Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sPlot3_build
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
sPlot
sPlot3_build
Commits
9539a520
Commit
9539a520
authored
5 years ago
by
Francesco Sabatini
Browse files
Options
Downloads
Patches
Plain Diff
Extract Continent\sBiome in server - incomplete
parent
02ee32dc
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
code/04_buildHeader.Rmd
+214
-18
214 additions, 18 deletions
code/04_buildHeader.Rmd
with
214 additions
and
18 deletions
code/04_buildHeader.Rmd
+
214
−
18
View file @
9539a520
...
...
@@ -24,6 +24,9 @@ This report documents the construction of the header file for sPlot 3.0. It is b
```{r results="hide", message=F, warning=F}
write("TMPDIR = /data/sPlot/users/Francesco/_tmp", file=file.path(Sys.getenv('TMPDIR'), '.Renviron'))
write("R_USER = /data/sPlot/users/Francesco/_tmp", file=file.path(Sys.getenv('R_USER'), '.Renviron'))
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(readr)
...
...
@@ -40,7 +43,7 @@ library(rworldmap)
```{bash, eval=F}
# escape all double quotation marks. Run in Linux terminal
sed 's/"/\\"/g' sPlot_3_0_2_header.csv > sPlot_3_0_2_header_test.csv
#
sed 's/"/\\"/g' sPlot_3_0_2_header.csv > sPlot_3_0_2_header_test.csv
#more general alternative in case some " are already escaped
##first removing \s before all "s, and then adding \ before all ":
...
...
@@ -140,7 +143,7 @@ header <- header0 %>%
list=(is.na(`Location uncertainty (m)`) & Dataset=="Egypt Nile delta"),
values=-90000))
```
There are two plots in the `Romani
n
a Grassland Databse` and ~4442 plots in the `Japan` database, whose lat\\long are inverted. Correct.
There are two plots in the `Romania Grassland Databse` and ~4442 plots in the `Japan` database, whose lat\\long are inverted. Correct.
```{r}
toswap <- c(which(header$Dataset=="Japan" & header$Latitude>90),
which(header$Dataset=="Romania Grassland Database" & header$Longitude>40))
...
...
@@ -265,10 +268,20 @@ header <- header %>%
```
# 4 Assign plots to spatial descriptors
Create spatial point dataframe for sPlot data to intersect with spatial layers
```{r}
header.shp <- header %>%
filter(!is.na(Longitude) | !is.na(Latitude))
header.shp <- SpatialPointsDataFrame(coords= header.shp %>%
dplyr::select(Longitude, Latitude),
proj4string = CRS("+init=epsg:4326"),
data=data.frame(PlotObservationID= header.shp$PlotObservationID,
loc.uncert=header.shp$`Location uncertainty (m)`,
`GIVD ID`=header.shp$`GIVD ID`))
```
## 4 Assign to Continents
## 4.1 Assign to Continents
Download and manipulate map of continents
```{r}
sPDF <- rworldmap::getMap(resolution="coarse")
...
...
@@ -288,19 +301,9 @@ continent.high <- sPDF[,"continent"]
crs(continent.high) <- CRS("+init=epsg:4326")
continent.high@data$continent <- fct_recode(continent.high@data$continent, "South America"="South America and the Caribbean")
```
Create spatial point dataframe for sPlot data to intersect with spatial layers
```{r}
header.shp <- header %>%
filter(!is.na(Longitude) | !is.na(Latitude))
header.shp <- SpatialPointsDataFrame(coords= header.shp %>%
dplyr::select(Longitude, Latitude),
proj4string = CRS("+init=epsg:4326"),
data=data.frame(PlotObservationID= header.shp$PlotObservationID,
loc.uncert=header.shp$`Location uncertainty (m)`))
```
Assign plots to continent
```{r, eval=
T
}
```{r, eval=
F
}
continent.out <- sp::over(x=header.shp, y=continent)
#overlay unassigned points to the high resolution layer of continent
toassign <- header.shp[which(is.na(continent.out$continent)),] #154782 remain to assign
...
...
@@ -315,7 +318,7 @@ crs(toassign) <- crs(continent)
#go parallel
ncores=
6
ncores=
8
library(parallel)
library(doParallel)
cl <- makeForkCluster(ncores, outfile="" )
...
...
@@ -326,6 +329,7 @@ nearestContinent <- foreach(i=1:length(toassign), .packages=c('raster'), .combin
}
continent.out$continent[which(is.na(continent.out$continent))] <- as.character(continent[-137,]@data[nearestContinent[,"ID"],])
save(continent.out, file = "../_derived/continent.out")
stopCluster(cl)
```
Reload and manipulate continent. Correct header.sRoot
```{r}
...
...
@@ -335,14 +339,206 @@ header <- header %>%
filter(!is.na(Longitude) | !is.na(Latitude)) %>%
dplyr::select(PlotObservationID) %>%
bind_cols(continent.out),
by="PlotObservationID")
by="PlotObservationID")
%>%
mutate(CONTINENT=factor(continent,
levels=c("Africa", "Antarctica", "Australia", "Eurasia", "North America", "South America"),
labels=c("AF", "AN", "AU", "EU", "NA", "SA"))) %>%
dplyr::select(-continent)
```
## 4.2 Assign to sBiomes
```{r, eval=F}
sBiomes <- readOGR("/data/sPlot/users/Francesco/Ancillary_Data/Biomes_sPlot/sBiomes.shp")
crs(sBiomes) <- crs(header.shp)
library(parallel)
library(doParallel)
ncores=10
cl <- makeForkCluster(ncores, outfile="" )
registerDoParallel(cl)
#divide in chunks #should take around 40'
indices <- 1:length(header.shp)
chunks <- split(indices, sort(indices%%99))
chunkn <- length(chunks)
sBiomes.out <- foreach(i=1:chunkn, .packages=c('raster'), .combine=rbind) %dopar% {
sBiomes.tmp <- sp::over(x=header.shp[chunks[[i]],], y=sBiomes)
}
sum(is.na(sBiomes.out$Name))
sBiomes.out.backup <- sBiomes.out
stopCluster(cl)
```
There are `r sum(is.na(sBiomes.out$Name))` still to assign. Using the `dist2Line` is not feasible due to long computing times (3' for each plot!). Fall back on raster version of sBiomes (res 0.1°).
```{r}
load("../_derived/sBiome.out.RData")
sBiomes01 <- raster("/data/sPlot/users/Francesco/Ancillary_Data/Biomes_sPlot/sBiome_raster01/sBiomes_raster01.tif")
## Fix NAs
toassign <- header.shp[which(is.na(sBiomes.out$Name)),] #116878 not assigned (!)
crs(sBiomes01) <- crs(toassign)
system.time(sBiomes.out2 <- extract(sBiomes01, toassign))
toassign3 <- toassign[which(sBiomes.out2==0),] #91793 not assigned (!)
robust.mode <- function(x){if(any(x!=0)) {
a <- x[which(x!=0)] #exclude zero (i.e. NAs)
return(as.numeric(names(sort(table(a), decreasing=T))[1]))} else
return(NA)
}
ncores=10
cl <- makeForkCluster(ncores, outfile="" )
registerDoParallel(cl)
sBiomes.out3 <- foreach(i=1:length(toassign3), .packages=c('raster'), .combine=rbind) %dopar% {
sBiomes.out.tmp <- extract(sBiomes01, toassign3[i,], buffer=10000, fun=robust.mode)
}
stopCluster(cl)
save(sBiomes.out, sBiomes.out2, sBiomes.out3, file = "../_derived/sBiome.out.RData")
toassign4 <- toassign3[which(is.na(sBiomes.out3)),] ##37887 still to classify
ncores=10
cl <- makeForkCluster(ncores, outfile="" )
registerDoParallel(cl)
sBiomes.out4 <- foreach(i=1:length(toassign4), .packages=c('raster'), .combine=rbind) %dopar% {
sBiomes.out.tmp <- extract(sBiomes01, toassign4[i,], buffer=50000, fun=robust.mode)
}
stopCluster(cl)
save(sBiomes.out, sBiomes.out2, sBiomes.out3, sBiomes.out4, file = "../_derived/sBiome.out.RData")
toassign5 <- toassign4[which(is.na(sBiomes.out4)),] #4158 still to assign
nearestBiome <- foreach(i=1:1000, .packages=c('raster'), .combine=rbind) %dopar% {
nearestBiome.tmp <- geosphere::dist2Line(toassign[i,], sBiomes)
}
sBiomes.out[which(is.na(sBiomes.out$Name))] <- as.character(sBiomes@data[nearestBiome[,"ID"],])
sum(is.na(sBiomes.out$Name))
save(sBiomes.out, file = "../_derived/sBiome.out.RData")
stopCluster(cl)
```
Reimport output and join to header
```{r}
header <- header %>%
bind_rows(sBiomes.out %>%
dplyr::select(Name, BiomeID) %>%
dplyr::rename(sBioem=Name, s))
```
# 5 Map of plots
```{r}
library(sf)
library(rnaturalearth)
library(viridis)
library(dggridR)
#### BRT predicting
#### alternative plotting
countries <- ne_countries(returnclass = "sf") %>%
st_transform(crs = "+proj=eck4") %>%
st_geometry()
graticules <- ne_download(type = "graticules_15", category = "physical",
returnclass = "sf") %>%
st_transform(crs = "+proj=eck4") %>%
st_geometry()
bb <- ne_download(type = "wgs84_bounding_box", category = "physical",
returnclass = "sf") %>%
st_transform(crs = "+proj=eck4") %>%
st_geometry()
label_parse <- function(breaks) {
parse(text = breaks)
}
## basic graph of the world in Eckert projection
w3a <- ggplot() +
geom_sf(data = bb, col = "grey20", fill = "white") +
geom_sf(data = graticules, col = "grey20", lwd = 0.1) +
geom_sf(data = countries, fill = "grey90", col = NA, lwd = 0.3) +
coord_sf(crs = "+proj=eck4") +
theme_minimal() +
theme(axis.text = element_blank(),
legend.title=element_text(size=12),
legend.text=element_text(size=12),
legend.background = element_rect(size=0.1, linetype="solid", colour = 1),
legend.key.height = unit(1.1, "cm"),
legend.key.width = unit(1.1, "cm")) +
scale_fill_viridis(label=label_parse)
## Plotting of plot density in hexagons
header2 <- header %>%
filter(!is.na(Longitude) | !is.na(Latitude)) %>%
dplyr::select(PlotObservationID, Latitude, Longitude, `GIVD ID`) %>%
filter(!(abs(Longitude) >171 & abs(Latitude>70)))
dggs <- dgconstruct(spacing=300, metric=T, resround='down')
#Get the corresponding grid cells for each earthquake epicenter (lat-long pair)
header2$cell <- dgGEO_to_SEQNUM(dggs, header2$Longitude, header2$Latitude)$seqnum
#Calculate number of plots for each cell
header.out <- header2 %>%
group_by(cell) %>%
summarise(value.out=log(n(), 10))
#Get the grid cell boundaries for cells
grid <- dgcellstogrid(dggs, header.out$cell, frame=F) %>%
st_as_sf() %>%
mutate(cell = header.out$cell) %>%
mutate(value.out=header.out$value.out) %>%
st_transform("+proj=eck4") %>%
st_wrap_dateline(options = c("WRAPDATELINE=YES"))
## plotting
legpos <- c(0.160, .24)
(w3 <- w3a +
geom_sf(data=grid, aes(fill=value.out),lwd=0, alpha=0.9) +
geom_sf(data = countries, col = "grey10", fill=NA, lwd = 0.3) +
scale_fill_viridis(
name="# plots", breaks=0:5, labels = c("1", "10", "100",
"1,000", "10,000", "100,000"), option="viridis" ) +
#labs(fill="# plots") +
theme(legend.position = legpos +c(-0.06, 0.25))
)
ggsave(filename="../_pics/PlotDensityLog10_vir.png", width = 15, height = 7, units="in", dpi=300, plot=w3)
## Graph of plot location by Dataset
header.sf <- header.shp %>%
st_as_sf() %>%
#sample_frac(0.01) %>%
st_transform(crs = "+proj=eck4") #%>%
#st_geometry()
set.seed(1984)
w3 <- w3a +
geom_sf(data=header.sf %>%
mutate(GIVD.ID=fct_shuffle(GIVD.ID)), aes(col=factor(GIVD.ID)), pch=16, size=0.8, alpha=0.6) +
geom_sf(data = countries, col = "grey10", fill=NA, lwd = 0.3) +
#scale_color_brewer(palette = "Dark2") +
#labs(fill="# plots") +
theme(legend.position = "none")
ggsave(filename="../_pics/PlotDistrib_Dark2_shuffle1984.png", width = 15, height = 7, units="in", dpi=300, plot=w3) ## takes ~40' to render
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment