Skip to content
Snippets Groups Projects
Commit 09de8052 authored by Francesco Sabatini's avatar Francesco Sabatini
Browse files

Minor fixed to 02

parent a1b4c84c
No related branches found
No related tags found
No related merge requests found
...@@ -72,10 +72,12 @@ is.binary <- function(x){(all(na.omit(x) %in% 0:1))} ...@@ -72,10 +72,12 @@ is.binary <- function(x){(all(na.omit(x) %in% 0:1))}
####1.1 Table S3 - Trait recap ##### ####1.1 Table S3 - Trait recap #####
trait.recap <- traits %>% trait.recap <- traits %>%
mutate_at(.vars=vars(Leaf_Scleroph, LifeSpan, Rosette),
.funs=~as.ordered(.)) %>%
dplyr::select(-ends_with("1")) %>% ## exclude two traits that shouldn't be there V_VER_present1 & V_VER_absent1 dplyr::select(-ends_with("1")) %>% ## exclude two traits that shouldn't be there V_VER_present1 & V_VER_absent1
mutate_if(.predicate = ~is.numeric(.), .funs=~round(.,3)) %>% mutate_if(.predicate = ~is.numeric(.), .funs=~round(.,3)) %>%
summarize_all(.funs = list(xxxType.of.variable=~ifelse(is.binary(.), "binary", summarize_all(.funs = list(xxxType.of.variable=~ifelse(is.binary(.), "binary",
ifelse(is.ordered(.), "ordered", ifelse(is.ordered(.), "ordinal",
ifelse(is.numeric(.), "quantitative", ifelse(is.numeric(.), "quantitative",
ifelse(is.factor(.), "nominal", NA)))), ifelse(is.factor(.), "nominal", NA)))),
xxxLevels=~( xxxLevels=~(
...@@ -569,9 +571,7 @@ species.cov <- read_delim("_data/Mesobromion/species.v2.10perc.cov.txt", delim=" ...@@ -569,9 +571,7 @@ species.cov <- read_delim("_data/Mesobromion/species.v2.10perc.cov.txt", delim="
#traits <- traits.backup #traits <- traits.backup
categorical.traits <- colnames(traits)[which(sapply(traits, "is.factor"))] categorical.traits <- colnames(traits)[which(sapply(traits, "is.factor"))]
traits$LeafPersistence <- factor(traits$LeafPersistence,
levels=c("immergrün","sommergrün","überwinternd_grün", "vorsommergrün"),
labels=c("eg", "sg", "wg", "se"))
#traits$Pollination <- factor(traits$Pollination, #traits$Pollination <- factor(traits$Pollination,
# levels=c("NEKTAR_HONIG_INSEKTEN","POLLEN","WIND" ), # levels=c("NEKTAR_HONIG_INSEKTEN","POLLEN","WIND" ),
# labels=c("insects", "pollen", "wind")) # labels=c("insects", "pollen", "wind"))
...@@ -764,15 +764,14 @@ ggsave("_pics/FigSXXXb_PCA_Fuzzy_2-3_wSpecies.png", width=8, height=8, dpi=300, ...@@ -764,15 +764,14 @@ ggsave("_pics/FigSXXXb_PCA_Fuzzy_2-3_wSpecies.png", width=8, height=8, dpi=300,
#### 4.1 PCA of Y (Bealls) matrix + CWM #### #### 4.1 PCA of Y (Bealls) matrix + CWM ####
W.beals <- as.data.frame(beals(species.cov %>% W.beals <- as.data.frame(beals(species.cov %>%
column_to_rownames("RELEVE_NR") %>% column_to_rownames("RELEVE_NR"),
mutate_all(~(.>0)*1), #transform to p\a include=T, type=2))
include=T, type=2))
write.table(W.beals, sep="\t", file="_derived/Mesobromion/MatrixY_Beals.csv") write.table(W.beals, sep="\t", file="_derived/Mesobromion/MatrixY_Beals.csv")
pca.out <- rda(W.beals) pca.out <- rda(W.beals)
varexpl <- round((pca.out$CA$eig)/sum(pca.out$CA$eig)*100,1) varexpl <- round((pca.out$CA$eig)/sum(pca.out$CA$eig)*100,1)
cwms.envfit <- envfit(pca.out, CWM.wide, na.rm = T, choices = 1:5) cwms.envfit <- envfit(pca.out, CWM.wide, na.rm = T, choices = 1:5)
env.envfit <- envfit(pca.out, env %>% env.envfit <- envfit(pca.out, env %>%
dplyr::select(Temp, Prec, pH=PHIPHOX, C.org=ORCDRC), choices=1:5) dplyr::select(Temp, Prec, pH=PHIPHOX, C.org=ORCDRC), choices=1:4, na.rm = T)
### Transform to correlations and sink envfits ### Transform to correlations and sink envfits
### see https://www.davidzeleny.net/anadat-r/doku.php/en:suppl_vars_examples for procedure ### see https://www.davidzeleny.net/anadat-r/doku.php/en:suppl_vars_examples for procedure
...@@ -804,9 +803,9 @@ myvectors <- as.data.frame(env.cor) %>% ...@@ -804,9 +803,9 @@ myvectors <- as.data.frame(env.cor) %>%
bind_rows(as.data.frame(cwms.cor) %>% bind_rows(as.data.frame(cwms.cor) %>%
rownames_to_column("mylab") %>% rownames_to_column("mylab") %>%
mutate(category="Trait")) %>% mutate(category="Trait")) %>%
bind_rows(as.data.frame(fuzz.cor) %>% #bind_rows(as.data.frame(fuzz.cor) %>%
rownames_to_column("mylab") %>% # rownames_to_column("mylab") %>%
mutate(category="Fuzzy-Weighted")) %>% # mutate(category="Fuzzy-Weighted")) %>%
mutate(fontface0=ifelse(mylab %in% best.4traits, "bold", "italic")) %>% mutate(fontface0=ifelse(mylab %in% best.4traits, "bold", "italic")) %>%
mutate(category=as.factor(category)) %>% mutate(category=as.factor(category)) %>%
mutate(mycol=ifelse(category=="Trait", oilgreen, orange)) %>% mutate(mycol=ifelse(category=="Trait", oilgreen, orange)) %>%
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment