Out of the `r length(species_list)` species in the sRoot list, `r sum(unique(DT2$species) %in% species_list)` species are present in sPlot, for a total of `r nrow(DT.xylem %>% filter(species %in% species_list))` plots., across `r length(plot.sel)` plots.
Out of the `r length(species_list)` species in the sRoot list, `r sum(unique(DT2$species) %in% species_list)` species are present in sPlot, for a total of `r nrow(DT.xylem %>% filter(species %in% species_list))` records, across `r length(plot.sel)` plots.
# 2 Extract woody species
This is partial selection, as we don't have information on the growth form of all species in sPlot
...
...
@@ -95,8 +95,7 @@ This is partial selection, as we don't have information on the growth form of al
#load list of woody species, as provided to me by Alexander Zizka, within sPlot project #21
sample_n(20), caption="Example of climatic and soil variables for 20 randomly selected plots. All values represent the median in a circle centered on the plot coordinates, having a radius equal to the plot's location uncertainty (capped to 50 km for computing reasons)") %>%
sample_n(20), caption="Example of climatic and soil variables for 20 randomly selected plots. All values represent the mean in a circle centered on the plot coordinates, having a radius equal to the plot's location uncertainty (capped to 50 km for computing reasons). Sd is also reported.") %>%