Skip to content
Snippets Groups Projects
Select Git revision
  • 2316c845c7af2fd1d2c86636e492e3db163eef57
  • master default protected
2 results

06_buildDT.Rmd

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    functions.R 6.01 KiB
    sim_choice <- function(designfile, no_sim=10, respondents=330, mnl_U,utils=u[[1]] ) {
     
      
      require("tictoc")
      require("readr")
      require("psych")
      require("dplyr")          
      require("evd")           
      require("tidyr")
      require("kableExtra")
      require("gridExtra")
      require("stringr")
      require("mixl")
      require("furrr")
      require("purrr")
      require("ggplot2")
      require("formula.tools")  
      require("rlang")
       
      
      mnl_U <-paste(map_chr(utils,as.character,keep.source.attr = TRUE),collapse = "",";") %>%
        str_replace_all( c( "priors\\[\"" = "" , "\"\\]" = "" ,  "~" = "=", "\\." = "_" , " b" = " @b"  , "V_"="U_", " alt"="$alt"))
      
     cat("mixl \n") 
     print(mnl_U)
     
     cat("\n Simulation \n")
     
     print(u)
     
      
      
      by_formula <- function(equation){ #used to take formulas as inputs in simulation utility function
        # //! cur_data_all may get deprecated in favor of pick
        # pick(everything()) %>%
        cur_data_all() %>%
          transmute(!!lhs(equation) := !!rhs(equation) )
      } 
      
      
    
    
      
      simulate_choices <- function(data=datadet) {  #the part in dataset that needs to be repeated in each run
    cat(" \n does sou_gis exist: ", exists("sou_gis"), "\n")
    
        if (exists("sou_gis") && is.function(sou_gis)) {
          sou_gis()
          
          cat("\n source of gis has been done \n")
        }    
           
       # source("Projects/ValuGaps/code/GIS_data.R")
        
        if(!exists("manipulations")) manipulations=list() ## If no user input on further data manipulations
           
        n=seq_along(1:length(utils))    # number of utility functions
    
        
    #browser()    
    
    
        cat("\n dataset final_set exists: ",exists("final_set"), "\n")
        
        if(exists("final_set")) data = left_join(data,final_set, by = "ID")   
        
        cat("\n decisiongroups exists: " ,exists("decisiongroups"))  
        
        if(exists("decisiongroups"))  {     ### create a new variable to classify decision groups.
          data = mutate(data,group = as.numeric(cut(row_number(), 
                                     breaks = decisiongroups * n(), 
                                     labels = seq_along(decisiongroups[-length(decisiongroups)]),
                                     include.lowest = TRUE)))
          
          print(table(data$group))
        } else {
          
          data$group=1
        }
       
    
           data<- data %>% 
          group_by(ID) %>% 
          mutate(!!! manipulations) 
                 
    
              
    subsets<- split(data,data$group)     
       
    subsets <-  map2(.x = seq_along(u),.y = subsets,
                     ~ mutate(.y,map_dfc(u[[.x]],by_formula)))
     
    data <-bind_rows(subsets)           
     
       data<- data %>%       
         rename_with(~ stringr::str_replace(.,pattern = "\\.","_"), everything()) %>% 
            mutate(across(.cols=n,.fns = ~ rgumbel(setpp,loc=0, scale=1), .names = "{'e'}_{n}" ), 
             across(starts_with("V_"), .names = "{'U'}_{n}") + across(starts_with("e_")) ) %>% ungroup() %>% 
             mutate(CHOICE=max.col(.[,grep("U_",names(.))])
          )   %>% 
          as.data.frame()
    
           
           
        
    print("\n data has been made \n")
    
    cat("\n First few observations \n ") 
    print(head(data))
     cat("\n \n ")   
        return(data)
        
      } 
      
      estimate_sim <- function(run=1) {         #start loop
        
        cat("This is Run number ", run)
        
        database <- simulate_choices(datadet) 
        
        
       cat("This is the utility functions \n" , mnl_U) 
        
        model<-mixl::estimate(model_spec,start_values = est, availabilities = availabilities, data= database,)
        
        return(model)   
        
      }
      
      designs_all <- list() 
      
      design <- read_delim(designfile,delim = "\t",
                           escape_double = FALSE,
                           trim_ws = TRUE  , 
                           col_select = c(-Design, -starts_with("...")) ,
                           name_repair = "universal" , show_col_types = FALSE) %>% 
        filter(!is.na(Choice.situation)) 
      
      
      
      nsets<-nrow(design)        
      nblocks<-max(design$Block)
      setpp <- nsets/nblocks      # Choice Sets per respondent; in this 'no blocks' design everyone sees all 24 sets
      #respondents <- replications*nblocks
      replications <- respondents/nblocks
      #browser()
      
     
      
      datadet<- design %>%
        arrange(Block,Choice.situation) %>% 
        slice(rep(row_number(), replications)) %>%    ## replicate design according to number of replications
        mutate(ID = rep(1:respondents, each=setpp)) %>%  # create Respondent ID.
        relocate(ID,`Choice.situation`) %>% 
    as.data.frame()
      
      
      
      
      
      database <- simulate_choices() 
      
      model_spec <- mixl::specify_model(mnl_U, database, disable_multicore=F)
      
      est=setNames(rep(0,length(model_spec$beta_names)), model_spec$beta_names)
      
      
      availabilities <- mixl::generate_default_availabilities(
        database, model_spec$num_utility_functions)
      
      plan(multisession, workers = 8)
      
      output<- 1:no_sim %>% map(estimate_sim)
     
      
      
       
      coefs<-map(1:length(output),~summary(output[[.]])[["coefTable"]][c(1,8)]  %>%
                   tibble::rownames_to_column() %>%
                   pivot_wider(names_from = rowname, values_from = c(est, rob_pval0)) ) %>% 
        bind_rows(.id = "run")
      
      output[["summary"]] <-psych::describe(coefs[,-1], fast = TRUE)
      
      output[["coefs"]] <-coefs
      
      pvals <- output[["coefs"]] %>% dplyr::select(starts_with("rob_pval0"))
      
      output[["power"]] <- 100*table(apply(pvals,1,  function(x) all(x<0.05)))/nrow(pvals)
      
      
      output[["metainfo"]] <- c(Path = designfile, NoSim = no_sim, NoResp =respondents)
      
      
      print(kable(output[["summary"]],digits = 2, format = "rst"))
      
      
      print(output[["power"]])
      
      
      return(output)  
      
      
    }
    
    
    plot_multi_histogram <- function(df, feature, label_column) { #function to create nice multi histograms, taken somewhere from the web
      plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) +
        #geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") +
        geom_density(alpha=0.5) +
        geom_vline(aes(xintercept=mean(eval(parse(text=feature)))), color="black", linetype="dashed", linewidth=1) +  ## this makes a vertical line of the mean
        labs(x=feature, y = "Density")
      plt + guides(fill=guide_legend(title=label_column))
    }