Skip to content
Snippets Groups Projects
Commit 194ea0a4 authored by Francesco Sabatini's avatar Francesco Sabatini
Browse files

Version v1.1 corrected

parent 6e366f54
No related branches found
No related tags found
No related merge requests found
......@@ -151,7 +151,8 @@ Pfe-f-08 - 1707849
Pfe-o-05- 1707854
```{r, eval=T}
header0 <- header0 %>%
filter(!PlotObservationID %in% c(1707776, 1707779:1707782, 1707849, 1707854))
filter(!PlotObservationID %in% c(1707776, 1707779:1707782, 1707849, 1707854)) %>%
filter(Dataset != "$Coastal_Borja")
```
......@@ -394,7 +395,7 @@ header <- header %>%
by="PlotObservationID") %>%
mutate(CONTINENT=factor(continent,
levels=c("Africa", "Antarctica", "Australia", "Eurasia", "North America", "South America"),
labels=c("AF", "AN", "AU", "EU", "NA", "SA"))) %>%
labels=c("AF", "AN", "AU", "EU", "N-A", "S-A"))) %>%
dplyr::select(-continent)
```
......
......@@ -295,7 +295,8 @@ elevation.out <- read_csv("../_derived/elevatr/elevation.out.csv")
soilclim <- header %>%
dplyr::select(PlotObservationID) %>%
left_join(elevation.out %>%
dplyr::select(PlotObservationID, Elevation_median, Elevation_q2.5, Elevation_q97.5, Elevation_DEM.res=DEM.res),
dplyr::select(PlotObservationID, Elevation_median, Elevation_q2.5, Elevation_q97.5, Elevation_DEM.res=DEM.res) %>%
filter(!is.na(Elevation_median)),
by="PlotObservationID") %>%
left_join(header.shp@data %>%
dplyr::select(PlotObservationID) %>%
......@@ -305,6 +306,8 @@ soilclim <- header %>%
bind_cols(isric.sd.out) %>%
distinct(),
by="PlotObservationID")
dim(soilclim)
nrow(soilclim)==nrow(header)
```
```{r, echo=F}
......
......@@ -15,7 +15,7 @@ output: html_document
**Revised:**
**version:** 1.0
This reports documents 1) the construction of Community Weighted Means (CWMs) and Variance (CWVs); and 2) the classification of plots into forest\\non-forest based on species growth forms. It complements species composition data from sPlot 3.0 and gap-filled plant functional traits from TRY 5.0, as received by [Jens Kattge](jkattge@bgc-jena.mpg.de) on Jan 21, 2020.
This report documents 1) the construction of Community Weighted Means (CWMs) and Variance (CWVs); and 2) the classification of plots into forest\\non-forest based on species growth forms. It complements species composition data from sPlot 3.0 and gap-filled plant functional traits from TRY 5.0, as received by [Jens Kattge](jkattge@bgc-jena.mpg.de) on Jan 21, 2020.
*Changes in version 1.1* - Standardized Growth form names in sPlot_traits.
......@@ -202,7 +202,7 @@ This results in the exclusion of `r length(unique(c(toexclude, toexclude2, toexc
## 1.4 Calculate species and genus level trait means and sd
```{r}
```{r, cache=T, cache.lazy=F, warning=F}
## Calculate species level trait means and sd.
try.species.means <- try.individuals %>%
group_by(Name_short) %>%
......@@ -335,7 +335,10 @@ CWM0 <- DT2.comb %>%
dplyr::rename(Species=Taxon_name) %>%
dplyr::select(Species, Rank_correct, ends_with("_mean")),
by=c("Species", "Rank_correct"))
```
```{r, cache=T, cache.lazy=F, warning=F}
# Calculate CWM for each trait in each plot
CWM1 <- CWM0 %>%
group_by(PlotObservationID) %>%
......@@ -343,7 +346,10 @@ CWM1 <- CWM0 %>%
.funs = list(~weighted.mean(., Relative_cover, na.rm=T))) %>%
dplyr::select(PlotObservationID, order(colnames(.))) %>%
gather(key=variable, value=CWM, -PlotObservationID)
```
```{r, cache=T, cache.lazy=F, warning=F}
# Calculate coverage for each trait in each plot
CWM2 <- CWM0 %>%
mutate_at(.funs = list(~if_else(is.na(.),0,1) * Relative_cover),
......@@ -353,7 +359,10 @@ CWM2 <- CWM0 %>%
.funs = list(~sum(., na.rm=T))) %>%
dplyr::select(PlotObservationID, order(colnames(.))) %>%
gather(key=variable, value=trait.coverage, -PlotObservationID)
```
```{r, cache=T, cache.lazy=F, warning=F}
# Calculate CWV
# Ancillary function
variance2.fun <- function(trait, abu){
......@@ -377,7 +386,10 @@ CWM3 <- CWM0 %>%
.funs = list(~variance2.fun(., Relative_cover))) %>%
dplyr::select(PlotObservationID, order(colnames(.))) %>%
gather(key=variable, value=CWV, -PlotObservationID)
```
```{r, cache=T, cache.lazy=F, warning=F}
## Calculate proportion of species having traits
CWM4 <- CWM0 %>%
group_by(PlotObservationID) %>%
......@@ -479,12 +491,6 @@ knitr::kable(CWM.summary,
full_width = F, position = "center")
```
### 2.2 Export CWM and species mean trait values
```{r}
save(try.combined.means, CWM, file="../_output/Traits_CWMs_sPlot3.RData")
```
# 3 Classify plots in `is.forest` or `is.non.forest` based on species traits
sPlot has two independent systems for classifying plots to vegetation types. The first relies on the expert opinion of data contributors and classifies plots into broad habitat types. These broad habitat types are coded using 5, non-mutually exclusive dummy variables:
1) Forest
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment