Skip to content
Snippets Groups Projects
Commit b1946762 authored by nc71qaxa's avatar nc71qaxa
Browse files

treatment_präsi

parent b749e2a7
No related branches found
No related tags found
No related merge requests found
......@@ -45,7 +45,7 @@ list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" =
1. Who chooses optional information?
2a. How does an information treatment about urban heat islands affect survey engagement (interview time, cc time), quiz questions, and consequentially?
2a. How does an information treatment about urban heat islands affect survey engagement (interview time, cc time), quiz questions, and consequentially?
2b. How are these factors influenced by voluntary information access?
......@@ -53,18 +53,28 @@ list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" =
4. Do people who choose **voluntary** information have a different WTP/preferences?
## Discrete Choice Experiment
- Setting: Restructuring of individually most visited UGS in terms of proximity and naturalness financed via incidental costs
- Main attribute of interest here: naturalness defined by five-level graphical scale ▶ Range: hardly natural to very natural
- Three survey rounds; paper by Bronnmann et al. (2023) based on round 1 & 2, round 3 just finished end of February
## Choice Card
![](images/Figure%202.PNG){width="300"}
## Treatment
- Information text about urban heat islands with figure
- Quiz questions
- Self-reference questions
- OPTIONAL: Video about urban heat islands
![](images/waermeinsel.png){width="200"}
## Treatment Groups
![](Grafics/FlowChart.png){width="300"}
......@@ -105,10 +115,9 @@ list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" =
\label{mxl_base}
\end{equation}
```
## Socio Demografics {.smaller}
::: {style="font-size: 50%;"}
::: {style="font-size: 37%;"}
::: panel-tabset
### Case A
......@@ -128,16 +137,13 @@ datatable(treatment_socio_C)
:::
:::
## NR
**Hypotheses:** Individuals with greater Nature Relatedness (NR) are more inclined to autonomously seek information about environmental subjects, such as the impact of urban green spaces on urban heat islands. Consequently, any observed increase in the willingness to pay among the treated group may be attributed to the individuals' higher NR rather than the treatment itself.
## NR OLS
::: {style="font-size: 50%;"}
::: {style="font-size: 45%;"}
```{r, results='asis'}
htmlreg(l=list(nr_model_treat_A),
custom.model.names = c("OLS regression"),
......@@ -157,9 +163,6 @@ htmlreg(l=list(nr_model_treat_A),
## Logit Regression: Who choses treatment?
::: {style="font-size: 50%;"}
```{r, results='asis'}
......@@ -171,11 +174,8 @@ htmlreg(l=list(logit_choice_treat_uni), stars = c(0.01, 0.05, 0.1), float.pos="t
```
:::
## Engagement: Interview Time
::: panel-tabset
......@@ -200,7 +200,7 @@ bxplt_interview_time_C
## OLS Engagement: Interview time
::: {style="font-size: 50%;"}
::: {style="font-size: 38%;"}
```{r, results='asis'}
htmlreg(l=list(ols_time_spent_A, ols_time_spent_control_A, ols_time_spent_C, ols_time_spent_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
......@@ -209,11 +209,8 @@ htmlreg(l=list(ols_time_spent_A, ols_time_spent_control_A, ols_time_spent_C, o
custom.note = "%stars. Standard errors in parentheses.",
label = "tab:net_int")
```
:::
## Engagement: Choice Card time
::: panel-tabset
......@@ -238,7 +235,7 @@ bxplt_cc_time_C
## OLS Engagement: Choice Card Time
::: {style="font-size: 50%;"}
::: {style="font-size: 38%;"}
```{r, results='asis'}
htmlreg(l=list(ols_time_cc_A, ols_time_cc_control_A, ols_time_cc_C, ols_time_cc_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
......@@ -247,7 +244,6 @@ htmlreg(l=list(ols_time_cc_A, ols_time_cc_control_A, ols_time_cc_C, ols_time_c
custom.note = "%stars. Standard errors in parentheses.",
label = "tab:cctime")
```
:::
## Manipulation check
......@@ -274,8 +270,7 @@ bxplt_quiz_C
## OLS: Manipulation check
::: {style="font-size: 50%;"}
::: {style="font-size: 38%;"}
```{r, results='asis'}
htmlreg(l=list(ols_percentage_correct_A, ols_percentage_correct_control_A, ols_percentage_correct_C, ols_percentage_correct_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
......@@ -284,13 +279,14 @@ htmlreg(l=list(ols_percentage_correct_A, ols_percentage_correct_control_A, ols_
custom.note = "%stars. Standard errors in parentheses.",
label = "tab:mani")
```
:::
<!-- ## Self Reference -->
<!-- 1. Es entspricht meiner persönlichen Erfahrung, dass die Grünfläche in meiner Nähe zu einem angenehmen Klima an meinem Wohnort beiträgt. -->
<!-- 2. Ich bin durch hohe Temperaturen in der Stadt im Sommer eingeschränkt. -->
<!-- 3. Die Stadt sollte mehr unternehmen, um Hitzeinseln zu vermeiden. -->
<!-- Stimme voll und ganz zu - Stimme gar nicht zu -->
......@@ -299,9 +295,7 @@ htmlreg(l=list(ols_percentage_correct_A, ols_percentage_correct_control_A, ols_
## OLS: Consequentiality
::: {style="font-size: 50%;"}
::: {style="font-size: 38%;"}
```{r, results='asis'}
htmlreg(l=list(conseq_model_A, conseq_model_control_A, conseq_model_C, conseq_model_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
......@@ -310,7 +304,6 @@ htmlreg(l=list(conseq_model_A, conseq_model_control_A, conseq_model_C, conseq_mo
custom.note = "%stars. Standard errors in parentheses.",
label = "tab:conseq")
```
:::
## Opt Out
......@@ -337,8 +330,7 @@ bxplt_opt_C
## OLS: Opt-out
::: {style="font-size: 50%;"}
::: {style="font-size: 38%;"}
```{r, results='asis'}
htmlreg(l=list(ols_opt_out_A, ols_opt_out_control_A, ols_opt_out_C, ols_opt_out_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
......@@ -347,12 +339,8 @@ htmlreg(l=list(ols_opt_out_A, ols_opt_out_control_A, ols_opt_out_C, ols_opt_out_
custom.note = "%stars. Standard errors in parentheses.",
label = "tab:optout")
```
:::
## MXL: Split Samples
```{r}
......@@ -369,10 +357,9 @@ ggplot(data=mxl_melt_info, aes(x=Coefficent, y=abs(value), fill=variable)) +
## MXL: Paper Table
::: {style="font-size: 60%;"}
::: panel-tabset
### Case A
```{r, results='asis'}
htmlreg(c(case_A_cols[1], remGOF(case_A_cols[2:4])),
custom.coef.map = list("natural" = "Naturalness", "walking" = "Walking Distance", "rent" = "Rent",
......@@ -395,9 +382,7 @@ htmlreg(c(case_C_cols[1], remGOF(case_C_cols[2:7])),
stars = c(0.01, 0.05, 0.1), float.pos="tb",
label = "tab:mxl_C")
```
:::
:::
## MXL: WTP space
......@@ -456,8 +441,6 @@ summary(mxl_wtp_case_c_rentINT)
## MXL: WTP space with NR index
::: panel-tabset
### Scenario A
......@@ -465,7 +448,6 @@ summary(mxl_wtp_case_c_rentINT)
summary(mxl_wtp_NR_case_a_rentINT)
```
### Scenario C
```{r}
......@@ -473,88 +455,112 @@ summary(mxl_wtp_NR_case_c_rentINT)
```
:::
## Case D
```{r}
summary(case_d)
```
<!-- ## MXL: WTP space -->
<!-- ::: panel-tabset -->
<!-- ### Scenario A -->
<!-- ```{r} -->
<!-- apollo_modelOutput(mxl_wtp_case_a) -->
<!-- ``` -->
<!-- ### Scenario B -->
<!-- ```{r} -->
<!-- apollo_modelOutput(mxl_wtp_case_b) -->
<!-- ``` -->
<!-- ### Scenario C -->
<!-- ```{r} -->
<!-- apollo_modelOutput(mxl_wtp_case_c) -->
<!-- ``` -->
<!-- ::: -->
<!-- ## MXL: WTP space Graphs -->
<!-- ::: panel-tabset -->
<!-- ### Scenario A -->
<!-- ::: panel-tabset -->
<!-- ### Naturalness -->
<!-- ```{r} -->
<!-- wtp_nat_a -->
<!-- ``` -->
<!-- ### Walking Distance -->
<!-- ```{r} -->
<!-- wtp_wd_a -->
<!-- ``` -->
<!-- ::: -->
<!-- ### Scenario B -->
<!-- ::: panel-tabset -->
<!-- ### Naturalness -->
<!-- ```{r} -->
<!-- wtp_nat_b -->
<!-- ``` -->
<!-- ### Walking Distance -->
<!-- ```{r} -->
<!-- wtp_wd_b -->
<!-- ``` -->
<!-- ::: -->
<!-- ### Scenario C -->
<!-- ::: panel-tabset -->
<!-- ### Naturalness -->
<!-- ```{r} -->
<!-- wtp_nat_c -->
<!-- ``` -->
<!-- ### Walking Distance -->
<!-- ```{r} -->
<!-- wtp_wd_c -->
<!-- ``` -->
<!-- ::: -->
<!-- ::: -->
<!-- ## MXL: WTP space -->
......@@ -562,21 +568,29 @@ summary(case_d)
<!-- with NR index -->
<!-- ::: panel-tabset -->
<!-- ### Scenario A -->
<!-- ```{r} -->
<!-- apollo_modelOutput(mxl_wtp_case_a_NR) -->
<!-- ``` -->
<!-- ### Scenario B -->
<!-- ```{r} -->
<!-- apollo_modelOutput(mxl_wtp_case_b_NR) -->
<!-- ``` -->
<!-- ### Scenario C -->
<!-- ```{r} -->
<!-- apollo_modelOutput(mxl_wtp_case_c_NR) -->
<!-- ``` -->
<!-- ::: -->
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment