### MODEL OUTPUTS ####
# ################################################################# #
# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO SCREEN) ----
# ----------------------------------------------------------------- #
apollo_modelOutput(model_PMI)
# ----------------------------------------------------------------- #
#---- FORMATTED OUTPUT (TO FILE, using model name) ----
# ----------------------------------------------------------------- #
summary(model_PMI)
max_PMI=max(database$PMI)
min_PMI=min(database$PMI)
x_list=seq(min_PMI,max_PMI,0.1)
df <- data.frame(Mean=double(),
Index=double(),
UB=double(),
LB=double())
i=1
deltaMethod_settings=list(expression=c(paste0(mean_rate="(b_hold/b_profit)*100")))
apollo_deltaMethod(model_PMI, deltaMethod_settings)
deltaMethod_settings=list(expression=c(paste0(mean_rate="(b_hold_PMI/b_profit)*100")))
apollo_deltaMethod(model_PMI, deltaMethod_settings)
for(j in x_list){
deltaMethod_settings=list(expression=c(paste0(mean_rate="(b_hold/b_profit+b_hold_PMI/b_profit*",j,")*100")))
a<-apollo_deltaMethod(model_PMI, deltaMethod_settings)
df[i,"Mean"]<-a[["Value"]]
df[i,"Index"]<-j
df[i,"UB"]<-a[["Value"]]+1.96*a[["Robust s.e."]]
df[i,"LB"]<-a[["Value"]]-1.96*a[["Robust s.e."]]
i=i+1
}
fig_PMI<-ggplot(df, aes(x=Index, y=Mean)) +
geom_ribbon(aes(ymin=LB, ymax=UB),alpha=.2, fill="#00BFC4") +
geom_line(color="#00BFC4") +
labs(x = "PMI", y= "Money discount rate in %")
ggsave("Graphs/PMI.png")
ggsave("Graphs/PMI.tiff")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment