Something went wrong on our end
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
simulation.jl 6.92 KiB
### Persefone.jl - a model of agricultural landscapes and ecosystems in Europe.
###
### This file includes the core functions for initialising and running simulations.
###
#XXX How can I make the model output during a parallel run clearer?
"""
AgricultureModel
This is the heart of the model - a struct that holds all data and state
for one simulation run. It is created by [`initialise`](@ref) and passed
as input to most model functions.
"""
mutable struct AgricultureModel{Tcroptype,Tcropstate} <: SimulationModel
settings::Dict{String,Any}
rng::AbstractRNG
logger::AbstractLogger
dataoutputs::Dict{String,DataOutput}
date::Date
landscape::Matrix{Pixel}
weather::Dict{Date,Weather}
crops::Dict{String,Tcroptype}
farmers::Vector{Farmer}
farmplots::Vector{FarmPlot{Tcropstate}}
animals::Vector{Union{Animal,Nothing}}
migrants::Vector{Pair{Animal,AnnualDate}}
events::Vector{FarmEvent}
end
"""
nagents(model)
Return the total number of agents in a model object.
"""
function nagents(model::AgricultureModel)
length(model.animals)+length(model.farmers)+length(model.farmplots)
end
"""
stepagent!(agent, model)
All agent types must define a stepagent!() method that will be called daily.
"""
function stepagent!(agent::ModelAgent, model::SimulationModel)
@error "Agent type $(typeof(agent)) has not defined a stepagent!() method."
end
"""
simulate(configfile=PARAMFILE, params=Dict())
Initialise one or more model objects and carry out a full simulation experiment,
optionally specifying a configuration file and/or specific parameters.
This is the default way to run a Persefone simulation.
"""
function simulate(;configfile::String=PARAMFILE, params::Dict{String,Any}=Dict{String,Any}())
models = initialise(configfile=configfile, params=params)
isa(models, Vector) ?
map(simulate!, models) : #TODO parallelise
simulate!(models)
end
"""
simulate!(model)
Carry out a complete simulation run using a pre-initialised model object.
"""
function simulate!(model::SimulationModel)
@info "Simulation run started at $(Dates.now())."
while model.date <= @param(core.enddate)
stepsimulation!(model)
end
finalise!(model)
end
"""
initialise(configfile=PARAMFILE, params=Dict())
Initialise the model: read in parameters, create the output data directory,
and instantiate the SimulationModel object(s). Optionally allows specifying the
configuration file and overriding specific parameters. This returns a single
model object, unless the config file contains multiple values for one or more
parameters, in which case it creates a full-factorial simulation experiment
and returns a vector of model objects.
"""
function initialise(;configfile::String=PARAMFILE, params::Dict{String,Any}=Dict{String,Any}())
settings = getsettings(configfile, params)
scanparams = settings["internal.scanparams"]
delete!(settings, "internal.scanparams")
isempty(scanparams) ?
initmodel(settings) :
map(initmodel, paramscan(settings, scanparams)) #TODO parallelise
end
"""
initmodel(settings)
Initialise a model object using a ready-made settings dict. This is
a helper function for `initialise()`.
"""
function initmodel(settings::Dict{String, Any})
#TODO catch exceptions and print them to the log file
@debug "Initialising model object."
createdatadir(settings["core.outdir"],
settings["core.overwrite"])
logger = modellogger(settings["core.loglevel"],
settings["core.outdir"],
settings["core.logoutput"])
with_logger(logger) do
landscape = initlandscape(settings["world.mapdirectory"],
settings["world.landcovermap"],
settings["world.farmfieldsmap"])
weather = initweather(joinpath(settings["world.mapdirectory"],
settings["world.weatherfile"]),
settings["core.startdate"],
settings["core.enddate"])
crops, Tcroptype, Tcropstate = initcropmodel(settings["crop.cropmodel"],
settings["crop.cropdirectory"])
farmers = Vector{Farmer}()
farmplots = Vector{FarmPlot{Tcropstate}}()
model = AgricultureModel{Tcroptype,Tcropstate}(
settings,
StableRNG(settings["core.seed"]),
logger,
Dict{String,DataOutput}(),
settings["core.startdate"],
landscape,
weather,
crops,
farmers,
farmplots,
Vector{Union{Animal,Nothing}}(),
Vector{Pair{Animal, Date}}(),
Vector{FarmEvent}()
)
saveinputfiles(model)
initfields!(model)
initfarms!(model)
initnature!(model)
model
end
end
"""
paramscan(settings)
Create a list of settings dicts, covering all possible parameter combinations
given by the input settings (i.e. a full-factorial experiment). This is a helper
function for `initialise()`.
"""
function paramscan(settings::Dict{String,Any}, scanparams::Vector{String})
isempty(scanparams) && return [settings]
param = pop!(scanparams)
combinations = Vector{Dict{String,Any}}()
# recursively generate a set of settings dicts covering all combinations
for comb in paramscan(settings, scanparams)
for value in settings[param]
newcombination = deepcopy(comb)
newcombination[param] = value
if comb["core.outdir"] == settings["core.outdir"]
outdir = joinpath(comb["core.outdir"], "$(split(param, ".")[2])_$(value)")
else
outdir = "$(comb["core.outdir"])_$(split(param, ".")[2])_$(value)"
end
newcombination["core.outdir"] = outdir
push!(combinations, newcombination)
end
end
combinations
end
"""
stepsimulation!(model)
Execute one update of the model.
"""
function stepsimulation!(model::SimulationModel)
#TODO catch exceptions and print them to the log file
with_logger(model.logger) do
@info "Simulating day $(model.date)."
#XXX move the two loops into the relevant submodels?
for f in model.farmers
stepagent!(f, model)
end
for p in model.farmplots
stepagent!(p, model)
end
updatenature!(model)
updateevents!(model)
outputdata(model)
model.date += Day(1)
model
end
end
"""
finalise!(model)
Wrap up the simulation. Finalises and visualises output, then terminates.
"""
function finalise!(model::SimulationModel)
with_logger(model.logger) do
@info "Simulated $(model.date-@param(core.startdate))."
@info "Simulation run completed at $(Dates.now()),\nwrote output to $(@param(core.outdir))."
@param(core.visualise) && visualiseoutput(model)
model
end
end