Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
HIDDEN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
sPlot
HIDDEN
Commits
fb550be0
Commit
fb550be0
authored
4 years ago
by
Francesco Sabatini
Browse files
Options
Downloads
Patches
Plain Diff
Cleaned duplicate coded from 02_Mesobromion
parent
523ef6a3
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
02_Mesobromion_ExamineOutput.R
+0
-296
0 additions, 296 deletions
02_Mesobromion_ExamineOutput.R
with
0 additions
and
296 deletions
02_Mesobromion_ExamineOutput.R
+
0
−
296
View file @
fb550be0
...
...
@@ -7,302 +7,6 @@ library(vegan)
source
(
"99_HIDDEN_functions.R"
)
##### PART 1 ####
#### 1. traits data ####
traits0
<-
read_delim
(
"_data/Mesobromion/traits3.txt"
,
delim
=
";"
,
col_names
=
T
,
locale
=
locale
(
encoding
=
'latin1'
))
%>%
dplyr
::
select
(
-
c
(
"PR_STAT_Indigen"
,
"PR_STAT_Neophyt"
,
"PR_STAT_Archaeophyt"
,
"URBAN_urbanophob"
,
"URBAN_maessig_urbanophob"
,
"URBAN_urbanoneutral"
,
"URBAN_maessig_urbanophil"
,
"URBAN_urbanophil"
,
"WUH_von"
,
"WUH_bis"
,
"ARL_c_I_von"
,
"ARL_c_I_bis"
,
"BL_ANAT_hydromorph"
))
%>%
#empty trait
mutate
(
species0
=
species
)
%>%
rowwise
()
%>%
# quick and dirty clean up names
mutate
(
species
=
gsub
(
pattern
=
"_"
,
replacement
=
" "
,
x
=
species
))
%>%
mutate
(
species
=
gsub
(
pattern
=
" agg | x | spec$| agg$| s | Sec | "
,
replacement
=
" "
,
x
=
species
))
%>%
mutate
(
species
=
gsub
(
pattern
=
" $"
,
replacement
=
""
,
x
=
species
))
%>%
mutate
(
species
=
ifelse
(
is.na
(
word
(
species
,
1
,
2
)),
species
,
word
(
species
,
1
,
2
)))
dim
(
traits0
)
#907 obs. of 75 variables:
#keep only traits with >=88 completeness
traits0
<-
traits0
%>%
dplyr
::
select_if
(
~
mean
(
!
is.na
(
.
))
>=
0.88
)
# 907 x 67
### Transform binary traits to 0-1
traits.asym.binary
<-
c
(
'LEB_F_Makrophanerophyt'
,
'LEB_F_Nanophanerophyt'
,
'LEB_F_Hemikryptophyt'
,
'LEB_F_Geophyt'
,
'LEB_F_Hemiphanerophyt'
,
'LEB_F_Therophyt'
,
'LEB_F_Hydrophyt'
,
'LEB_F_Pseudophanerophyt'
,
'LEB_F_Chamaephyt'
,
'LEB_D_plurienn_pollakanth'
,
'LBE_D_plurienn_hapaxanth'
,
'LEB_D_annuell'
,
'LEB_D_bienn'
,
'V_VER_absent'
,
'V_VER_Wurzelspross'
,
'V_VER_Ausläufer'
,
'V_VER_Rhizom'
,
'V_VER_Innovationsknopse.mit.Wurzelknolle'
,
'V_VER_Innovationsknospe.mit.Speicherwurzel'
,
'V_VER_Ausläuferknolle'
,
'V_VER_Brutsprösschen'
,
'V_VER_Fragmentation'
,
'V_VER_Turio'
,
'V_VER_Sprossknolle'
,
'V_VER_phyllogener_Spross'
,
'V_VER_Rhizompleiokorm'
,
'V_VER_Zwiebel'
,
'V_VER_Ausläuferrhizom'
,
'V_VER_Ausläuferzwiebel'
,
'V_VER_Bulbille'
,
'ROS_T_rosettenlose.Pflanzen'
,
'ROS_T_Halbrosettenpflanze'
,
'ROS_T_Ganzrosettenpflanzen'
,
'BL_AUSD_immergrün'
,
'BL_AUSD_sommergrün'
,
'BL_AUSD_vorsommergrün'
,
'BL_AUSD_überwinternd_grün'
,
'BL_ANAT_skleromorph'
,
'BL_ANAT_mesomorph'
,
'BL_ANAT_hygromorph'
,
'BL_ANAT_hydromorph'
,
'BL_ANAT_blattsukkulent'
,
'BL_ANAT_helomorph'
,
'BL_FORM_gelappt_gefiedert_gefingert_mehrfach'
,
'BL_FORM_Vollblatt_Normalblatt'
,
'BL_FORM_Grasblatt_Langblatt'
,
'BL_FORM_nadelförmig'
,
'BL_FORM_röhrig'
,
'BL_FORM_schuppenförmig'
,
'BL_FORM_schwertförmig'
,
'REPR_T_Samen_Sporen'
,
'REPR_T_vegetativ'
,
'BLU_KL_WIND'
,
'BLU_KL_POLLEN'
,
'BLU_KL_NEKTAR_HONIG_INSEKTEN'
,
'STRAT_T_C'
,
'STRAT_T_CR'
,
'STRAT_T_CS'
,
'STRAT_T_CSR'
,
'STRAT_T_R'
,
'STRAT_T_S'
,
'STRAT_T_SR'
)
traits0
<-
traits0
%>%
mutate_at
(
.vars
=
vars
(
any_of
(
traits.asym.binary
)),
.funs
=~
(
.
>
0
)
*
1
)
## Import traits from TRY and match to species
load
(
"/data/sPlot2.0/TRY.all.mean.sd.3.by.genus.species.tree.Rdata"
)
alltry
<-
TRY.all.mean.sd.3.by.genus.species.tree
%>%
dplyr
::
select
(
!
ends_with
(
".sd"
))
%>%
dplyr
::
select
(
StandSpeciesName
,
LeafArea.mean
:
Wood.vessel.length.mean
)
%>%
dplyr
::
select
(
-
Wood.vessel.length.mean
,
-
StemDens.mean
,
-
Stem.cond.dens.mean
)
%>%
rename_all
(
.funs
=~
gsub
(
pattern
=
".mean$"
,
replacement
=
""
,
x
=
.
))
traits
<-
traits0
%>%
ungroup
()
%>%
#dplyr::select(species, species0) %>%
left_join
(
alltry
%>%
rename
(
species
=
StandSpeciesName
),
by
=
"species"
)
%>%
filter
(
!
is.na
(
LeafArea
))
dim
(
traits
)
#[1] 805 2
##### 2. Header Data ####
env0
<-
read_delim
(
"_data/Mesobromion/GVRD_MES2_site.csv"
,
delim
=
","
)
str
(
env0
)
#6868 obs. of 6 variables:
set.seed
(
1984
)
header
<-
"/data/sPlot/users/Francesco/Project_11/Germany/_data/tvhabita.dbf"
env
<-
env0
%>%
left_join
(
foreign
::
read.dbf
(
header
)
%>%
as.data.frame
()
%>%
dplyr
::
select
(
RELEVE_NR
,
LAT
,
LON
),
by
=
"RELEVE_NR"
)
%>%
filter
(
!
is.na
(
LAT
))
%>%
filter
(
!
(
LAT
==
0
|
LON
==
0
))
env.all
<-
env
### 3. Import species data ####
# columns in species correspond to those in env
# there is no PlotObservationID (yet)
species0
<-
read.table
(
"_data/Mesobromion/GVRD_Mes2_veg1.csv"
,
sep
=
","
,
header
=
T
)
dim
(
species0
)
#6868 obs. of 907 variables:
rownames
(
species0
)
<-
env0
$
RELEVE_NR
## select only plots already selected in env
species
<-
env
%>%
dplyr
::
select
(
RELEVE_NR
)
%>%
left_join
(
species0
%>%
mutate
(
RELEVE_NR
=
env0
$
RELEVE_NR
),
by
=
"RELEVE_NR"
)
%>%
column_to_rownames
(
"RELEVE_NR"
)
%>%
## delete species not appearing in any plot
dplyr
::
select
(
colnames
(
.
)[
which
(
colSums
(
.
)
!=
0
)])
#dplyr::select(traits$species0)
dim
(
species
)
# [1] 5810 881
releve08trait
<-
species
%>%
rownames_to_column
(
"RELEVE_NR"
)
%>%
reshape2
::
melt
(
.id
=
"RELEVE_NR"
)
%>%
rename
(
species0
=
variable
,
pres
=
value
)
%>%
as.tbl
()
%>%
filter
(
pres
>
0
)
%>%
arrange
(
RELEVE_NR
)
%>%
## attach traits
left_join
(
traits
%>%
dplyr
::
select
(
-
species
),
by
=
"species0"
)
%>%
mutate_at
(
.vars
=
vars
(
LEB_F_Makrophanerophyt
:
Disp.unit.leng
),
.funs
=
list
(
~
if_else
(
is.na
(
.
),
0
,
1
)
*
pres
))
%>%
group_by
(
RELEVE_NR
)
%>%
summarize_at
(
.vars
=
vars
(
LEB_F_Makrophanerophyt
:
Disp.unit.leng
),
.funs
=
list
(
~
mean
(
.
)))
%>%
dplyr
::
select
(
RELEVE_NR
,
order
(
colnames
(
.
)))
%>%
reshape2
::
melt
(
id.vars
=
"RELEVE_NR"
,
value.name
=
"trait.coverage"
)
%>%
group_by
(
RELEVE_NR
)
%>%
summarize
(
ntraits08
=
mean
(
trait.coverage
>=
0.8
))
%>%
#select only those releves where we have a coverage of >0.8 for all traits
filter
(
ntraits08
==
1
)
%>%
pull
(
RELEVE_NR
)
set.seed
(
1984
)
releve08trait.samp
<-
sample
(
releve08trait
,
round
(
length
(
releve08trait
)
/
10
),
replace
=
F
)
species
<-
species
%>%
rownames_to_column
(
"RELEVE_NR"
)
%>%
filter
(
RELEVE_NR
%in%
releve08trait.samp
)
%>%
#column_to_rownames("RELEVE_NR") %>%
#as.tbl() %>%
dplyr
::
select
(
RELEVE_NR
,
one_of
(
traits
$
species0
))
env
<-
env
%>%
filter
(
RELEVE_NR
%in%
releve08trait.samp
)
traits
<-
traits
%>%
dplyr
::
select
(
-
species
)
%>%
dplyr
::
select
(
species0
,
everything
())
%>%
filter
(
species0
%in%
colnames
(
species
))
#recode binary traits to nominal
colnames
(
traits
)[
which
(
colnames
(
traits
)
==
"LBE_D_plurienn_hapaxanth"
)]
<-
"LEB_D_plurienn_hapaxanth"
traits
<-
traits
%>%
mutate
(
BLU_KL_NEKTAR_HONIG_INSEKTEN
=
replace
(
BLU_KL_NEKTAR_HONIG_INSEKTEN
,
list
=
species0
%in%
c
(
"Convallaria_majalis"
,
"Maianthemum_bifolium"
),
values
=
0
))
traits
<-
traits
%>%
as.tbl
()
%>%
dplyr
::
select
(
-
starts_with
(
"BL_FORM"
),
-
starts_with
(
"REPR_T"
),
-
starts_with
(
"BLU_KL"
),
-
starts_with
(
"STRAT_T"
),
-
starts_with
(
"BL_AUSD"
))
%>%
left_join
(
traits
%>%
dplyr
::
select
(
species0
,
`BL_AUSD_immergrün`
:
`BL_AUSD_überwinternd_grün`
,
REPR_T_Samen_Sporen
:
STRAT_T_SR
)
%>%
gather
(
key
=
Trait
,
value
=
"value"
,
-
species0
)
%>%
separate
(
Trait
,
into
=
c
(
"Trait"
,
"Organ"
,
"Level"
),
sep
=
"_"
,
extra
=
"merge"
)
%>%
unite
(
Trait
,
Trait
,
Organ
)
%>%
filter
(
value
==
1
)
%>%
dplyr
::
select
(
-
value
)
%>%
spread
(
Trait
,
Level
)
%>%
mutate_at
(
.vars
=
vars
(
BL_AUSD
:
STRAT_T
),
.funs
=~
as.factor
(
.
)),
by
=
"species0"
)
## recode traits to numeric
robust.mean
<-
function
(
x1
,
x2
=
NA
,
x3
=
NA
,
x4
=
NA
){
x
<-
c
(
x1
,
x2
,
x3
,
x4
)
if
(
any
(
!
is.na
(
x
))){
mean
(
x
,
na.rm
=
T
)}
else
{
NA
}
}
traits
<-
traits
%>%
dplyr
::
select
(
-
starts_with
(
"BL_ANAT"
),
-
starts_with
(
"LEB_D"
),
-
starts_with
(
"ROS_T"
))
%>%
left_join
(
traits
%>%
dplyr
::
select
(
species0
,
starts_with
(
"BL_ANAT"
))
%>%
mutate
(
BL_ANAT_helomorph
=
ifelse
(
BL_ANAT_helomorph
==
1
,
1
,
NA
))
%>%
mutate
(
BL_ANAT_hygromorph
=
ifelse
(
BL_ANAT_hygromorph
==
1
,
2
,
NA
))
%>%
mutate
(
BL_ANAT_mesomorph
=
ifelse
(
BL_ANAT_mesomorph
==
1
,
3
,
NA
))
%>%
mutate
(
BL_ANAT_skleromorph
=
ifelse
(
BL_ANAT_skleromorph
==
1
,
4
,
NA
))
%>%
rowwise
()
%>%
mutate
(
BL_ANAT
=
robust.mean
(
BL_ANAT_helomorph
,
BL_ANAT_hygromorph
,
BL_ANAT_mesomorph
,
BL_ANAT_skleromorph
))
%>%
ungroup
()
%>%
dplyr
::
select
(
species0
,
BL_ANAT
,
BL_ANAT_blattsukkulent
),
by
=
"species0"
)
%>%
left_join
(
traits
%>%
dplyr
::
select
(
species0
,
starts_with
(
"LEB_D"
))
%>%
rowwise
()
%>%
mutate
(
LEB_D_plurienn
=
max
(
LEB_D_plurienn_pollakanth
+
LEB_D_plurienn_hapaxanth
,
na.rm
=
T
))
%>%
ungroup
()
%>%
mutate
(
LEB_D_plurienn
=
ifelse
(
LEB_D_plurienn
==
1
,
3
,
NA
))
%>%
mutate
(
LEB_D_annuell
=
ifelse
(
LEB_D_annuell
==
1
,
1
,
NA
))
%>%
mutate
(
LEB_D_bienn
=
ifelse
(
LEB_D_bienn
==
1
,
2
,
NA
))
%>%
rowwise
()
%>%
mutate
(
LEB_D
=
robust.mean
(
LEB_D_annuell
,
LEB_D_bienn
,
LEB_D_plurienn
))
%>%
ungroup
()
%>%
dplyr
::
select
(
species0
,
LEB_D
),
by
=
"species0"
)
%>%
left_join
(
traits
%>%
dplyr
::
select
(
species0
,
starts_with
(
"ROS_T"
))
%>%
mutate
(
ROS_T
=
ROS_T_Ganzrosettenpflanzen
)
%>%
mutate
(
ROS_T
=
replace
(
ROS_T
,
list
=
ROS_T_Halbrosettenpflanze
==
1
,
values
=
0.5
))
%>%
mutate
(
ROS_T
=
replace
(
ROS_T
,
list
=
ROS_T_rosettenlose.Pflanzen
==
1
,
values
=
0
))
%>%
dplyr
::
select
(
species0
,
ROS_T
),
by
=
"species0"
)
### ordered factors
dim
(
species
)
#558 783
dim
(
traits
)
#783 53
dim
(
env
)
#558 8
######4. Extract Environmental Factors ######
### CHELSA
library
(
raster
)
library
(
sp
)
Temp
<-
raster
(
"../../Francesco/Ancillary_Data/CHELSA/CHELSA_bio10_01.tif"
)
Prec
<-
raster
(
"../../Francesco/Ancillary_Data/CHELSA/CHELSA_bio10_12.tif"
)
PHIPHOX
<-
raster
(
"../../Francesco/Ancillary_Data/ISRIC/PHIHOX_M_sl2_250m_ll.tif"
)
ORCDRC
<-
raster
(
"../../Francesco/Ancillary_Data/ISRIC/ORCDRC_M_sl2_250m_ll.tif"
)
env.sp
<-
SpatialPointsDataFrame
(
coords
=
env
%>%
dplyr
::
select
(
LON
,
LAT
),
data
=
env
%>%
dplyr
::
select
(
-
LON
,
-
LAT
),
proj4string
=
raster
::
crs
(
"+proj=longlat +datum=WGS84 +no_defs"
))
env
<-
env
%>%
mutate
(
Temp
=
raster
::
extract
(
Temp
,
env.sp
)
/
10
)
%>%
mutate
(
Prec
=
raster
::
extract
(
Prec
,
env.sp
))
%>%
mutate
(
PHIPHOX
=
raster
::
extract
(
PHIPHOX
,
env.sp
)
/
10
)
%>%
mutate
(
ORCDRC
=
raster
::
extract
(
ORCDRC
,
env.sp
))
## Select only plots where >90% of species have trait info [TRY]
# releve08trait <- species %>%
# rownames_to_column("RELEVE_NR") %>%
# reshape2::melt(.id="RELEVE_NR") %>%
# rename(species0=variable, pres=value) %>%
# filter(pres>0) %>%
# arrange(RELEVE_NR) %>%
# ## attach traits
# left_join(traits %>%
# dplyr::select(-species, LeafArea.mean), by="species0") %>%
# group_by(RELEVE_NR) %>%
# summarize(trait.coverage=mean(!is.na(LeafArea.mean))) %>%
# filter(trait.coverage<0.8) %>%
# pull(RELEVE_NR)
#
##export for Valerio
write_delim
(
species
,
path
=
"_data/Mesobromion/species.out.10perc.txt"
,
delim
=
"\t"
)
write_delim
(
traits
,
path
=
"_data/Mesobromion/traits.out.10perc.txt"
,
delim
=
"\t"
)
write_delim
(
env
,
path
=
"_data/Mesobromion/env.10perc.txt"
,
delim
=
"\t"
)
## version without missing species
empty
<-
which
(
colSums
(
species
[,
-1
])
==
0
)
traits_nozero
<-
traits
[
-
empty
,]
species_nozero
<-
species
[,
-
(
empty
+1
)]
write_delim
(
species_nozero
,
path
=
"_data/Mesobromion/species.out.10perc_nozero.txt"
,
delim
=
"\t"
)
write_delim
(
traits_nozero
,
path
=
"_data/Mesobromion/traits.out.10perc_nozero.txt"
,
delim
=
"\t"
)
write_delim
(
species
%>%
dplyr
::
select
(
RELEVE_NR
),
path
=
"_derived/Mesobromion/ReleveList.txt"
,
delim
=
"\t"
)
#### CORRELATION BETWEEN FUZZY WEIGHTED AND BEALS MATRICES
#### WAS RUN IN THE CLUSTER WITH THE SCRIPT 01b_MesobromionCluster.R
###### PART2 ####
####1. Reimport data ################################
## calculate corr between species composition matrix and traits
species
<-
read_delim
(
"_data/Mesobromion/species.out.10perc.txt"
,
delim
=
"\t"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment