Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
manuscript_code
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maria Voigt
manuscript_code
Commits
cc8992e4
Commit
cc8992e4
authored
8 years ago
by
Maria Voigt
Browse files
Options
Downloads
Patches
Plain Diff
initial commit of function to scale predictors
parent
5eb09817
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/functions/project_functions/scale.predictors.R
+130
-0
130 additions, 0 deletions
src/functions/project_functions/scale.predictors.R
with
130 additions
and
0 deletions
src/functions/project_functions/scale.predictors.R
0 → 100644
+
130
−
0
View file @
cc8992e4
scale.predictors.observation
<-
function
(
predictor_names_for_scaling
,
predictor_names_add
,
predictors
,
geography
){
# SCALE PREDICTORS
for
(
predictor_name
in
predictor_names_for_scaling
){
predictors
[
predictors
$
predictor
==
predictor_name
,
"value"
]
<-
as.numeric
(
as.vector
(
scale
(
predictors
[
predictors
$
predictor
==
predictor_name
,
"unscaled_value"
])))
}
geography
<-
dplyr
::
select
(
geography
,
-
c
(
year
))
# Rename here
predictors_obs
<-
predictors
%>%
dplyr
::
filter
(
predictor
%in%
predictor_names_for_scaling
)
%>%
dcast
(
id
+
unscaled_year
~
predictor
,
value.var
=
"value"
)
%>%
inner_join
(
geography
,
by
=
"id"
)
%>%
dplyr
::
select
(
-
group
)
%>%
inner_join
(
transects
,
by
=
"id"
)
predictors_obs_unscaled
<-
predictors
%>%
dplyr
::
filter
(
predictor
%in%
predictor_names_for_scaling
)
%>%
dcast
(
id
+
unscaled_year
~
predictor
,
value.var
=
"unscaled_value"
)
%>%
dplyr
::
select
(
-
unscaled_year
)
# all predictors minus id
names
(
predictors_obs_unscaled
)[
-1
]
<-
paste0
(
"unscaled_"
,
names
(
predictors_obs_unscaled
)[
-1
])
predictors_obs
<-
left_join
(
predictors_obs
,
predictors_obs_unscaled
,
by
=
"id"
)
# scale the additional predictors
# manually adding the additional columns
# NOT SO NICE HARD-CODING
predictors_obs
$
year
<-
NA
predictors_obs
$
x_center
<-
NA
predictors_obs
$
y_center
<-
NA
for
(
predictor_name
in
predictor_names_add
){
predictors_obs
[
,
predictor_name
]
<-
as.numeric
(
as.vector
(
scale
(
predictors_obs
[
,
paste0
(
"unscaled_"
,
predictor_name
)
])))
}
predictors_obs
<-
dplyr
::
select_
(
predictors_obs
,
.dots
=
c
(
"id"
,
predictor_names_for_scaling
,
predictor_names_add
,
paste0
(
"unscaled_"
,
predictor_names_for_scaling
),
paste0
(
"unscaled_"
,
predictor_names_add
)))
%>%
as.data.frame
(
.
)
return
(
predictors_obs
)
}
scale.predictors.grid
<-
function
(
predictor_names_for_scaling
,
predictor_names_add
,
predictors
,
predictors_obs
,
geography
){
for
(
predictor_name
in
predictor_names_for_scaling
){
mean_predictor_obs
<-
mean
(
predictors_obs
[
,
paste0
(
"unscaled_"
,
predictor_name
)],
na.rm
=
T
)
sd_predictor_obs
<-
mean
(
predictors_obs
[
,
paste0
(
"unscaled_"
,
predictor_name
)],
na.rm
=
T
)
predictors
[
predictors
$
predictor
==
predictor_name
,
"value"
]
<-
(
predictors
[
predictors
$
predictor
==
predictor_name
,
"unscaled_value"
]
-
mean_predictor_obs
)
/
sd_predictor_obs
}
# cast it to wide
predictors_grid
<-
dplyr
::
filter
(
predictors
,
predictor
%in%
predictor_names_for_scaling
)
%>%
dcast
(
id
+
year
~
predictor
,
value.var
=
"value"
)
%>%
dplyr
::
select
(
-
year
)
predictors_grid_unscaled
<-
dplyr
::
filter
(
predictors
,
predictor
%in%
predictor_names_for_scaling
)
%>%
dcast
(
id
+
year
~
predictor
,
value.var
=
"unscaled_value"
)
names
(
predictors_grid_unscaled
)[
-1
]
<-
paste0
(
"unscaled_"
,
names
(
predictors_grid_unscaled
)[
-1
])
# join with geography to have x and y-center
predictors_grid
<-
predictors_grid
%>%
left_join
(
predictors_grid_unscaled
,
by
=
"id"
)
%>%
left_join
(
geography
,
by
=
"id"
)
# NOT SO NICE HARD-CODING THIS HERE...WORKAROUND
predictors_grid
$
year
<-
NA
predictors_grid
$
x_center
<-
NA
predictors_grid
$
y_center
<-
NA
for
(
predictor_name
in
predictor_names_add
){
mean_predictor_obs
<-
mean
(
predictors_obs
[
,
paste0
(
"unscaled_"
,
predictor_name
)],
na.rm
=
T
)
sd_predictor_obs
<-
mean
(
predictors_obs
[
,
paste0
(
"unscaled_"
,
predictor_name
)],
na.rm
=
T
)
predictors_grid
[
,
predictor_name
]
<-
(
predictors_grid
[
,
paste0
(
"unscaled_"
,
predictor_name
)
]
-
mean_predictor_obs
)
/
sd_predictor_obs
}
predictors_grid
<-
dplyr
::
select_
(
predictors_grid
,
.dots
=
c
(
"id"
,
predictor_names_for_scaling
,
predictor_names_add
,
paste0
(
"unscaled_"
,
predictor_names_for_scaling
),
paste0
(
"unscaled_"
,
predictor_names_add
)))
%>%
as.data.frame
(
.
)
return
(
predictors_grid
)
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment