Select Git revision
CHANGELOG.md
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
To find the state of this project's repository at the time of any of these versions, check out the tags.
mxl_wtp_space_NR_caseA_rentINT.R 6.28 KiB
#### Apollo standard script #####
library(apollo) # Load apollo package
database <- database_full %>% filter(!is.na(Treatment_A)) %>%
mutate(Dummy_Treated = case_when(Treatment_A == "Treated" ~ 1, TRUE ~ 0),
Dummy_Vol_Treated = case_when(Treatment_A == "Vol_Treated" ~ 1, TRUE ~ 0))
#initialize model
apollo_initialise()
### Set core controls
apollo_control = list(
modelName = "MXL_wtp NR A Rent INT",
modelDescr = "MXL_wtp NR Case A RENT INT",
indivID ="id",
mixing = TRUE,
HB= FALSE,
nCores = n_cores,
outputDirectory = "Estimation_results/mxl"
)
##### Define model parameters depending on your attributes and model specification! ####
# set values to 0 for conditional logit model
apollo_beta=c(mu_natural = 15,
mu_walking = -1,
mu_rent = -2,
ASC_sq = 0,
mu_nat_NR = 0,
mu_wd_NR = 0,
mu_asc_NR = 0,
mu_rent_T = 0,
mu_nat_T = 0,
mu_wd_T= 0,
mu_asc_T = 0,
mu_rent_VT = 0,
mu_nat_VT = 0,
mu_wd_VT= 0,
mu_asc_VT = 0,
sig_natural = 15,
sig_walking = 2,
sig_rent = 2,
sig_ASC_sq = 2)
### specify parameters that should be kept fixed, here = none
apollo_fixed = c()
### Set parameters for generating draws, use 2000 sobol draws
apollo_draws = list(
interDrawsType = "sobol",
interNDraws = n_draws,
interUnifDraws = c(),
interNormDraws = c("draws_natural", "draws_walking", "draws_rent", "draws_asc"),
intraDrawsType = "halton",
intraNDraws = 0,
intraUnifDraws = c(),
intraNormDraws = c()
)
### Create random parameters, define distribution of the parameters
apollo_randCoeff = function(apollo_beta, apollo_inputs){
randcoeff = list()
randcoeff[["b_mu_natural"]] = mu_natural + sig_natural * draws_natural
randcoeff[["b_mu_walking"]] = mu_walking + sig_walking * draws_walking
randcoeff[["b_mu_rent"]] = -exp(mu_rent + sig_rent * draws_rent)
randcoeff[["b_ASC_sq"]] = ASC_sq + sig_ASC_sq * draws_asc
return(randcoeff)
}
### validate
apollo_inputs = apollo_validateInputs()
apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){
### Function initialisation: do not change the following three commands
### Attach inputs and detach after function exit
apollo_attach(apollo_beta, apollo_inputs)
on.exit(apollo_detach(apollo_beta, apollo_inputs))
### Create list of probabilities P
P = list()
#### List of utilities (later integrated in mnl_settings below) ####
# Define utility functions here:
V = list()
V[['alt1']] = -(b_mu_rent + mu_rent_T*Dummy_Treated + mu_rent_VT*Dummy_Vol_Treated)*(b_mu_natural * Naturalness_1 + b_mu_walking * WalkingDistance_1 +
mu_nat_NR * Naturalness_1 * Z_Mean_NR + mu_wd_NR * WalkingDistance_1 * Z_Mean_NR +
mu_nat_T * Naturalness_1 * Dummy_Treated + mu_wd_T * WalkingDistance_1 * Dummy_Treated +
mu_nat_VT * Naturalness_1 * Dummy_Vol_Treated + mu_wd_VT * WalkingDistance_1 * Dummy_Vol_Treated
- Rent_1)
V[['alt2']] = -(b_mu_rent + mu_rent_T*Dummy_Treated + mu_rent_VT*Dummy_Vol_Treated)*(b_mu_natural * Naturalness_2 + b_mu_walking * WalkingDistance_2 +
mu_nat_NR * Naturalness_2 * Z_Mean_NR + mu_wd_NR * WalkingDistance_2 * Z_Mean_NR +
mu_nat_T * Naturalness_2 * Dummy_Treated + mu_wd_T * WalkingDistance_2 * Dummy_Treated +
mu_nat_VT * Naturalness_2 * Dummy_Vol_Treated + mu_wd_VT * WalkingDistance_2 * Dummy_Vol_Treated
- Rent_2)
V[['alt3']] = -(b_mu_rent + mu_rent_T*Dummy_Treated + mu_rent_VT*Dummy_Vol_Treated)*(b_ASC_sq + b_mu_natural * Naturalness_3 + b_mu_walking * WalkingDistance_3 +
mu_asc_NR * Z_Mean_NR + mu_nat_NR * Naturalness_3 * Z_Mean_NR +
mu_wd_NR * WalkingDistance_3 * Z_Mean_NR + mu_asc_T * Dummy_Treated +
mu_nat_T * Naturalness_3 * Dummy_Treated + mu_wd_T * WalkingDistance_3 * Dummy_Treated +
mu_nat_VT * Naturalness_3 * Dummy_Vol_Treated + mu_wd_VT * WalkingDistance_3 * Dummy_Vol_Treated +
mu_asc_VT * Dummy_Vol_Treated
- Rent_3)
### Define settings for MNL model component
mnl_settings = list(
alternatives = c(alt1=1, alt2=2, alt3=3),
avail = 1, # all alternatives are available in every choice
choiceVar = choice,
V = V#, # tell function to use list vector defined above
)
### Compute probabilities using MNL model
P[['model']] = apollo_mnl(mnl_settings, functionality)
### Take product across observation for same individual
P = apollo_panelProd(P, apollo_inputs, functionality)
### Average across inter-individual draws - nur bei Mixed Logit!
P = apollo_avgInterDraws(P, apollo_inputs, functionality)
### Prepare and return outputs of function
P = apollo_prepareProb(P, apollo_inputs, functionality)
return(P)
}
# ################################################################# #
#### MODEL ESTIMATION ##
# ################################################################# #
# estimate model with bfgs algorithm
mxl_wtp_case_a_nr_rent = apollo_estimate(apollo_beta, apollo_fixed,
apollo_probabilities, apollo_inputs,
estimate_settings=list(maxIterations=400,
estimationRoutine="bfgs",
hessianRoutine="analytic"))
# ################################################################# #
#### MODEL OUTPUTS ##
# ################################################################# #
apollo_saveOutput(mxl_wtp_case_a_nr_rent)