-
Andrews Sobral authored
* big refactoring, improved IBGS interface, added new macros, ... * Updated MyBGS algorithm template * simplified ibgs interface, moved generic code to utils * src folder restructuration * refactoring for the new folder structure * headers fix in qt gui and examples * Refactorization of ILoadSaveConfig
Andrews Sobral authored* big refactoring, improved IBGS interface, added new macros, ... * Updated MyBGS algorithm template * simplified ibgs interface, moved generic code to utils * src folder restructuration * refactoring for the new folder structure * headers fix in qt gui and examples * Refactorization of ILoadSaveConfig
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
AdaptiveMedianBGS.cpp 3.14 KiB
#include "AdaptiveMedianBGS.h"
#if CV_MAJOR_VERSION >= 2 && CV_MAJOR_VERSION <= 3
using namespace Algorithms::BackgroundSubtraction;
void AdaptiveMedianBGS::Initalize(const BgsParams& param)
{
m_params = (AdaptiveMedianParams&)param;
m_median = cvCreateImage(cvSize(m_params.Width(), m_params.Height()), IPL_DEPTH_8U, 3);
cvSet(m_median.Ptr(), CV_RGB(BACKGROUND, BACKGROUND, BACKGROUND));
}
RgbImage* AdaptiveMedianBGS::Background()
{
return &m_median;
}
void AdaptiveMedianBGS::InitModel(const RgbImage& data)
{
// initialize the background model
for (unsigned int r = 0; r < m_params.Height(); ++r)
{
for (unsigned int c = 0; c < m_params.Width(); ++c)
{
m_median(r, c) = data(r, c);
}
}
}
void AdaptiveMedianBGS::Update(int frame_num, const RgbImage& data, const BwImage& update_mask)
{
if (frame_num % m_params.SamplingRate() == 1)
{
// update background model
for (unsigned int r = 0; r < m_params.Height(); ++r)
{
for (unsigned int c = 0; c < m_params.Width(); ++c)
{
// perform conditional updating only if we are passed the learning phase
if (update_mask(r, c) == BACKGROUND || frame_num < m_params.LearningFrames())
{
for (int ch = 0; ch < NUM_CHANNELS; ++ch)
{
if (data(r, c, ch) > m_median(r, c, ch))
{
m_median(r, c, ch)++;
}
else if (data(r, c, ch) < m_median(r, c, ch))
{
m_median(r, c, ch)--;
}
}
}
}
}
}
}
void AdaptiveMedianBGS::SubtractPixel(int r, int c, const RgbPixel& pixel,
unsigned char& low_threshold, unsigned char& high_threshold)
{
// perform background subtraction
low_threshold = high_threshold = FOREGROUND;
int diffR = abs(pixel(0) - m_median(r, c, 0));
int diffG = abs(pixel(1) - m_median(r, c, 1));
int diffB = abs(pixel(2) - m_median(r, c, 2));
if (diffR <= m_params.LowThreshold() && diffG <= m_params.LowThreshold() && diffB <= m_params.LowThreshold())
{
low_threshold = BACKGROUND;
}
if (diffR <= m_params.HighThreshold() && diffG <= m_params.HighThreshold() && diffB <= m_params.HighThreshold())
{
high_threshold = BACKGROUND;
}
}
///////////////////////////////////////////////////////////////////////////////
//Input:
// data - a pointer to the image data
//Output:
// output - a pointer to the data of a gray value image
// (the memory should already be reserved)
// values: 255-foreground, 0-background
///////////////////////////////////////////////////////////////////////////////
void AdaptiveMedianBGS::Subtract(int frame_num, const RgbImage& data,
BwImage& low_threshold_mask, BwImage& high_threshold_mask)
{
unsigned char low_threshold, high_threshold;
// update each pixel of the image
for (unsigned int r = 0; r < m_params.Height(); ++r)
{
for (unsigned int c = 0; c < m_params.Width(); ++c)
{
// perform background subtraction
SubtractPixel(r, c, data(r, c), low_threshold, high_threshold);
// setup silhouette mask
low_threshold_mask(r, c) = low_threshold;
high_threshold_mask(r, c) = high_threshold;
}
}
}
#endif