Code owners
Assign users and groups as approvers for specific file changes. Learn more.
mxl_pref_space_caseA.R 5.89 KiB
#### Apollo standard script #####
library(apollo) # Load apollo package
database <- database_full %>% filter(!is.na(Treatment_A)) %>%
mutate(Dummy_Treated = case_when(Treatment_A == "Treated" ~ 1, TRUE ~ 0),
Dummy_Vol_Treated = case_when(Treatment_A == "Vol_Treated" ~ 1, TRUE ~ 0))
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_pref Case A",
modelDescr = "MXL_pref Case A",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/prefspace"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
ASC_sq = 0,
mu_rent_T = 0,
mu_nat_T = 0,
mu_wd_T= 0,
mu_asc_T = 0,
mu_rent_VT = 0,
mu_nat_VT = 0,
mu_wd_VT = 0,
mu_asc_VT = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 2)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = b_mu_rent*Rent_1 + b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
mu_rent_T * Rent_1 * Dummy_Treated +
mu_nat_T * Naturalness_1 * Dummy_Treated + mu_wd_T * WalkingDistance_1 * Dummy_Treated +
mu_rent_VT * Rent_1 * Dummy_Vol_Treated + mu_nat_VT * Naturalness_1 * Dummy_Vol_Treated +
mu_wd_VT * WalkingDistance_1 * Dummy_Vol_Treated
V[['alt2']] = b_mu_rent*Rent_2 + b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 +
mu_rent_T * Rent_2 * Dummy_Treated +
mu_nat_T * Naturalness_2 * Dummy_Treated + mu_wd_T * WalkingDistance_2 * Dummy_Treated +
mu_rent_VT * Rent_2 * Dummy_Vol_Treated + mu_nat_VT * Naturalness_2 * Dummy_Vol_Treated +
mu_wd_VT * WalkingDistance_2 * Dummy_Vol_Treated
V[['alt3']] = b_mu_rent*Rent_3 + b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + mu_asc_T * Dummy_Treated +
mu_rent_T * Rent_3 * Dummy_Treated + mu_asc_VT * Dummy_Vol_Treated +
mu_nat_T * Naturalness_3 * Dummy_Treated + mu_wd_T * WalkingDistance_3 * Dummy_Treated +
mu_rent_VT * Rent_3 * Dummy_Vol_Treated + mu_nat_VT * Naturalness_3 * Dummy_Vol_Treated +
mu_wd_VT * WalkingDistance_3 * Dummy_Vol_Treated
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_pref_case_a = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_pref_case_a)