Skip to content
Snippets Groups Projects
Select Git revision
  • 69c75fcb850ce2dd13f05c66f1068729262830c1
  • main default protected
  • test_coef
  • 21-things-to-take-care-of-before-submission
4 results

mxl_wtp_space_caseA.R

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    mxl_wtp_space.R 5.82 KiB
    #### Apollo standard script #####
    
    library(apollo) # Load apollo package 
    
    # Remove crazy outliers for testing the model 
    database <- database %>% filter(Rent_SQ <= 10000, WalkingDistance_SQ <= 300)
    
    # Test treatment effect
    
    database <- database %>%
      filter(!is.na(Treatment_new)) %>%
      mutate(Dummy_Video_1 = case_when(Treatment_new == 1 ~ 1, TRUE ~ 0),
             Dummy_Video_2 = case_when(Treatment_new == 5 ~ 1, TRUE ~ 0),
             Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0),
             Dummy_Info_nv1 = case_when(Treatment_new == 2 ~1, TRUE~0),
             Dummy_Info_nv2 = case_when(Treatment_new == 4 ~1 , TRUE~0))
    
      #initialize model 
      
      apollo_initialise()
      
      
      ### Set core controls
      apollo_control = list(
        modelName  = "MXL_wtp",
        modelDescr = "MXL wtp space",
        indivID    ="id",
        mixing     = TRUE,
        HB= FALSE,
        nCores     = n_cores, 
        outputDirectory = "Estimation_results/mxl"
      )
      
      ##### Define model parameters depending on your attributes and model specification! ####
      # set values to 0 for conditional logit model
      
      apollo_beta=c(mu_natural = 15,
                    mu_walking = -1,
                    mu_rent = -2,
                    ASC_sq = 0,
                    mu_nat_vid1 =0,
                    mu_nat_vid2 = 0,
                    mu_nat_no_info = 0,
                    mu_nat_info_nv1 = 0,
                    mu_nat_info_nv2 = 0,
                    sig_natural = 15,
                    sig_walking = 2,
                    sig_rent = 2)
      
      ### specify parameters that should be kept fixed, here = none
      apollo_fixed = c()
      
      ### Set parameters for generating draws, use 2000 sobol draws
      apollo_draws = list(
        interDrawsType = "sobol",
        interNDraws    = n_draws,
        interUnifDraws = c(),
        interNormDraws = c("draws_natural", "draws_walking", "draws_rent"),
        intraDrawsType = "halton",
        intraNDraws    = 0,
        intraUnifDraws = c(),
        intraNormDraws = c()
      )
      
      ### Create random parameters, define distribution of the parameters
      apollo_randCoeff = function(apollo_beta, apollo_inputs){
        randcoeff = list()
        
        randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
        randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
        randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
        
        return(randcoeff)
      }
      
      
      ### validate 
      apollo_inputs = apollo_validateInputs()
      apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
        
        ### Function initialisation: do not change the following three commands
        ### Attach inputs and detach after function exit
        apollo_attach(apollo_beta, apollo_inputs)
        on.exit(apollo_detach(apollo_beta, apollo_inputs))
        
        ### Create list of probabilities P
        P = list()
        
        #### List of utilities (later integrated in mnl_settings below)  ####
        # Define utility functions here:
         
        V = list()
        V[['alt1']] = -b_mu_rent*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
                       mu_nat_vid1 * Naturalness_1 *Dummy_Video_1 + mu_nat_no_info * Naturalness_1 * Dummy_no_info
                       +  mu_nat_info_nv1 * Naturalness_1 *Dummy_Info_nv1 + mu_nat_vid2 * Naturalness_1 * Dummy_Video_2
                       +  mu_nat_info_nv2 * Naturalness_1 *Dummy_Info_nv2 - Rent_1)
        
        V[['alt2']] = -b_mu_rent*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 +
                      mu_nat_vid1 * Naturalness_2 *Dummy_Video_1 + mu_nat_no_info * Naturalness_2 * Dummy_no_info
                      +  mu_nat_info_nv1 * Naturalness_2 *Dummy_Info_nv1  + mu_nat_vid2 * Naturalness_2 * Dummy_Video_2
                      +  mu_nat_info_nv2 * Naturalness_2 *Dummy_Info_nv2 - Rent_2)
        
        V[['alt3']] = -b_mu_rent*(ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 + 
                      mu_nat_vid1 * Naturalness_3 *Dummy_Video_1 + mu_nat_no_info * Naturalness_3 * Dummy_no_info
                      +  mu_nat_info_nv1 * Naturalness_3 *Dummy_Info_nv1  + mu_nat_vid2 * Naturalness_3 * Dummy_Video_2 
                      +  mu_nat_info_nv2 * Naturalness_3 *Dummy_Info_nv2 - Rent_3)
        
        
        ### Define settings for MNL model component
        mnl_settings = list(
          alternatives  = c(alt1=1, alt2=2, alt3=3),
          avail         = 1, # all alternatives are available in every choice
          choiceVar     = choice,
          V             = V#,  # tell function to use list vector defined above
          
        )
        
        ### Compute probabilities using MNL model
        P[['model']] = apollo_mnl(mnl_settings, functionality)
        
        ### Take product across observation for same individual
        P = apollo_panelProd(P, apollo_inputs, functionality)
        
        ### Average across inter-individual draws - nur bei Mixed Logit!
        P = apollo_avgInterDraws(P, apollo_inputs, functionality)
        
        ### Prepare and return outputs of function
        P = apollo_prepareProb(P, apollo_inputs, functionality)
        return(P)
      }
      
      
      
      # ################################################################# #
      #### MODEL ESTIMATION                                            ##
      # ################################################################# #
      # estimate model with bfgs algorithm
      
      mxl_wtp = apollo_estimate(apollo_beta, apollo_fixed,
                            apollo_probabilities, apollo_inputs, 
                            estimate_settings=list(maxIterations=400,
                                                   estimationRoutine="bfgs",
                                                   hessianRoutine="analytic"))
      
      
      
      # ################################################################# #
      #### MODEL OUTPUTS                                               ##
      # ################################################################# #
      apollo_saveOutput(mxl_wtp)