Skip to content
Snippets Groups Projects
Commit 7d3f6452 authored by nc71qaxa's avatar nc71qaxa
Browse files

matching mxl models

parent f4b6a9b1
No related branches found
No related tags found
No related merge requests found
......@@ -76,7 +76,7 @@ data<-select(data, Choice_Treat, id, Age, Q02W123, Uni_degree, QFIncome,Z_Mean_N
Uni_degree, Q02W123,Q04W123,Q05W123, Q08W123,Q09W123,Q10W123,Q11W3,Q12W123,Q13W23,Q14S01W123,Q14S02W23,
Q14S03W123,Q14S04W123,Q14S05W123,Q14S06W23,Q14S07W3,Q14S08W2,Q14W23,
Q15S01W3,Q15S02W3,Q16W3,Q17W13,Q18W123,Q19W3,C02W23,Q20W23,Q21W23,
Q22S01W123,Q22S02W23,Q23W123,Q24S01W123,
Q22S01W123,Q22S02W23,UGS_visits,Q24S01W123,
Q24S02W123,Q24S03W123,Q24S04W23,Q24S05W123,Q25W23,Q26S01W123,Q26S02W123,
Q26S03W23,Q26S04W123,Q26S05W123,Q26S06W123,Q26S07W23,Q26S08W23,Q26S99W23,
Q27W123,Q30W23,Q31S01W23,Q31S02W23,Q31S03W23,Q31S04W23,
......@@ -177,4 +177,4 @@ best_coords <- coords(roc_obj, "best", best.method="youden")
cut_off <- best_coords$threshold
>>>>>>> e410a7a5c52ecf34b454cff74f0b641cd5615679
#### Apollo standard script #####
library(apollo) # Load apollo package
data_predictions <- readRDS("Data/predictions.RDS")
database <- left_join(database_full, data_predictions, by="id")
database <- database %>%
filter(!is.na(Treatment_new)) %>%
mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0),
Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0),
Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>%
mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0),
Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0))
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp_Prediction matching",
modelDescr = "MXL wtp space Prediction matching",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/prediction"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
ASC_sq = 0,
mu_ASC_sq_vol_treated = 0,
mu_ASC_sq_no_info = 0,
mu_ASC_sq_treat_pred = 0,
mu_ASC_sq_treat_not_pred = 0,
mu_nat_vol_treated = 0,
mu_nat_no_info = 0,
mu_nat_treat_pred = 0,
mu_nat_treat_not_pred = 0,
mu_walking_vol_treated = 0,
mu_walking_no_info = 0,
mu_walking_treat_pred = 0,
mu_walking_treat_not_pred = 0,
mu_rent_vol_treated = 0,
mu_rent_no_info = 0,
mu_rent_treat_pred = 0,
mu_rent_treat_not_pred = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 2)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred)*
(b_mu_natural*Naturalness_1 + b_mu_walking*WalkingDistance_1
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_1 + mu_nat_no_info * Dummy_no_info * Naturalness_1
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_1 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_1
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_1 + mu_walking_no_info* Dummy_no_info * WalkingDistance_1
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_1 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_1
- Rent_1)
V[['alt2']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred)*
(b_mu_natural*Naturalness_2 + b_mu_walking*WalkingDistance_2
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_2 + mu_nat_no_info * Dummy_no_info * Naturalness_2
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_2 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_2
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_2 + mu_walking_no_info* Dummy_no_info * WalkingDistance_2
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_2 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_2
- Rent_2)
V[['alt3']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred)*
(b_mu_natural*Naturalness_3 + b_mu_walking*WalkingDistance_3
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_3 + mu_nat_no_info * Dummy_no_info * Naturalness_3
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_3 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_3
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_3 + mu_walking_no_info* Dummy_no_info * WalkingDistance_3
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_3 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_3
+ b_ASC_sq + mu_ASC_sq_vol_treated * Dummy_Vol_Treated + mu_ASC_sq_no_info * Dummy_no_info
+ mu_ASC_sq_treat_pred * Dummy_Treated_Pred + mu_ASC_sq_treat_not_pred * Dummy_Treated_Not_Pred- Rent_3)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_case_e = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_case_e)
#### Apollo standard script #####
library(apollo) # Load apollo package
data_predictions <- readRDS("Data/predictions.RDS")
database <- left_join(database_full, data_predictions, by="id")
database <- database %>%
filter(!is.na(Treatment_new)) %>%
mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0),
Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0),
Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>%
mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0),
Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>%
mutate(Dummy_Control_Pred = case_when(Treatment_new == 6 & PredictedGroup == 1 ~1, TRUE~0))
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp_Prediction matching all",
modelDescr = "MXL wtp space Prediction matching all",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/prediction"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
ASC_sq = 0,
mu_ASC_sq_vol_treated = 0,
mu_ASC_sq_no_info = 0,
mu_ASC_sq_treat_pred = 0,
mu_ASC_sq_treat_not_pred = 0,
mu_ASC_sq_control_pred = 0,
mu_nat_vol_treated = 0,
mu_nat_no_info = 0,
mu_nat_treat_pred = 0,
mu_nat_treat_not_pred = 0,
mu_nat_control_pred = 0,
mu_walking_vol_treated = 0,
mu_walking_no_info = 0,
mu_walking_treat_pred = 0,
mu_walking_treat_not_pred = 0,
mu_walking_control_pred = 0,
mu_rent_vol_treated = 0,
mu_rent_no_info = 0,
mu_rent_treat_pred = 0,
mu_rent_treat_not_pred = 0,
mu_rent_control_pred = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 2)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_pred * Dummy_Control_Pred)*
(b_mu_natural*Naturalness_1 + b_mu_walking*WalkingDistance_1
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_1 + mu_nat_no_info * Dummy_no_info * Naturalness_1
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_1 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_1 + mu_nat_control_pred * Dummy_Control_Pred * Naturalness_1
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_1 + mu_walking_no_info* Dummy_no_info * WalkingDistance_1
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_1 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_1 + mu_walking_control_pred * Dummy_Control_Pred * WalkingDistance_1
- Rent_1)
V[['alt2']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_pred * Dummy_Control_Pred)*
(b_mu_natural*Naturalness_2 + b_mu_walking*WalkingDistance_2
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_2 + mu_nat_no_info * Dummy_no_info * Naturalness_2
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_2 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_2 + mu_nat_control_pred * Dummy_Control_Pred * Naturalness_2
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_2 + mu_walking_no_info* Dummy_no_info * WalkingDistance_2
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_2 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_2 + mu_walking_control_pred * Dummy_Control_Pred * WalkingDistance_2
- Rent_2)
V[['alt3']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_pred * Dummy_Control_Pred)*
(b_mu_natural*Naturalness_3 + b_mu_walking*WalkingDistance_3
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_3 + mu_nat_no_info * Dummy_no_info * Naturalness_3
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_3 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_3 + mu_nat_control_pred * Dummy_Control_Pred * Naturalness_3
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_3 + mu_walking_no_info* Dummy_no_info * WalkingDistance_3
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_3 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_3 + mu_walking_control_pred * Dummy_Control_Pred * WalkingDistance_3
+ b_ASC_sq + mu_ASC_sq_vol_treated * Dummy_Vol_Treated + mu_ASC_sq_no_info * Dummy_no_info
+ mu_ASC_sq_treat_pred * Dummy_Treated_Pred + mu_ASC_sq_treat_not_pred * Dummy_Treated_Not_Pred + mu_ASC_sq_control_pred * Dummy_Control_Pred - Rent_3)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_matching_all = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_matching_all)
#### Apollo standard script #####
library(apollo) # Load apollo package
data_predictions <- readRDS("Data/predictions.RDS")
database <- left_join(database_full, data_predictions, by="id")
database <- database %>%
filter(!is.na(Treatment_new)) %>%
mutate(Dummy_Treated = case_when(Treatment_new == 1|Treatment_new == 2 ~ 1, TRUE ~ 0),
Dummy_Vol_Treated = case_when(Treatment_new == 5 |Treatment_new == 4 ~ 1, TRUE ~ 0),
Dummy_no_info = case_when(Treatment_new == 3 ~ 1, TRUE~0)) %>%
mutate(Dummy_Treated_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 1 ~1, TRUE~0),
Dummy_Treated_Not_Pred = case_when(Dummy_Treated == 1 & PredictedGroup == 0 ~1, TRUE~0)) %>%
mutate(Dummy_Control_Not_Pred = case_when(Treatment_new == 6 & PredictedGroup == 0 ~1, TRUE~0))
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp_Prediction matching all cp",
modelDescr = "MXL wtp space Prediction matching all cp",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl/prediction"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
ASC_sq = 0,
mu_ASC_sq_vol_treated = 0,
mu_ASC_sq_no_info = 0,
mu_ASC_sq_treat_pred = 0,
mu_ASC_sq_treat_not_pred = 0,
mu_ASC_sq_control_not_pred = 0,
mu_nat_vol_treated = 0,
mu_nat_no_info = 0,
mu_nat_treat_pred = 0,
mu_nat_treat_not_pred = 0,
mu_nat_control_not_pred = 0,
mu_walking_vol_treated = 0,
mu_walking_no_info = 0,
mu_walking_treat_pred = 0,
mu_walking_treat_not_pred = 0,
mu_walking_control_not_pred = 0,
mu_rent_vol_treated = 0,
mu_rent_no_info = 0,
mu_rent_treat_pred = 0,
mu_rent_treat_not_pred = 0,
mu_rent_control_not_pred = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 2)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_not_pred * Dummy_Control_Not_Pred)*
(b_mu_natural*Naturalness_1 + b_mu_walking*WalkingDistance_1
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_1 + mu_nat_no_info * Dummy_no_info * Naturalness_1
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_1 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_1 + mu_nat_control_not_pred * Dummy_Control_Not_Pred * Naturalness_1
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_1 + mu_walking_no_info* Dummy_no_info * WalkingDistance_1
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_1 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_1 + mu_walking_control_not_pred * Dummy_Control_Not_Pred * WalkingDistance_1
- Rent_1)
V[['alt2']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_not_pred * Dummy_Control_Not_Pred)*
(b_mu_natural*Naturalness_2 + b_mu_walking*WalkingDistance_2
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_2 + mu_nat_no_info * Dummy_no_info * Naturalness_2
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_2 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_2 + mu_nat_control_not_pred * Dummy_Control_Not_Pred * Naturalness_2
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_2 + mu_walking_no_info* Dummy_no_info * WalkingDistance_2
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_2 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_2 + mu_walking_control_not_pred * Dummy_Control_Not_Pred * WalkingDistance_2
- Rent_2)
V[['alt3']] = -(b_mu_rent + mu_rent_vol_treated * Dummy_Vol_Treated + mu_rent_no_info * Dummy_no_info + mu_rent_treat_pred * Dummy_Treated_Pred +
mu_rent_treat_not_pred * Dummy_Treated_Not_Pred + mu_rent_control_not_pred * Dummy_Control_Not_Pred)*
(b_mu_natural*Naturalness_3 + b_mu_walking*WalkingDistance_3
+ mu_nat_vol_treated * Dummy_Vol_Treated * Naturalness_3 + mu_nat_no_info * Dummy_no_info * Naturalness_3
+ mu_nat_treat_pred * Dummy_Treated_Pred * Naturalness_3 + mu_nat_treat_not_pred * Dummy_Treated_Not_Pred * Naturalness_3 + mu_nat_control_not_pred * Dummy_Control_Not_Pred * Naturalness_3
+ mu_walking_vol_treated * Dummy_Vol_Treated * WalkingDistance_3 + mu_walking_no_info* Dummy_no_info * WalkingDistance_3
+ mu_walking_treat_pred * Dummy_Treated_Pred * WalkingDistance_3 + mu_walking_treat_not_pred * Dummy_Treated_Not_Pred * WalkingDistance_3 + mu_walking_control_not_pred * Dummy_Control_Not_Pred * WalkingDistance_3
+ b_ASC_sq + mu_ASC_sq_vol_treated * Dummy_Vol_Treated + mu_ASC_sq_no_info * Dummy_no_info
+ mu_ASC_sq_treat_pred * Dummy_Treated_Pred + mu_ASC_sq_treat_not_pred * Dummy_Treated_Not_Pred + mu_ASC_sq_control_not_pred * Dummy_Control_Not_Pred - Rent_3)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_matching_all_cp = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_matching_all_cp)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment