Select Git revision
splot_trait_match1.R

Helge Bruelheide authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
splot_trait_match1.R 25.02 KiB
### Create the workspace for sPlot2.0 ###
### written by Helge Bruelheide, 20.10.2016 ###
# There are x files:
# 1. DT.Rdata: a file in long format, including, among others,
# PlotObservationID, species, Cover
# and Relative.cover, while DT holds all original information,
# including the "Matched concept" which is the unified name from
# Turboveg 3,
# DT2 has been shortened to the relevant fields and
# contains only data with species that have a resolved name in the backbone
# Both DT and DT contain species for which we do not have traits
# 2. splot.header, read in from sPlot_2015_07_29_header.csv:
# header file for DT, holding plot information on database origin,
# country, lat, long, layer height and cover etc.
# splot.header matches to DT, but not to DT2
# 3. backbone.splot2.1.try3.Rdata: taxonomic backbone holding all sPlot and
# TRY species names. These names are in names.sPlot.TRY, the resolved
# names are in name.short.correct
# 4. environment
# 5. Export_sPlot_2016_09_12.csv: gap filled data from TRY3.0
# 6. CWM.Rdata: Community weighted means based on all TRY gap filled data
# 7. FD.Rao.Rdata, Rao's Q for all plots, using divc from ade4
# 8. mpd.abu.Rdata, mntd.abu.Rdata, mpd.pa.Rdata, mntd.pa.Rdata
# mean pairwise distance and mean nearest neighbour distance,
# both based on abundances and presence/absence, using Picante
library(data.table)
load("/data/sPlot2.0/DT_20161021.RData") # server directory
load("data/DT_20161021.RData") # local directory
# 23586216 obs. of 14 variables.
# the field "species" holdes the resolved name according to the backbone
# the field "Matched concept" is the original Turboveg3 name.
setkey(DT,PlotObservationID)
splot.header <- fread("/data/sPlot2.0/sPlot_2015_07_29_header.csv",
sep = "\t", na.strings=c("","NA"))
# You get a warning, which you can ignore.
# 1121244 rows and 43 columns.
###### Taxonomic Backbone #####
load("/data/sPlot2.0/backbone.splot2.1.try3.Rdata")
str(backbone.splot2.1.try3)
#data.frame': 130602 obs. of 33 variables:
' $ Name_number : int 1 2 3 4 5 6 7 8 9 10 ...
$ names.sPlot.TRY : chr "?" "0" "[1269 Chlorophytum platt]" "[1284 Echinochloa]" ...
$ names.corr.string : chr "?" "0" "[1269 Chlorophytum platt]" "[1284 Echinochloa]" ...
$ sPlot.TRY : chr "S" "S" "S" "S" ...
$ Name_submitted : chr "Spermatophyta sp." "Spermatophyta sp." "Chlorophytum sp. [1269]" "Echinochloa sp." ...
$ Overall_score : num 0 0 0.9 0.9 0.9 0.9 0.9 0 0.9 0 ...
$ Name_matched : chr "No suitable matches found." "No suitable matches found." "Chlorophytum" "Echinochloa" ...
$ Name_matched_rank : chr "" "" "genus" "genus" ...
$ Name_score : num 0 0 1 1 1 1 1 0 1 0 ...
$ Family_score : num 0 0 NA NA NA NA 1 0 1 0 ...
$ Name_matched_accepted_family: chr "" "" "Asparagaceae" "Poaceae" ...
$ Genus_matched : chr "" "" "Chlorophytum" "Echinochloa" ...
$ Genus_score : num 0 0 1 1 1 1 NA 0 NA 0 ...
$ Specific_epithet_matched : chr "" "" "" "" ...
$ Specific_epithet_score : num 0 0 NA NA NA NA NA 0 NA 0 ...
$ Unmatched_terms : chr "" "" "\"\"sp. [1269]" "\"\"sp." ...
$ Taxonomic_status : chr "" "" "Accepted" "Accepted" ...
$ Accepted_name : chr "" "" "Chlorophytum" "Echinochloa" ...
$ Accepted_name_author : chr "" "" "" "" ...
$ Accepted_name_rank : chr "" "" "genus" "genus" ...
$ Accepted_name_url : chr "" "" "http://www.theplantlist.org/tpl1.1/search?q=Chlorophytum" "http://www.theplantlist.org/tpl1.1/search?q=Echinochloa" ...
$ Accepted_name_species : chr "" "" "" "" ...
$ Accepted_name_family : chr "" "" "Asparagaceae" "Poaceae" ...
$ Selected : chr "true" "true" "true" "true" ...
$ Source : chr "" "" "tpl" "tpl" ...
$ Warnings : chr " " " " " " " " ...
$ Manual.matching : chr NA NA NA NA ...
$ Status.correct : chr "No suitable matches found." "No suitable matches found." "Accepted" "Accepted" ...
$ name.correct : chr "No suitable matches found." "No suitable matches found." "Chlorophytum" "Echinochloa" ...
$ rank.correct : chr "higher" "higher" "genus" "genus" ...
$ family.correct : chr "" "" "Asparagaceae" "Poaceae" ...
$ name.short.correct : chr NA NA "Chlorophytum" "Echinochloa" ...
$ rank.short.correct : chr "higher" "higher" "genus" "genus" ...
'
# TRY 3.0
TRY3.0 <- read.csv("/data/sPlot2.0/Export_sPlot_2016_09_12.csv")
str(TRY3.0)
#632938 obs. of 33 variables:
any(is.na(TRY3.0[,c(2:19)])) #F
any(TRY3.0[,c(2:19)]==0) #F
index2 <- match(TRY3.0$Species,backbone.splot2.1.try3$names.sPlot.TRY)
str(index2)
TRY3.0$name.short.correct <- backbone.splot2.1.try3$name.short.correct[index2]
library(stringr)
TRY3.0$genus.short.correct <- word(TRY3.0$name.short.correct,1)
head(TRY3.0[,c(34,35)],1000)
TRY3.0$rank.short.correct <- backbone.splot2.1.try3$rank.short.correct[index2]
table(TRY3.0$rank.short.correct, exclude=NULL)
'family genus higher species <NA>
39 21021 1 611655 222 '
### Calculations ###
### take the log of all trait values in TRY3.0 ###
for (i in 2:19){
TRY3.0[,i] <- log(TRY3.0[,i])
}
any(is.na(TRY3.0[,c(2:19)])) #F
TRY.all.n.3 <- aggregate(TRY3.0[,1], by=list(TRY3.0$name.short.correct), FUN=length)
head(TRY.all.n.3)
str(TRY.all.n.3) #52032 obs. of 2 variables:
names(TRY.all.n.3)
names(TRY.all.n.3) <- c("StandSpeciesName","n")
TRY.all.mean.3 <- aggregate(TRY3.0[,c(2:19)], by=list(TRY3.0$name.short.correct), FUN=mean)
str(TRY.all.mean.3) #52032 obs. of 19 variables:
names(TRY.all.mean.3)
' [1] "Group.1" "X1" "X4" "X11" "X13" "X14" "X15" "X18" "X26" "X27" "X47"
[12] "X50" "X56" "X78" "X138" "X163" "X169" "X237" "X282" '
names(TRY.all.mean.3) <- c("StandSpeciesName","LeafArea.mean", "StemDens.mean", "SLA.mean", "LeafC.perdrymass.mean",
"LeafN.mean","LeafP.mean", "PlantHeight.mean", "SeedMass.mean", "Seed.length.mean",
"LDMC.mean","LeafNperArea.mean", "LeafNPratio.mean", "Leaf.delta.15N.mean",
"Seed.num.rep.unit.mean", "Leaffreshmass.mean", "Stem.cond.dens.mean",
"Disp.unit.leng.mean", "Wood.vessel.length.mean")
any(is.na(TRY.all.mean.3$SLA.mean)) #F
TRY.all.sd.3 <- aggregate(TRY3.0[,c(2:19)], by=list(TRY3.0$name.short.correct), FUN=sd)
str(TRY.all.sd.3) #52032 obs. of 19 variables:
names(TRY.all.sd.3)
names(TRY.all.sd.3) <- c("StandSpeciesName","LeafArea.sd", "StemDens.sd", "SLA.sd", "LeafC.perdrymass.sd",
"LeafN.sd","LeafP.sd", "PlantHeight.sd", "SeedMass.sd", "Seed.length.sd",
"LDMC.sd","LeafNperArea.sd", "LeafNPratio.sd", "Leaf.delta.15N.sd",
"Seed.num.rep.unit.sd", "Leaffreshmass.sd", "Stem.cond.dens.sd",
"Disp.unit.leng.sd", "Wood.vessel.length.sd")
any(is.na(TRY.all.sd.3$SLA.sd)) #T
TRY.all.mean.sd.3.by.taxon <- data.frame(TRY.all.n.3,TRY.all.mean.3[,c(2:19)],TRY.all.sd.3[,c(2:19)])
str(TRY.all.mean.sd.3.by.taxon) #52032 obs. of 38 variables
'data.frame: 52032 obs. of 38 variables:
$ StandSpeciesName : chr "Aa" "Aaronsohnia pubescens" "Abarema" "Abarema adenophora" ...
$ n : int 1 1 8 4 1 1 1 38 4 87 ...
$ LeafArea.mean : num 6.61 5.33 7.2 6.96 7.37 ...
$ StemDens.mean : num -0.822 -0.823 -0.534 -0.427 -1.02 ...
$ SLA.mean : num 2.24 3.09 2.43 2.38 2.7 ...
$ LeafC.perdrymass.mean : num 6.17 6.11 6.18 6.26 6.14 ...
$ LeafN.mean : num 2.92 3.07 3.3 3.19 3.38 ...
$ LeafP.mean : num -0.0143 1.0433 -0.1211 0.3403 0.4916 ...
$ PlantHeight.mean : num -0.498 -1.611 2.598 2.874 1.83 ...
$ SeedMass.mean : num -4.08 -1.69 4.27 4.49 4.26 ...
$ Seed.length.mean : num -0.317 0.337 1.949 2.021 2.244 ...
$ LDMC.mean : num -1.471 -1.586 -1.01 -0.798 -0.986 ...
$ LeafNperArea.mean : num 0.8956 0.0878 0.8763 0.8343 0.6596 ...
$ LeafNPratio.mean : num 2.54 1.95 3.49 3.26 3.06 ...
$ Leaf.delta.15N.mean : num 0.38 0.4 0.888 1.258 1.36 ...
$ Seed.num.rep.unit.mean : num 9.56 10.73 2.04 1.64 5.76 ...
$ Leaffreshmass.mean : num -1.3303 -2.7662 0.0832 -0.2516 -0.7861 ...
$ Stem.cond.dens.mean : num 3.67 4.47 1.77 2.14 2.78 ...
$ Disp.unit.leng.mean : num -0.555 0.445 2.734 2.916 2.235 ...
$ Wood.vessel.length.mean: num 6.13 5.32 5.88 5.73 5.32 ...
$ LeafArea.sd : num NA NA 0.0698 0.0303 NA ...
$ StemDens.sd : num NA NA 0.00778 0.11012 NA ...
$ SLA.sd : num NA NA 0.0227 0.1063 NA ...
$ LeafC.perdrymass.sd : num NA NA 0.0014 0.0086 NA ...
$ LeafN.sd : num NA NA 0.025 0.0638 NA ...
$ LeafP.sd : num NA NA 0.0614 0.3936 NA ...
$ PlantHeight.sd : num NA NA 0.053 0.0626 NA ...
$ SeedMass.sd : num NA NA 0.0684 0.0315 NA ...
$ Seed.length.sd : num NA NA 0.0307 0.0457 NA ...
$ LDMC.sd : num NA NA 0.0346 0.0553 NA ...
$ LeafNperArea.sd : num NA NA 0.0412 0.098 NA ...
$ LeafNPratio.sd : num NA NA 0.0354 0.291 NA ...
$ Leaf.delta.15N.sd : num NA NA 0.0326 0.1651 NA ...
$ Seed.num.rep.unit.sd : num NA NA 0.192 0.211 NA ...
$ Leaffreshmass.sd : num NA NA 0.0702 0.0748 NA ...
$ Stem.cond.dens.sd : num NA NA 0.413 0.139 NA ...
$ Disp.unit.leng.sd : num NA NA 0.033 0.0927 NA ...
$ Wood.vessel.length.sd : num NA NA 0.288 0.147 NA ...'
save(TRY.all.mean.sd.3.by.taxon, file="/data/sPlot2.0/TRY.all.mean.sd.3.by.taxon.Rdata")
TRY.all.n.3 <- aggregate(TRY3.0[,1], by=list(TRY3.0$genus.short.correct), FUN=length)
head(TRY.all.n.3)
str(TRY.all.n.3) #7873 obs. of 2 variables:
names(TRY.all.n.3)
names(TRY.all.n.3) <- c("StandSpeciesName","n")
TRY.all.mean.3 <- aggregate(TRY3.0[,c(2:19)], by=list(TRY3.0$genus.short.correct), FUN=mean)
str(TRY.all.mean.3) #7873 obs. of 19 variables:
names(TRY.all.mean.3)
' [1] "Group.1" "X1" "X4" "X11" "X13" "X14" "X15" "X18" "X26" "X27" "X47"
[12] "X50" "X56" "X78" "X138" "X163" "X169" "X237" "X282" '
names(TRY.all.mean.3) <- c("StandSpeciesName","LeafArea.mean", "StemDens.mean", "SLA.mean", "LeafC.perdrymass.mean",
"LeafN.mean","LeafP.mean", "PlantHeight.mean", "SeedMass.mean", "Seed.length.mean",
"LDMC.mean","LeafNperArea.mean", "LeafNPratio.mean", "Leaf.delta.15N.mean",
"Seed.num.rep.unit.mean", "Leaffreshmass.mean", "Stem.cond.dens.mean",
"Disp.unit.leng.mean", "Wood.vessel.length.mean")
any(is.na(TRY.all.mean.3$SLA.mean)) #F
TRY.all.sd.3 <- aggregate(TRY3.0[,c(2:19)], by=list(TRY3.0$genus.short.correct), FUN=sd)
str(TRY.all.sd.3) #7873 obs. of 19 variables:
names(TRY.all.sd.3)
names(TRY.all.sd.3) <- c("StandSpeciesName","LeafArea.sd", "StemDens.sd", "SLA.sd", "LeafC.perdrymass.sd",
"LeafN.sd","LeafP.sd", "PlantHeight.sd", "SeedMass.sd", "Seed.length.sd",
"LDMC.sd","LeafNperArea.sd", "LeafNPratio.sd", "Leaf.delta.15N.sd",
"Seed.num.rep.unit.sd", "Leaffreshmass.sd", "Stem.cond.dens.sd",
"Disp.unit.leng.sd", "Wood.vessel.length.sd")
any(is.na(TRY.all.sd.3$SLA.sd)) #T
TRY.all.mean.sd.3.by.genus.species <- TRY.all.mean.sd.3.by.taxon
names(TRY.all.mean.sd.3.by.genus.species)
index3 <- match(TRY.all.mean.sd.3.by.taxon$StandSpeciesName,
backbone.splot2.1.try3$name.short.correct)
any(is.na(index3)) #F
which(backbone.splot2.1.try3$rank.short.correct[index3]=="genus")
table(backbone.splot2.1.try3$rank.short.correct[index3])
'family genus higher species
6 2342 1 49683 '
#backbone.splot2.1.try3$rank.short.correct[index3]=="genus"
index4 <- match(TRY.all.mean.sd.3.by.genus.species[backbone.splot2.1.try3$rank.short.correct[index3]=="genus",1],
TRY.all.n.3$StandSpeciesName)
str(index4)
TRY.all.mean.sd.3.by.genus.species[backbone.splot2.1.try3$rank.short.correct[index3]=="genus",2] <- TRY.all.n.3[index4,2]
for (i in 1:18){
TRY.all.mean.sd.3.by.genus.species[backbone.splot2.1.try3$rank.short.correct[index3]=="genus",i+2] <- TRY.all.mean.3[index4,i+1]
TRY.all.mean.sd.3.by.genus.species[backbone.splot2.1.try3$rank.short.correct[index3]=="genus",i+20] <- TRY.all.sd.3[index4,i+1]
}
head(TRY.all.mean.sd.3.by.genus.species[,c(1:3)],50)
head(TRY.all.mean.sd.3.by.taxon[,c(1:3)],50)
save(TRY.all.mean.sd.3.by.genus.species, file="/data/sPlot2.0/TRY.all.mean.sd.3.by.genus.species.Rdata")
#load("/data/sPlot2.0/TRY.all.mean.sd.3.by.genus.species.Rdata")
any(is.na(TRY.all.mean.sd.3.by.genus.species[,c(3:21)]))
#T
any(is.na(TRY.all.mean.sd.3.by.taxon[,c(3:21)]))
#T
###
any(is.na(DT$species)) #T
# there NA cases as not all "Matched concept" names in DT have resolved names
length(unique(DT$PlotObservationID)) #1121244
length(DT$species[!is.na(DT$species)]) #23555942
length(DT$species) #23586216
23586216-23555942 # 30274 NA names!!!
# it gives nonsense to match them with traits
index7 <- match(DT$species,TRY.all.mean.sd.3.by.genus.species$StandSpeciesName)
length(index7) #23586216
length(index7[!is.na(index7)])
# 21172989, with TRY3.0
# 21040927, with TRY2.0
# 19841429, with first TRY version
23586216 - 21172989 # 2413227 entries have no species in CWM
# traits are fewer as not all CWM rows have traits
(23586216 - 21172989)/23586216*100
# 10.23151% of all entries
(21172989)/23586216*100
# which are 89.76849% of all entries
# previously: 86.79555% with TRY2.0
# previously: 18.15247 % and with first TRY version
DT2 <- DT[!is.na(DT$species),]
any(is.na(DT2$Relative.cover)) # F
length(unique(DT2$PlotObservationID)) #1121145
#length(unique(sPlot3$PlotObservationID)) #1121245
names(DT2)
names(DT2)[3] <- "Taxon.group"
names(DT2)[6] <- "Matched.concept"
names(DT2)
library(dplyr)
DT2 <- select(DT2,PlotObservationID,species, Taxon.group, Matched.concept, Layer, Cover, Relative.cover)
str(DT2) #23555942 obs. of 7 variables:
length(unique(DT2$PlotObservationID)) #1121145
plot.total.cover4 <- DT2[, list(total.cover=sum(Cover)), by=PlotObservationID]
str(plot.total.cover4) #1121145
min(plot.total.cover4$total.cover) #0.001
max(plot.total.cover4$total.cover) #104704.1
any(is.na(plot.total.cover4$total.cover)) # F
length(plot.total.cover4$total.cover[plot.total.cover4$total.cover==0])
# 0 !!!
# all plots have cover
index4 <- match(DT2$PlotObservationID,plot.total.cover4$PlotObservationID)
length(index4) #23555942
any(is.na(index4)) # F
# recalculate Relative cover
### CAREFUL! This has to be done by layer now ###
DT2$Relative.cover <- DT2$Cover/plot.total.cover4$total.cover[index4]
plot.total.cover5 <- DT2[, list(total.cover=sum(Relative.cover)), by=PlotObservationID]
min(plot.total.cover5$total.cover) #1
max(plot.total.cover5$total.cover) #1
save(DT2,file = "/data/sPlot2.0/DT2_20161021.RData")
length(unique(DT2$PlotObservationID)) #1121145 versus 1121244 before
index7 <- match(DT2$species,TRY.all.mean.sd.3.by.genus.species$StandSpeciesName)
length(index7) #23555942
length(index7[!is.na(index7)])
# 21172989, with TRY3.0
23555942 - 21172989
# 2382953 entries with valid species names have no species in the
# gap-filled trait file
# not all species there have traits
(23555942 - 21172989)/23555942*100
# 10.11614% of all entries have no traits
(21172989)/23555942*100
# which are 89.88386% of all entries
### CWM ###
mean(TRY.all.mean.sd.3.by.genus.species$SLA.mean) # NA
mean(TRY.all.mean.sd.3.by.genus.species$SLA.mean,na.rm=T) # 2.63365
# example
DT2$trait <- NA
DT2$trait <- TRY.all.mean.sd.3.by.genus.species$SLA.mean[index7]
length(DT2$trait[!is.na(DT2$trait)]) # 21172949
length(DT2$trait[is.na(DT2$trait)]) # 2382993
(21172949-2382993)/21172949
# 0.8874511 % of all records in sPlot have a valid trait
length(unique(DT2$species)) #61131
length(unique(DT2$species[!is.na(DT2$trait)])) #26666
26666/61131 # 0.4362108
str(DT2)
colnames(TRY.all.mean.sd.3.by.genus.species)
CWM2 <- DT2[,list(CWM.SLA = weighted.mean(trait,Cover,na.rm = T)),by=PlotObservationID]
# I have checked that we do not need to prefilter only those entries that have a trait value
# this works fine
str(CWM2)
dim(CWM2) #1121145
which(colnames(TRY.all.mean.sd.3.by.genus.species)=="LeafArea.mean") # 3
which(colnames(TRY.all.mean.sd.3.by.genus.species)=="Wood.vessel.length.mean") # 20
CWM <- array(NA,c(dim(CWM2)[1],18),dimnames=list(CWM2$PlotObservationID,
colnames(TRY.all.mean.sd.3.by.genus.species)[3:20]))
rm(CWM2)
for (i in 1:18){
DT2$trait <- NA
DT2$trait <- TRY.all.mean.sd.3.by.genus.species[index7,i+2]
CWM[,i] <- DT2[,list(CWM.trait= weighted.mean(trait,Relative.cover,na.rm = T)),by=PlotObservationID]$CWM.trait
}
dim(CWM) #1121145 18
length(CWM[,"SLA.mean"][!is.na(CWM[,"SLA.mean"])]) #1116113
1116113/1121145 # 0.9955117% of all plots in sPlot2 have a CWM value
save(CWM, file="/data/sPlot2.0/CWM.Rdata") # on the server
save(CWM, file="data/CWM.Rdata") # on the local system
#load("/data/sPlot2.0/CWM.Rdata") # on the server
## FD Raos Q based on divc in ade4
library(ade4) # f?r divc (Rao's Q)
FD.fun <- function(trait, abu){
res <- as.double(NA)
if (length(trait[!is.na(trait)])>0){
res <- 0
#nam <- as.character(nam[!is.na(trait)])
abu <- as.data.frame(abu[!is.na(trait)])
#rownames(abu) <- nam
trait <- as.data.frame(trait[!is.na(trait)])
#rownames(trait) <- nam
dis <- dist(trait,method="euclidean")
if (sum(dis)>1){
sqrt.dis <- sqrt(dis)
# taking the square root is required to obtain the same result from the divc function
# as divc takes the square of distances values, as suggested by
# Champely & Chessel (2002, Env. Ecol. Stat. 9: 167-177)
#abu <- as.data.frame(abu)
res <- unlist(divc(abu, sqrt.dis))
#Rao's Q: sumi sumj (dist ij prop i prop j)'
}
}
res
}
library(picante)
# define function for mean pairwise distance
'mpd.fun.dt <- function(abu, dis, nam, abundance.weighted){
abu <- t(abu)
colnames(abu) <- nam
res <- mpd(abu, dis, abundance.weighted=abundance.weighted)
}
# define funtion of mean nearest neighbor distance
mntd.fun.dt <- function(abu, dis, nam, abundance.weighted){
abu <- t(abu)
colnames(abu) <- nam
res <- mntd(abu, dis, abundance.weighted=abundance.weighted)
res
}
'
mpd.fun <- function(nam, trait, abu,abundance.weighted){
#res <- numeric(1) # carries result from the function
res <- as.double(NA)
nam <- nam[!is.na(trait)]
abu <- abu[!is.na(trait)]
trait <- trait[!is.na(trait)]
if (length(trait)>0){
# dis <- as.matrix(dist(t(t1),method="euclidean"))
abu <- t(abu)
colnames(abu) <- nam
trait <- t(trait)
colnames(trait) <- nam
#dis <- as.matrix(vegdist(t(t1),method="euclidean", na.rm=T))
dis <- as.matrix(dist(t(trait),method="euclidean"))
res <- mpd(abu, dis, abundance.weighted=abundance.weighted)
}
res
}
mntd.fun <- function(nam, trait, abu,abundance.weighted){
#res <- numeric(1) # carries result from the function
res <- as.double(NA)
nam <- nam[!is.na(trait)]
abu <- abu[!is.na(trait)]
trait <- trait[!is.na(trait)]
if (length(trait)>0){
# dis <- as.matrix(dist(t(t1),method="euclidean"))
abu <- t(abu)
colnames(abu) <- nam
trait <- t(trait)
colnames(trait) <- nam
#dis <- as.matrix(vegdist(t(t1),method="euclidean", na.rm=T))
dis <- as.matrix(dist(t(trait),method="euclidean"))
res <- mntd(abu, dis, abundance.weighted=abundance.weighted)
}
res
}
test<- DT[c(1:10000),list(mpd.trait= mpd.fun(species, trait, Relative.cover, abundance.weighted=TRUE)),by=PlotObservationID]
str(test)
length(test$mpd.trait[is.na(test$mpd.trait)])
head(test$mpd.trait)
DT[PlotObservationID==30,]
test$mpd.trait[test$PlotObservationID==30]
length(test$mntd.trait[is.na(test$mntd.trait)])
test<- DT[c(1:10000),list(mntd.trait= mntd.fun(species, trait, Relative.cover, abundance.weighted=TRUE)),by=PlotObservationID]
test$mntd.trait[test$PlotObservationID==30]
FD.Rao <- array(NA,c(dim(CWM)[1],18),dimnames=list(dimnames(CWM)[[1]],
colnames(TRY.all.mean.sd.3.by.genus.species)[3:20]))
mpd.abu <- array(NA,c(dim(CWM)[1],18),dimnames=list(dimnames(CWM)[[1]],
colnames(TRY.all.mean.sd.3.by.genus.species)[3:20]))
mpd.pa <- array(NA,c(dim(CWM)[1],18),dimnames=list(dimnames(CWM)[[1]],
colnames(TRY.all.mean.sd.3.by.genus.species)[3:20]))
mntd.abu <- array(NA,c(dim(CWM)[1],18),dimnames=list(dimnames(CWM)[[1]],
colnames(TRY.all.mean.sd.3.by.genus.species)[3:20]))
mntd.pa <- array(NA,c(dim(CWM)[1],18),dimnames=list(dimnames(CWM)[[1]],
colnames(TRY.all.mean.sd.3.by.genus.species)[3:20]))
str(FD.Rao) #logi [1:1121145, 1:18]
for (i in 1:18){
print(i)
DT2$trait <- NA
DT2$trait <- TRY.all.mean.sd.3.by.genus.species[index7,i+2]
#FD.Rao[,i] <- DT2[,list(FD.trait= FD.fun(trait, Relative.cover)),by=PlotObservationID]$FD.trait
#mpd.abu[,i] <- DT2[,list(mpd.trait= mpd.fun(species, trait, Relative.cover, abundance.weighted=TRUE)),by=PlotObservationID]$mpd.trait
mpd.pa[,i] <- DT2[,list(mpd.trait= mpd.fun(species, trait, Relative.cover, abundance.weighted=FALSE)),by=PlotObservationID]$mpd.trait
mntd.abu[,i] <- DT2[,list(mntd.trait= mntd.fun(species, trait, Relative.cover, abundance.weighted=TRUE)),by=PlotObservationID]$mntd.trait
#mntd.pa[,i] <- DT2[,list(mntd.trait= mntd.fun(species, trait, Relative.cover, abundance.weighted=FALSE)),by=PlotObservationID]$mntd.trait
}
save(FD.Rao, file="/data/sPlot2.0/FD.Rao.Rdata") # on the server
save(mpd.abu, file="/data/sPlot2.0/mpd.abu.Rdata") # on the server
save(mpd.pa, file="/data/sPlot2.0/mpd.pa.Rdata") # on the server
save(mntd.abu, file="/data/sPlot2.0/FD.Rao.Rdata") # on the server
save(mntd.pa, file="/data/sPlot2.0/mntd.pa.Rdata") # on the server
dim(mpd.pa) #1121145 18
length(mpd.pa[,"SLA.mean"][!is.na(mpd.pa[,"SLA.mean"])]) #1100058
1100058/1121145 #0.9811915
library(vegan)
head(dimnames(TRY.all.mean.sd.3.by.genus.species)[[1]])
dimnames(TRY.all.mean.sd.3.by.genus.species)[[2]]
TRY.all.mean.sd.3.by.genus.species2 <- TRY.all.mean.sd.3.by.genus.species[!is.na(TRY.all.mean.sd.3.by.genus.species[,"SLA.mean"]),]
trait.pca1 <- rda(TRY.all.mean.sd.3.by.genus.species2[,c(5,9,10)],scale=T)
## do this for 3 traits
nam <- DT2$species[DT$PlotObservationID==1]
pca1 <- DT2$pca1[DT$PlotObservationID==1]
pca2 <- DT2$pca2[DT$PlotObservationID==1]
pca3 <- DT2$pca3[DT$PlotObservationID==1]
abu <- DT2$Relative.cover[DT$PlotObservationID==1]
mpd.fun.multitrait <- function(nam, pca1, pca2, pca3, abu,abundance.weighted){
#res <- numeric(1) # carries result from the function
trait <- as.matrix(cbind(pca1, pca2, pca3))
res <- as.double(NA)
nam <- nam[!is.na(rowSums(trait))]
abu <- abu[!is.na(rowSums(trait))]
trait <- trait[!is.na(rowSums(trait)),]
if (length(trait)>3){
# then there is more than one species (with 3 trait values)
abu <- t(abu)
colnames(abu) <- nam
trait <- t(trait)
colnames(trait) <- nam
dis <- as.matrix(dist(t(trait),method="euclidean"))
res <- mpd(abu, dis, abundance.weighted=abundance.weighted)
}
res
}
mntd.fun.multitrait <- function(nam, pca1, pca2, pca3, abu,abundance.weighted){
#res <- numeric(1) # carries result from the function
trait <- as.matrix(cbind(pca1, pca2, pca3))
res <- as.double(NA)
nam <- nam[!is.na(rowSums(trait))]
abu <- abu[!is.na(rowSums(trait))]
trait <- trait[!is.na(rowSums(trait)),]
if (length(trait)>3){
abu <- t(abu)
colnames(abu) <- nam
trait <- t(trait)
colnames(trait) <- nam
dis <- as.matrix(dist(t(trait),method="euclidean"))
res <- mntd(abu, dis, abundance.weighted=abundance.weighted)
}
res
}
identical(dimnames(TRY.all.mean.sd.3.by.genus.species2)[[1]],
dimnames(summary(trait.pca1)$sites)[[1]])
#T
index8 <- match(DT2$species,TRY.all.mean.sd.3.by.genus.species2$StandSpeciesName)
length(index8) #23555942
length(index8[!is.na(index8)]) #21172949
DT2$pca1 <- summary(trait.pca1)$sites[index8,1]
DT2$pca2 <- summary(trait.pca1)$sites[index8,2]
DT2$pca3 <- summary(trait.pca1)$sites[index8,3]
names(DT2)
# pca scores in 9:11
mpd.abu.LHS <- DT2[,list(mpd.trait= mpd.fun.multitrait(species, pca1, pca2, pca3, Relative.cover, abundance.weighted=TRUE)),by=PlotObservationID]$mpd.trait
mpd.pa.LHS <- DT2[,list(mpd.trait= mpd.fun.multitrait(species, pca1, pca2, pca3, Relative.cover, abundance.weighted=FALSE)),by=PlotObservationID]$mpd.trait
mntd.abu.LHS <- DT2[,list(mntd.trait= mntd.fun.multitrait(species, pca1, pca2, pca3, Relative.cover, abundance.weighted=TRUE)),by=PlotObservationID]$mntd.trait
mntd.pa.LHS <- DT2[,list(mntd.trait= mntd.fun.multitrait(species, pca1, pca2, pca3, Relative.cover, abundance.weighted=FALSE)),by=PlotObservationID]$mntd.trait
mpd.mntd.LHS <- data.frame(mpd.abu.LHS,mpd.pa.LHS,mntd.abu.LHS, mntd.pa.LHS)
str(mpd.mntd.LHS)
#data.frame': 1121145 obs. of 4 variables:
save(mpd.mntd.LHS, file="/data/sPlot2.0/mpd.mntd.LHS.Rdata") # on the server