Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
manuscript_code
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maria Voigt
manuscript_code
Commits
8c6ec23c
Commit
8c6ec23c
authored
8 years ago
by
Maria Voigt
Browse files
Options
Downloads
Patches
Plain Diff
transfer scaling into function and debugging
parent
ad02be55
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/model_fitting/abundance_model.R
+29
-54
29 additions, 54 deletions
src/model_fitting/abundance_model.R
with
29 additions
and
54 deletions
src/model_fitting/abundance_model.R
+
29
−
54
View file @
8c6ec23c
...
@@ -102,6 +102,7 @@ if(is_verbose){print(paste("indir_fun", indir_fun))}
...
@@ -102,6 +102,7 @@ if(is_verbose){print(paste("indir_fun", indir_fun))}
cl
<-
makeForkCluster
(
outfile
=
""
)
cl
<-
makeForkCluster
(
outfile
=
""
)
registerDoParallel
(
cl
)
registerDoParallel
(
cl
)
source
(
file.path
(
indir_fun
,
"project_functions/scale.predictors.R"
))
source
(
file.path
(
indir_fun
,
"roger_functions/rogers_model_functions.R"
))
source
(
file.path
(
indir_fun
,
"roger_functions/rogers_model_functions.R"
))
source
(
file.path
(
indir_fun
,
"generic/path.to.current.R"
))
source
(
file.path
(
indir_fun
,
"generic/path.to.current.R"
))
source
(
file.path
(
indir_fun
,
"roger_functions/aic_c_fac.r"
))
source
(
file.path
(
indir_fun
,
"roger_functions/aic_c_fac.r"
))
...
@@ -171,17 +172,15 @@ predictor_names_for_scaling <- c( "dem", "slope", "temp_mean", "rain_dry", "rain
...
@@ -171,17 +172,15 @@ predictor_names_for_scaling <- c( "dem", "slope", "temp_mean", "rain_dry", "rain
"road_dens"
,
"distance_PA"
,
"fire_dens"
,
"deforestation_hansen"
,
"road_dens"
,
"distance_PA"
,
"fire_dens"
,
"deforestation_hansen"
,
"deforestation_gaveau"
,
"plantation_distance"
,
"pulp_distance"
,
"palm_distance"
,
"deforestation_gaveau"
,
"plantation_distance"
,
"pulp_distance"
,
"palm_distance"
,
"dom_T_OC"
,
"dom_T_PH"
)
"dom_T_OC"
,
"dom_T_PH"
)
# predictors used in model
predictor_names
<-
c
(
"year"
,
"temp_mean"
,
"rain_var"
,
"rain_dry"
,
"dom_T_OC"
,
"peatswamp"
,
"lowland_forest"
,
"lower_montane_forest"
,
"deforestation_hansen"
,
"human_pop_dens"
,
"ou_killing_prediction"
,
"perc_muslim"
)
# additional predictors that have to be scaled: year and x- and y-center
predictor_names_add
<-
c
(
"year"
,
"x_center"
,
"y_center"
)
# prepare predictors data-frame
predictors
<-
dplyr
::
select
(
predictors
,
id
,
predictor
,
unscaled_year
=
year
,
predictors
<-
dplyr
::
select
(
predictors
,
id
,
predictor
,
unscaled_year
=
year
,
unscaled_value
=
value
)
unscaled_value
=
value
)
# need to get rid of occurrence data
# need to get rid of occurrence data
predictors
<-
predictors
%>%
predictors
<-
predictors
%>%
inner_join
(
transects
,
by
=
"id"
)
inner_join
(
transects
,
by
=
"id"
)
...
@@ -192,54 +191,35 @@ if (include_aerial == F){
...
@@ -192,54 +191,35 @@ if (include_aerial == F){
predictors
<-
filter
(
predictors
,
group
!=
"aerial"
)
predictors
<-
filter
(
predictors
,
group
!=
"aerial"
)
}
}
# SCALE PREDICTORD
for
(
predictor_name
in
predictor_names_for_scaling
){
predictors
[
predictors
$
predictor
==
predictor_name
,
"value"
]
<-
as.numeric
(
as.vector
(
scale
(
predictors
[
predictors
$
predictor
==
predictor_name
,
"unscaled_value"
])))
}
predictors
$
year
<-
as.numeric
(
as.vector
(
scale
(
predictors
[
,
"unscaled_year"
])))
# delete all rows that have zero
# delete all rows that have zero
if
(
is_verbose
){
print
(
"how many rows with na in scaled_value"
)
if
(
is_verbose
){
print
(
"how many rows with na in scaled_value"
)
nrow
(
predictors
[
is.na
(
predictors
$
value
),
])}
nrow
(
predictors
[
is.na
(
predictors
$
unscaled_
value
),
])}
# deleting is.na values here
# deleting is.na values here
predictors
<-
predictors
[
!
is.na
(
predictors
$
value
),
]
predictors
<-
predictors
[
!
is.na
(
predictors
$
unscaled_value
),
]
geography
<-
dplyr
::
select
(
geography
,
-
c
(
year
))
# scale predictors
predictors_obs
<-
scale.predictors.observation
(
predictor_names_for_scaling
,
# Rename here1
predictor_names_add
,
predictors_obs
<-
predictors
%>%
predictors
,
dplyr
::
filter
(
predictor
%in%
predictor_names_for_scaling
)
%>%
geography
)
dcast
(
id
+
year
~
predictor
,
value.var
=
"value"
)
%>%
inner_join
(
geography
,
by
=
"id"
)
%>%
predictors_obs
<-
geography
%>%
dplyr
::
select
(
-
c
(
year
,
unscaled_x_center
,
unscaled_y_center
))
%>%
dplyr
::
select
(
-
group
)
%>%
dplyr
::
select
(
-
group
)
%>%
inner_join
(
transects
,
by
=
"id"
)
inner_join
(
transects
,
by
=
"id"
)
%>%
inner_join
(
predictors_obs
,
by
=
"id"
)
predictors_obs_unscaled
<-
predictors
%>%
dplyr
::
filter
(
predictor
%in%
predictor_names_for_scaling
)
%>%
dcast
(
id
+
unscaled_year
~
predictor
,
value.var
=
"unscaled_value"
)
names
(
predictors_obs_unscaled
)[
-
c
(
1
,
2
)]
<-
paste0
(
"unscaled_"
,
names
(
predictors_obs_unscaled
)[
-
c
(
1
,
2
)])
predictors_obs
<-
left_join
(
predictors_obs
,
predictors_obs_unscaled
,
by
=
"id"
)
# predictors used in model
# scale x and y center
predictor_names
<-
c
(
"year"
,
"temp_mean"
,
"rain_var"
,
"rain_dry"
,
"dom_T_OC"
,
predictors_obs
$
x_center
<-
as.numeric
(
as.vector
(
scale
(
predictors_obs
[
,
"peatswamp"
,
"lowland_forest"
,
"unscaled_x_center"
])))
"lower_montane_forest"
,
"deforestation_hansen"
,
"human_pop_dens"
,
"ou_killing_prediction"
,
predictors_obs
$
y_center
<-
as.numeric
(
as.vector
(
scale
(
predictors_obs
[
,
"perc_muslim"
)
"unscaled_y_center"
])))
# ou density and offset term for ground and absence transects
# ou density and offset term for ground and absence transects
...
@@ -276,10 +256,6 @@ predictors_obs <- aerial_predictors_obs %>%
...
@@ -276,10 +256,6 @@ predictors_obs <- aerial_predictors_obs %>%
# bind the two together
# bind the two together
predictors_obs
<-
predictors_obs
%>%
predictors_obs
<-
predictors_obs
%>%
arrange
(
id
)
%>%
arrange
(
id
)
%>%
dplyr
::
select
(
id
,
group
,
x_start
:
LU
,
length_km
:
nest_decay
,
year
,
deforestation_gaveau
:
temp_mean
,
x_center
,
y_center
,
unscaled_year
:
unscaled_temp_mean
,
unscaled_x_center
,
unscaled_y_center
,
ou_dens
,
offset_term
)
%>%
as.data.frame
(
.
)
as.data.frame
(
.
)
...
@@ -287,9 +263,8 @@ if(is_verbose){print("look at predictors_obs")
...
@@ -287,9 +263,8 @@ if(is_verbose){print("look at predictors_obs")
str
(
predictors_obs
)
str
(
predictors_obs
)
summary
(
predictors_obs
)}
summary
(
predictors_obs
)}
# save this
# save the relevant output for the prediction and the validation (USED IN THESE SCRIPTS)
# save the relevant output for the prediction and the validation
saveRDS
(
predictors_obs
,
file
=
file.path
(
outdir
,
paste0
(
"predictors_observation_scaled_"
,
saveRDS
(
predictors_obs
,
file
=
file.path
(
outdir
,
paste0
(
"predictors_obs_"
,
name_suffix
,
name_suffix
,
Sys.Date
(),
".rds"
)))
Sys.Date
(),
".rds"
)))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment