Skip to content
Snippets Groups Projects
Commit b94aa568 authored by nc71qaxa's avatar nc71qaxa
Browse files

Table MXL models

parent 29169936
Branches
No related tags found
No related merge requests found
library(choiceTools)
dir.create("Tables/mxl")
dir.create("Tables/logit")
dir.create("Tables/ols/")
list_ols <- list("(Intercept)" = "Intercept", "as.factor(Treatment_A)Treated" = "Treated", "as.factor(Treatment_A)Vol_Treated" = "Vol. Treated",
"as.factor(Treatment_C)No Info 2" = "No Info 2", "as.factor(Treatment_C)No Video 1" = "Text 1",
"as.factor(Treatment_C)No Video 2" = "Text 2", "as.factor(Treatment_C)Video 1" = "Video 1",
"as.factor(Treatment_C)Video 2" = "Video 2", "Z_Mean_NR" = "NR-Index", "as.factor(Gender)2" = "Female",
"Age_mean" = "Age", "QFIncome" = "Income", "Uni_degree" = "Higher Education")
"Age_mean" = "Age", "QFIncome" = "Income", "Uni_degree" = "University Degree")
# Manipulation check
texreg(l=list(ols_percentage_correct_A, ols_percentage_correct_control_A, ols_percentage_correct_C, ols_percentage_correct_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1),
custom.header = list("Dependent Variable: Percentage of correct quiz statements" = 1:4),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1), float.pos="tb",
custom.note = "%stars. Standard errors in parentheses.",
file="Tables/ols/manipulation.tex")
# Net interview time
texreg(l=list(ols_time_spent_A, ols_time_spent_control_A, ols_time_spent_C, ols_time_spent_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1), float.pos="tb",
custom.note = "%stars. Standard errors in parentheses. Dependent variable: Net interview time.",
file="Tables/ols/interviewtime.tex")
# CC Time
texreg(l=list(ols_time_cc_A, ols_time_cc_control_A, ols_time_cc_C, ols_time_cc_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1), float.pos="tb",
custom.note = "%stars. Standard errors in parentheses. Dependent variable: Mean choice card time.",
file="Tables/ols/cctime.tex")
# Consequentiality
texreg(l=list(conseq_model_A, conseq_model_control_A, conseq_model_C, conseq_model_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1), float.pos="tb",
custom.note = "%stars. Standard errors in parentheses. Dependent variable: Consequentiality score.",
file="Tables/ols/consequentiality.tex")
# Opt Out
texreg(l=list(ols_opt_out_A, ols_opt_out_control_A, ols_opt_out_C, ols_opt_out_control_C),
custom.model.names = c("Case A", "with Controls", "Case C", "with Controls"),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1),
custom.coef.map = list_ols, stars = c(0.01, 0.05, 0.1), float.pos="tb",
custom.note = "%stars. Standard errors in parentheses. Dependent variable: Number of opt-out choices.",
file="Tables/ols/optout.tex")
#### Logit #####
texreg(l=list(logit_choice_treat_uni), stars = c(0.01, 0.05, 0.1), float.pos="tb",
custom.header = list("Voluntary Information Access" = 1),
custom.coef.map = list_ols, custom.note = "%stars. Standard errors in parentheses.",
file="Tables/logit/chose_treatment.tex")
##### MXL #######
### Baseline case A
case_A <- quicktexregapollo(mxl_wtp_case_a_rentINT)
coef_names <- case_A@coef.names
coef_names <- sub("^(mu_)(.*)(_T|_VT)$", "\\2\\3", coef_names)
coef_names[4] <- "mu_ASC_sq"
case_A@coef.names <- coef_names
case_A_cols <- map(c("^mu_", "^sig_", "_T$", "_VT$"), subcoef, case_A)
texreg(c(case_A_cols[1], remGOF(case_A_cols[2:4])),
custom.coef.map = list("natural" = "Naturalness", "walking" = "Walking Distance", "rent" = "Rent",
"ASC_sq" = "ASC SQ", "_natural" = "Naturalness", "nat" = "Naturalness",
"wd" = "Walking Distance", "asc" = "ASC SQ"),
custom.model.names = c("Mean", "SD", "Treated", "Voluntary Treated"), custom.note = "%stars. Standard errors in parentheses.",
stars = c(0.01, 0.05, 0.1), float.pos="tb",
file="Tables/mxl/case_A_rent_INT.tex")
### Baseline case C
case_C <- quicktexregapollo(mxl_wtp_case_c_rentINT)
# Main model
texreg(l=list(mxl_wtp_case_a_rentINT),
custom.coef.map = list("mu_natural" = "Naturalness", "mu_walking" = "Walking Distance", "mu_rent" = "Rent",
"ASC_sq" = "ASC SQ", "sig_natural" = "Naturalness SD", "sig_walking" = "Walking Distance SD",
"sig_rent" = "Rent SD", "sig_ASC_sq" = "ASC SD",
"mu_nat_T" = "Naturalness X Treated", "mu_wd_T" = "Walking Distance X Treated", "mu_rent_T" = "Rent X Treated",
"mu_asc_T" = "ASC X Treated", "mu_nat_VT" = "Naturalness X Vol. Treated", "mu_wd_VT" = "Walking Distance X Vol. Treated",
"mu_rent_VT" = "Rent X Vol. Treated", "mu_asc_VT" = "ASC X Vol. Treated"),
stars = c(0.01, 0.05, 0.1), override.se = mxl_wtp_case_a_rentINT$robse, file="Tables/mxl/case_A_rent_INT.tex")
# texreg(l=list(mxl_wtp_case_a_rentINT),
# custom.coef.map = list("mu_natural" = "Naturalness", "mu_walking" = "Walking Distance", "mu_rent" = "Rent",
# "ASC_sq" = "ASC SQ", "sig_natural" = "Naturalness SD", "sig_walking" = "Walking Distance SD",
# "sig_rent" = "Rent SD", "sig_ASC_sq" = "ASC SD",
# "mu_nat_T" = "Naturalness X Treated", "mu_wd_T" = "Walking Distance X Treated", "mu_rent_T" = "Rent X Treated",
# "mu_asc_T" = "ASC X Treated", "mu_nat_VT" = "Naturalness X Vol. Treated", "mu_wd_VT" = "Walking Distance X Vol. Treated",
# "mu_rent_VT" = "Rent X Vol. Treated", "mu_asc_VT" = "ASC X Vol. Treated"),
# stars = c(0.01, 0.05, 0.1), override.se = mxl_wtp_case_a_rentINT$robse, file="Tables/mxl/case_A_rent_INT.tex")
......@@ -10,19 +10,19 @@ data <- data %>% mutate(Conseq_score = Conseq_UGS + Conseq_Money)
conseq_model_A <- lm(Conseq_score ~ as.factor(Treatment_A), data)
summary(conseq_model_A)
conseq_model_control_A <- lm(Conseq_score ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),data)
conseq_model_control_A <- lm(Conseq_score ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data)
summary(conseq_model_control_A )
conseq_model_B <- lm(Conseq_score ~ as.factor(Treatment_B), data)
summary(conseq_model_B)
conseq_model_control_B <- lm(Conseq_score ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),data)
conseq_model_control_B <- lm(Conseq_score ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data)
summary(conseq_model_control_B)
conseq_model_C <- lm(Conseq_score ~ as.factor(Treatment_C), data)
summary(conseq_model_C)
conseq_model_control_C <- lm(Conseq_score ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),data)
conseq_model_control_C <- lm(Conseq_score ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data)
summary(conseq_model_control_C)
......@@ -9,16 +9,16 @@ data$Treatment_C <- relevel(data$Treatment_C, ref = "No Treatment 3")
ols_opt_out_A<- lm( count_choosen_3 ~ as.factor(Treatment_A) ,data)
summary(ols_opt_out_A)
ols_opt_out_control_A<- lm( count_choosen_3 ~ as.factor(Treatment_A) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+as.factor(Education),data)
ols_opt_out_control_A<- lm( count_choosen_3 ~ as.factor(Treatment_A) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+Uni_degree,data)
summary(ols_opt_out_control_A)
ols_opt_out_B<- lm( count_choosen_3 ~ as.factor(Treatment_B) ,data)
summary(ols_opt_out_B)
ols_opt_out_control_B<- lm( count_choosen_3 ~ as.factor(Treatment_B) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+as.factor(Education),data)
ols_opt_out_control_B<- lm( count_choosen_3 ~ as.factor(Treatment_B) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+Uni_degree,data)
summary(ols_opt_out_control_B)
ols_opt_out_C<- lm( count_choosen_3 ~ as.factor(Treatment_C) ,data)
summary(ols_opt_out_C)
ols_opt_out_control_C<- lm( count_choosen_3 ~ as.factor(Treatment_C) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+as.factor(Education),data)
ols_opt_out_control_C<- lm( count_choosen_3 ~ as.factor(Treatment_C) + Z_Mean_NR + QFIncome + as.factor(Gender)+Age_mean+Uni_degree,data)
summary(ols_opt_out_control_C)
# Obtain predicted values
......
......@@ -6,17 +6,17 @@ quiz_data$Treatment_C <- relevel(quiz_data$Treatment_C, ref = "No Treatment 3")
ols_percentage_correct_A<- lm( percentage_correct ~ as.factor(Treatment_A) ,quiz_data)
summary(ols_percentage_correct_A)
ols_percentage_correct_control_A<- lm( percentage_correct ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),quiz_data)
ols_percentage_correct_control_A<- lm( percentage_correct ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,quiz_data)
summary(ols_percentage_correct_control_A)
ols_percentage_correct_B<- lm( percentage_correct ~ as.factor(Treatment_B) ,quiz_data)
summary(ols_percentage_correct_B)
ols_percentage_correct_control_B<- lm( percentage_correct ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),quiz_data)
ols_percentage_correct_control_B<- lm( percentage_correct ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,quiz_data)
summary(ols_percentage_correct_control_B)
ols_percentage_correct_C<- lm( percentage_correct ~ as.factor(Treatment_C) ,quiz_data)
summary(ols_percentage_correct_C)
ols_percentage_correct_control_C<- lm( percentage_correct ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),quiz_data)
ols_percentage_correct_control_C<- lm( percentage_correct ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,quiz_data)
summary(ols_percentage_correct_control_C)
vif(ols_percentage_correct_control_C)
......
......@@ -12,33 +12,31 @@ data$Treatment_C <- relevel(data$Treatment_C, ref = "No Treatment 3")
ols_time_spent_A<- lm( interviewtime_net_clean ~ as.factor(Treatment_A) ,data)
summary(ols_time_spent_A)
ols_time_spent_control_A<- lm( interviewtime_net_clean ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),data)
ols_time_spent_control_A<- lm( interviewtime_net_clean ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data)
summary(ols_time_spent_control_A)
ols_time_spent_B<- lm( interviewtime_net_clean ~ as.factor(Treatment_B) ,data)
summary(ols_time_spent_B)
ols_time_spent_control_B<- lm( interviewtime_net_clean ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +as.factor(Education),data)
ols_time_spent_control_B<- lm( interviewtime_net_clean ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +Uni_degree,data)
summary(ols_time_spent_control_B)
ols_time_spent_C<- lm( interviewtime_net_clean ~ as.factor(Treatment_C) ,data)
summary(ols_time_spent_C)
ols_time_spent_control_C<- lm( interviewtime_net_clean ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + as.factor(Education),data)
ols_time_spent_control_C<- lm( interviewtime_net_clean ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean+ QFIncome + Uni_degree,data)
summary(ols_time_spent_control_C)
dir.create("Tables/ols/")
texreg(ols_time_spent_control_C, "Tables/ols/time_spent_control_c.tex")
ols_time_cc_A<- lm( CC_time_mean_clean ~ as.factor(Treatment_A) ,data)
summary(ols_time_cc_A)
ols_time_cc_control_A<- lm( CC_time_mean_clean ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +as.factor(Education),data)
ols_time_cc_control_A<- lm( CC_time_mean_clean ~ as.factor(Treatment_A) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +Uni_degree,data)
summary(ols_time_cc_control_A)
ols_time_cc_B<- lm( CC_time_mean_clean ~ as.factor(Treatment_B) ,data)
summary(ols_time_cc_B)
ols_time_cc_control_B<- lm( CC_time_mean_clean ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome + as.factor(Education),data)
ols_time_cc_control_B<- lm( CC_time_mean_clean ~ as.factor(Treatment_B) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome + Uni_degree,data)
summary(ols_time_cc_control_B)
ols_time_cc_C<- lm( CC_time_mean_clean ~ as.factor(Treatment_C) ,data)
summary(ols_time_cc_C)
ols_time_cc_control_C<- lm( CC_time_mean_clean ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +as.factor(Education),data)
ols_time_cc_control_C<- lm( CC_time_mean_clean ~ as.factor(Treatment_C) + Z_Mean_NR + as.factor(Gender)+Age_mean + QFIncome +Uni_degree,data)
summary(ols_time_cc_control_C)
# # Create an HTML results table with customized names and stars
# results_table_5 <- stargazer(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment