Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
manuscript_code
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maria Voigt
manuscript_code
Commits
138486ae
Commit
138486ae
authored
7 years ago
by
Maria Voigt
Browse files
Options
Downloads
Patches
Plain Diff
splitting prepare boot_grid into two scripts
parent
3241c2fd
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/validation/prepare_boot_grid_resource_use.R
+94
-0
94 additions, 0 deletions
src/validation/prepare_boot_grid_resource_use.R
with
94 additions
and
0 deletions
src/validation/prepare_boot_grid_resource_use.R
0 → 100644
+
94
−
0
View file @
138486ae
rm
(
list
=
ls
())
source
(
"/homes/mv39zilo/projects/orangutan_density_distribution/src/preload/preload.R"
)
source
(
"/homes/mv39zilo/projects/orangutan_density_distribution/src/functions/generic/path.to.current.R"
)
source
(
"/homes/mv39zilo/projects/orangutan_density_distribution/src/functions/project_functions/values.to.tif.R"
)
outdir
<-
"/homes/mv39zilo/work/Borneo/analysis/model_prep_and_running/results/future/"
# for the future we need a raster with the grid_ids
geography_path
<-
"/homes/mv39zilo/work/Borneo/analysis/model_prep_and_running/results/abundMod/testing_ae_and_absence/pipeline_results/ppln_ae75m_50-2017-02-28T18-00-52/geography_2015_2017-02-28.rds"
geography_2015
<-
readRDS
(
geography_path
)
%>%
mutate
(
grid_id
=
id
,
id
=
1
:
nrow
(
.
))
%>%
dplyr
::
select
(
id
,
x_start
,
y_start
,
grid_id
)
#--------------#
# resource use #
#--------------#
outdir
<-
"/homes/mv39zilo/work/Borneo/analysis/model_prep_and_running/results/resource_use/"
resource_use
<-
raster
(
"/homes/mv39zilo/work/Borneo/analysis/model_prep_and_running/results/resource_use/resource_grid_absence_country_category_id.tif"
)
resource_use_grid
<-
as.data.frame
(
resource_use
)
names
(
resource_use_grid
)
<-
"category"
resource_use_grid
$
category
<-
as.character
(
resource_use_grid
$
category
)
resource_use_grid
$
population
<-
as.numeric
(
substr
(
resource_use_grid
$
category
,
start
=
1
,
stop
=
1
))
resource_use_grid
$
country
<-
as.numeric
(
substr
(
resource_use_grid
$
category
,
start
=
2
,
stop
=
2
))
resource_use_grid
$
province
<-
as.numeric
(
substr
(
resource_use_grid
$
category
,
start
=
3
,
stop
=
4
))
resource_use_grid
$
resource_use
<-
as.numeric
(
substr
(
resource_use_grid
$
category
,
start
=
5
,
stop
=
5
))
resource_use_grid
$
grid_id
<-
as.numeric
(
substr
(
resource_use_grid
$
category
,
start
=
6
,
stop
=
nchar
(
resource_use_grid
$
category
[
1
])))
summary
(
resource_use_grid
)
resource_use_grid
[
resource_use_grid
$
country
==
3
,
"country"
]
<-
"MYS"
resource_use_grid
[
resource_use_grid
$
country
==
6
,
"country"
]
<-
"IDN"
# for now not distinguishing Kalimantan
resource_use_grid
[
resource_use_grid
$
country
==
6
,
"province"
]
<-
"KAL"
resource_use_grid
[
resource_use_grid
$
province
==
10
,
"province"
]
<-
"SAB"
resource_use_grid
[
resource_use_grid
$
province
==
11
,
"province"
]
<-
"SAW"
summary
(
resource_use_grid
)
plot
(
table
(
resource_use_grid
$
resource_use
))
# # testing duplicates
# test <- resource_use_grid
# test <- dplyr::filter(test, grid_id != 0)
# testtest <- test[duplicated(test$grid_id) & test$grid_id != 0, ]
# we want a category with the pop number for all pixels with
# forest
# and the grid_id in order
resource_use_grid
[
resource_use_grid
$
population
==
2
,
"resource_use"
]
<-
NA
resource_use_grid
[
resource_use_grid
$
grid_id
==
0
&
!
is.na
(
resource_use_grid
$
resource_use
),
"resource_use"
]
<-
NA
resource_use_grid
[
resource_use_grid
$
resource_use
==
0
&
!
is.na
(
resource_use_grid
$
resource_use
),
"resource_use"
]
<-
NA
resource_use_grid
<-
resource_use_grid
%>%
dplyr
::
select
(
resource_use
,
country
,
grid_id
)
# SORT WITH GRID ID
resource_use_grid
<-
resource_use_grid
%>%
dplyr
::
select
(
resource_use
,
country
,
grid_id
)
%>%
arrange
(
grid_id
)
%>%
filter
(
grid_id
!=
0
)
grid_ids
<-
resource_use_grid
[
resource_use_grid
$
grid_id
!=
0
,
"grid_id"
]
# DEAL WITH NON UNIQUE GRID-IDS, MAYBE PROBLEM WITH REPROJECTION OR SOMETHING
# not_unique <- grid_ids[duplicated(grid_ids)]
# resource_use_grid_not_unique <- resource_use_grid[resource_use_grid$grid_id %in% not_unique,]
grid_ids_missing
<-
geography_2015
$
grid_id
[
!
geography_2015
$
grid_id
%in%
grid_ids
]
grid_ids_missing
<-
as.data.frame
(
cbind
(
rep
(
NA
,
times
=
length
(
grid_ids_missing
)),
rep
(
NA
,
times
=
length
(
grid_ids_missing
)),
grid_ids_missing
))
names
(
grid_ids_missing
)
<-
c
(
"resource_use"
,
"country"
,
"grid_id"
)
resource_use_grid
<-
resource_use_grid
%>%
rbind
(
grid_ids_missing
)
%>%
arrange
(
grid_id
)
resource_use_grid
[
!
is.na
(
resource_use_grid
$
resource_use
)
&
resource_use_grid
$
country
!=
0
,
"category"
]
<-
paste0
(
resource_use_grid
[
!
is.na
(
resource_use_grid
$
resource_use
)
&
resource_use_grid
$
country
!=
0
,
"resource_use"
],
"_"
,
resource_use_grid
[
!
is.na
(
resource_use_grid
$
resource_use
)
&
resource_use_grid
$
country
!=
0
,
"country"
])
resource_use_grid
$
category
<-
as.factor
(
resource_use_grid
$
category
)
summary
(
resource_use_grid
)
unique
(
resource_use_grid
$
category
)
resource_use_grid
<-
dplyr
::
select
(
resource_use_grid
,
category
,
resource_use
,
country
,
grid_id
)
write.csv
(
resource_use_grid
,
file.path
(
outdir
,
"resource_use_grid.csv"
),
row.names
=
F
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment